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Abstract

Geometry processing algorithms often require the robust extraction of curvature information. We propose to
achieve this with principal component analysis (PCA) of local neighborhoods, defined via spherical kernels cen-
tered on the given surface ®. Intersection of a kernel ball B, or its boundary sphere Sy with the volume bounded
by ® leads to the so-called ball and sphere neighborhoods. Information obtained by PCA of these neighborhoods
turns out to be more robust than PCA of the patch neighborhood Br N ® previously used. The relation of the quan-
tities computed by PCA with the principal curvatures of ® is revealed by an asymptotic analysis as the kernel
radius r tends to zero. This also allows us to define principal curvatures “at scale r” in a way which is consistent
with the classical setting. The advantages of the new approach are discussed in a comparison with results obtained
by normal cycles and local fitting; whereas the former method somewhat lacks in robustness, the latter does not
achieve a consistent behavior at features on coarse scales. As to applications, we address computing principal

curves and feature extraction on multiple scales.

1. Introduction

Differential geometry plays a central role in the analysis of
curves and surfaces. Local investigations frequently use dif-
ferential invariants such as curvatures, but also the global un-
derstanding of shapes can benefit from differential geomet-
ric entities. Since differentiation is very sensitive to noise,
the use of differential invariants requires data smoothing
and de-noising prior to computation. This can be done in
a global way via appropriate geometric flows [CRT04] or
locally, using smooth approximations of the data in an ap-
propriate neighborhood [CP03, G104, Tau95, TT05]. In both
cases, the preservation of features which may not be con-
sidered as noise is not an easy task and requires especially
adapted algorithms. A related difficulty is the suppression of
those details in the geometry which lie below the scale one
is interested in. Whereas classical differential geometry can-
not be used directly for such important objects as meshes,
discrete differential geometry is extending the theory to the
discrete setting [CSMO03, DGS05, HPO4]. Some discrete op-
erators work on larger local neighborhoods as well and thus
are defined on multiple scales. Though handling noisy data
is possible [HP04], this is not the main intent and strength of
discrete differential geometry.

The present paper pursues an approach via integral in-
variants obtained by integration over local neighborhoods.
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Figure 1: Feature extraction on multiple scales using PCA
on ball neighborhoods of different radii. Darker regions are
classified as features on all scales, lighter shaded regions
correspond to features extracted at only one or two scales.

These neighborhoods are constructed by means of balls,
whose radius r defines the scale on which one is working.
The origin of this method is work on molecular shape anal-
ysis [Con86], on 2D shape matching [MHYS04], and fea-
ture extraction [CRT04]. Consider a domain D, its boundary
surface @, a point p € ®. the ball B,(p) with radius r and
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center p, and the boundary sphere S,(p) = dB,(p). We de-
fine ball and sphere neighborhoods as Ny (p) := D N B;(p)
and Ny := DN S,(p), resp. Clarenz et al. [CRT04] and
Pauly et al. [PKGO3] consider the surface patch neighbor-
hood Ny(p) = ®NB"(p) and perform PCA on this patch.
It turns out that PCA of the patch neighbourhood is less ro-
bust against noise than PCA of the ball and sphere neighbor-
hoods.

Contributions and overview. The main contributions of our
short paper are: (i) We present the results of a thorough
study of PCA on all three neighborhoods described above.
(i1) Our analysis also yields definitions of principal curva-
tures at scale r which are consistent with the classical the-
ory. However, note that PCA yields an integrated quantity,
which is not the same as a curvature estimate at a single
point. (iii) In Sec. 3, we compare our approach with local
fitting [CPO3] and normal cycles [CSMO3]. (iv) As appli-
cations, we study principal curves and feature extraction on
multiple scales (Sec. 4). Details and further applications will
be provided in a forthcoming paper.

2. Principal component analysis of local neighborhoods

Principal component analysis of a point set A means to com-
pute its barycenter s := ([, xdx)/(f,dx) and covariance
matrix

J(A) = /A(X—s)~(x—s)de. (1

If A is not full-dimensional but contained in a smooth sur-
face, (1) is understood as a surface integral. The princi-
pal directions and principal components of A are given by
the eigenvectors e; and the corresponding eigenvalues A;
(i=1,2,3)of J(A).

In order to derive results on the principal components of
the neighborhoods defined above, we use the principal frame
of the surface @ at p as coordinate frame and approximate
@ up to second order by a paraboloid IT,

1
II: z= E(K1x2 +K2y2). 2)

Here, k1, x, denote the principal curvatures at p. In order to
compute the first two terms in the Taylor expansion of mo-
ments with respect to the radius r, it is sufficient to work
with IT instead of ®. By the symmetry of the paraboloid IT,
the barycenters of all neighbhorhoods lie on the z-axis, and
the eigenvectors e; of the corresponding covariance matri-
ces are parallel to the coordinate axes. In the following, we
present some results of [PHYKOS5].

PCA of the ball and sphere neighborhoods. Consider the
barycenters s;, and s of the ball and sphere neighborhoods
N, = B-(p) N D and Ny = S,(p) N D, respectively. Their
signed distances dj, and dg from the surface are related to
the surface’s mean curvature H via

r_3 [ 9H » 3, »_ 1 Hoy 3
d,,_8r+ a’ +O0(r ),ds—2r+ i +0(r’). (3

Two eigenvectors of the covariance matrix are approxi-
mately tangent to the surface, the corresponding eigenvalues
My, My, (ball) and My, M, (sphere) read

r 205 T ) 6 7

My = 157 48(2K1+K1+K2)r +0(r'), @
- 21 T

My = ?r4—§(2Ki+K1+K2)r5+0(r6). %)

An important consequence of equations (4) and (5) is that we
can define principal curvatures on scale r which, as r tends
to zero, converge to the actual principal curvatures in the
classical sense. We may use the ball neighborhood and com-
pute curvatures Kp;, K, from My, and M}, via (4), or use
the sphere neighborhood and compute K, k}, from M}, and
My, via (5):

6 8

Ky = — (Mpy —3M, — 6
b1 -6 (M2 )+ (6)
r 1 r " 4

K51 = ﬁ(MAQ*B’Msl)‘Fg: @)

and analogous expressions for kj,, K. Our tests showed a
very similar and useful behavior of both types of principal
curvatures.

PCA of the patch neighborhood. Similar results hold for
the patch neighborhood Ny, but unfortunately here we have
higher sensitivity to noise (see [PHYKOS5] and the discus-
sion below). Properties of N}, not contained in Clarenz et
al. [CRT04] are the following: The surface area PA" of Ny, is
related to the principal curvatures x|,k of ® at p by

PA" =2 + 3%(1(1 )2t o). ®)
The two eigenvalues of J(N},) which correspond to the ap-
proximate principal directions satisfy

T T
My, = Zr4 + @(K% 13 — 47 — 6K1%) 0+ O(r).

3. Comparison of principal component analysis with
local fitting and normal cycles

The computation of integral invariants based on the ball
neighborhood can efficiently be done by means of the fast
Fourier transform, whereas for PCA of the sphere neighbor-
hood, we use a geometric method based on an almost uni-
form multilevel discretization of the sphere S, [PHYKOS5].
We have run extensive tests in order to compare PCA of dif-
ferent neighborhoods with the main methods used in geome-
try processing: normal cycles [CSMO03] and local fitting. As
representative of the many available methods for local fitting
we employ osculating jets [CPO3].

Robustness. In order to avoid effects caused by a compli-
cated geometry, we illustrate sensitivity to noise by means
of a rather simple surface (Fig. 2). A summary of results
concerning the principal curvature directions is depicted in
Fig. 3. PCA of the patch neighborhood [CRT04, PKGO03] is
quite sensitive to noise, normal cycles less so. The effect of
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Figure 2: Principal curvature lines (left) and directions of
minimum principal curvature (middle) for a smooth surface
(’pillow’); noisy surface (right) used for the robustness test.
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puted from the noisy surface of Fig. 2, right, but shown over
the smooth surface for clarity. From left: normal cycles, PCA
(patch), osculating jet, PCA (ball).
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Figure 4: Directions of minimum principal curvature ob-
tained with osculating jets (top) and PCA/ball (bottom).

Larger kernels may have extraneous intersections (see de-
tail) which — if not detected — cause unwanted effects.
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Figure 5: Maximum principal curvature obtained with oscu-
lating jets (top left), normal cycles (top right), PCA/sphere
(bottom left), and PCA/ball (bottom right). The jet method
exhibits inconsistencies, normal cycles miss some features.

noise removal by averaging over a greater domain is appar-
ently much more pronounced for PCA of ball and sphere
neighborhoods than for the patch neighborhood. The normal
cycle method performs in between. For simple surfaces, fit-
ting methods behave like PCA of ball/sphere neighborhoods.

Multi-scale behavior. At a low noise level all PCA based
methods respond very well to an increase of the kernel radius
and exhibit the expected smoothing and simplification effect.
This is also true for normal cycles, although their feature
detection capability appears to be somewhat weaker. Local
fitting methods have defects when it comes to judging curva-
ture at coarse scales (see Figs. 4 and 5). While using a larger
neighborhood has some smoothing effect on the local fitting
surface ®;, one evaluates curvature of ®; at the center of the
neighborhood. Here, the sensitivity of classical curvatures to
small changes becomes crucial and explains why the overall
picture of the extracted quantities for a large neighborhood
is by far less smooth than for PCA based methods. Appar-
ently the ball and sphere PCA are most robust to noise and
exhibit the desired scaling behavior.

4. Principal curves and feature extraction on multiple
scales

The eigenvectors e}, €, of the covariance matrices of local
neighborhoods serve as principal directions of the given sur-
face at the chosen scale r. They are not exactly tangential
to the given surface. In fact they should not follow details
which are small compared to 7. In order to define principal
curves on ® we project €] e, onto P and integrate the re-
sulting tangential vector fields. The direction of this projec-
tion shall be given by the eigenvector e, which estimates
the surface normal. Note that the projected directions are
usually not orthogonal to each other, which is actually a
numerical advantage for integration. By guiding the whole
projection procedure with the directions arising from PCA,
principal curves become less sensitive to local surface devi-
ations. Figure 6 illustrates their behavior for different scales.
The more we increase r, the better these curves follow the
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Figure 6: Principal curves for larger kernel radius (right)
better follow the global shape.

Figure 7: Feature extraction on a coarse scale with
PCA/ball (left) and osculating jet (right).
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Figure 8: Feature extraction using principal curvatures ob-
tained with PCA on the sphere neighborhood.

global geometry of the surface. We believe that this tool
will be very valuable for global shape understanding (see
e.g. [LPW*06]).

Feature regions on 3D models are characterized by at
least one large principal curvature. We have shown how to
define and compute principal curvatures K/, k5 on multiple
scales, e.g. based on formulae (6) or (7). Hence, we also
have a simple tool for robust multi-scale feature extraction:
On a given scale r, feature regions are first filtered out by
max(|K]],|k5|) > T, where T. is a threshold on curvatures;
T¢ can be derived from a few user-specified feature and non-
feature samples based on a simple statistical model. Using
the sign of the dominant principal curvature, the extracted
feature regions are further classified into ridges and valleys.

Feature regions extracted at different scales have been com-
bined into the single image of Fig.1: The dark shaded regions
are the persistent features, and lighter shaded regions corre-
spond to features extracted at only one or two scales. See
also Figures 7 and 8.

Acknowledgements. This research was supported by the
Austrian Science Fund (FWF) under Grant No. P16002-
NOS and by the National Science Foundation of China un-
der Grant No. 60225016. We gratefully acknowledge fruit-
ful discussions with Johannes Wallner and his help with the
preparation of the final version.

References

[Con86] CONNOLLY M.: Measurement of protein surface
shape by solid angles. J. Mol. Graphics 4 (1986). 1

[CP0O3] CazALs F., POUGET M.: Estimating differential
quantities using polynomial fitting of osculating jets. In
Symp. Geometry Processing (2003), pp. 177-178. 1,2

[CRT04] CLARENZ U., RUMPF M., TELEA A.: Ro-
bust feature detection and local classification for surfaces
based on moment analysis. IEEE TVCG (2004). 1,2

[CSMO03] COHEN-STEINER D., MORVAN J. M.: Re-
stricted Delaunay triangulations and normal cycle. In
ACM Symp. Comp. Graphics (2003), pp. 312-321. 1,2

[DGS05] DESBRUN M., GRINSPUN E., SCHRODER P.:
Discrete Differential Geometry: An Applied Introduction.
SIGGRAPH Course Notes, 2005. 1

[GI04] GOLDFEATHER J., INTERRANTE V.. A novel
cubic-order algorithm for approximating principal direc-
tion vectors. ACM TOG 23, 1 (2004), 45-63. 1

[HPO4] HILDEBRANDT K., POLTHIER K.: Anisotropic
filtering of non-linear surface features. Computer Graph-
ics Forum 23,3 (2004), 391-400. 1

[LPW*06] LIU Y., POTTMANN H., WALLNER J., WANG
W., YANG Y.: Geometric modeling with conical meshes
and developable surfaces. ACM TOG 25, 3 (2006). 4

[MHYS04] MANAY S., HONG B.-W., YEzzI A. J.,
SOATTO S.: Integral invariant signatures. In Proc. Eu-
ropean Conf. Computer Vision (2004), pp. 87-99. 1

[PHYKO5] POTTMANN H., HUANG Q.-X., YANG Y.-L.,
KoOLpL S.: Integral invariants for robust geometry pro-
cessing. Geometry Preprint 146, TU Wien, 2005. 2

[PKG03] PAULY M., KEISER R., GROSS M.: Multi-scale
feature extraction on point-sampled geometry. Computer
Graphics Forum 22, 3 (2003), 281-289. 2

[Tau95] TAUBIN G.: Estimating the tensor of curvature of
a surface from a polyhedral approximation. In Proc. Int.
Conf. Computer Vision (1995). 1

[TTO5] TONG W.-S., TANG C.-K.: Robust estimation of

adaptive tensors of curvature by tensor voting. /EEE Pat-
tern Anal. Machine Intell. 27, 3 (2005), 434-449. 1

(© The Eurographics Association 2006.



