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Figure 1: Repeated element detection and manipulation. (Left-to-right) Original image with user scribbles to indicate an object tem-
plate (red) and background (green); repeated instances detected, completed, dense correspondence established, and ordered in layers; fish in
the original image replaced by a different kind of fish from a reference image (top-right inset); rearranged fishes.

Abstract

Repeated elements are ubiquitous and abundant in both manmade
and natural scenes. Editing such images while preserving the repe-
titions and their relations is nontrivial due to overlap, missing parts,
deformation across instances, illumination variation, etc. Manually
enforcing such relations is laborious and error-prone. We propose
a novel framework where user scribbles are used to guide detection
and extraction of such repeated elements. Our detection process,
which is based on a novel boundary band method, robustly extracts
the repetitions along with their deformations. The algorithm only
considers the shape of the elements, and ignores similarity based
on color, texture, etc. We then use topological sorting to establish
a partial depth ordering of overlapping repeated instances. Missing
parts on occluded instances are completed using information from
other instances. The extracted repeated instances can then be seam-
lessly edited and manipulated for a variety of high level tasks that
are otherwise difficult to perform. We demonstrate the versatility of
our framework on a large set of inputs of varying complexity, show-
ing applications to image rearrangement, edit transfer, deformation
propagation, and instance replacement.

Keywords: image editing, shape-aware manipulation, edit propa-
gation

1 Introduction

Images remain one of the most popular and ubiquitous media for
capturing and documenting the world around us. Although for
decades researchers have developed methods for editing such im-
ages, most methods only support low-level operations and are typ-
ically employed for touch-up or local enhancement of images [Cri-
minisi et al. 2004; Eisemann and Durand 2004; Adams et al. 2009].
Recently, various high level image editing techniques have been
introduced [Simakov et al. 2008; Chen et al. 2009; Bai et al. 2009b;

Barnes et al. 2009; Shamir and Avidan 2009; Zhang et al. 2009].
Such methods are attractive and efficient as they allow users to
specify large scale meaningful changes using a few guide strokes,
leaving the tedious pixel level operations to the underlying algo-
rithms. However, most of these methods work on the image at pixel
or region level, ignoring the hard to infer underlying semantics of
the scene, and employing data-driven computational techniques to
generate plausible edits. In this work, although we do not recover
the real semantics of the scenes, we achieve scene understanding
in the form of extracted repeated elements, along with their mutual
deformation relations and depth ordering.

It is widely believed that humans process and organize information
in a scene based on relations between structures in the scene [Kof-
fka 1935]. Allowing the user to operate at the level of scene objects
is an attractive notion that accords with our mental data repre-
sentation. We need to overcome two key challenges to enable it:
(i) images are composed of ungrouped pixels rather than semantic
objects; (ii) images do not explicitly carry depth information about
how objects are arranged in 3D. Automatic segmentation of im-
ages, a much researched topic in image processing and computer
vision [Shi and Malik 2000; Boykov and Lea 2006; Paris and Du-
rand 2007], is often ill-posed and unlikely to be solved in the near
future [Lempitsky et al. 2009]. Large scale variations in illumina-
tion, the presence of shadows, the lack of depth information, and
occlusion from scene objects all make the problem harder. User
assistance has been shown to be a powerful way to tackle the prob-
lem [Jia et al. 2005; Sun et al. 2005; Levin et al. 2008].

Repeated image elements, common in both manmade and natural
scenes, provide multiple, non-local records of the same data. This
redundancy, if properly detected, can be exploited to consolidate
image edits in a non-local fashion [Brox et al. 2008; Zheng et al.
2010]. This multiplicity provides enough information to extract
out a template pattern along with small deformations to capture
variations across repeated instances. In this work, we propose a
novel user-assisted framework for efficient and robust detection of
approximately repeated patterns in images. Our Boundary Band
Map algorithm detects and segments a template object and its rep-
etitions. The extracted template shape allows us to establish dense
correspondence between repeated scene elements, to infer a partial
depth ordering between them, and to suggest a plausible comple-
tion for occluded parts. We obtain an object-level representation
of the scene structure, which facilitates a wide range of intuitive
and efficient high-level image edits and manipulations that would
otherwise be laborious or difficult to achieve. We demonstrate a
number of applications based on our framework including image
rearrangement, edit transfer, deformation propagation, and instance
replacement, each based on simple user inputs.
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Figure 2: Pipeline. User scribbles indicate an object template (red) and the background region (green). Repeated object instances are
detected by our boundary band matching method. Dense correspondences between these repetitions are established, occluded parts are
automatically completed, and a partial depth ordering is inferred. The extracted image structure allows a wide range of powerful and
intuitive applications.

2 Related Work

Image editing. Image manipulation tools need to be fast, inter-
active, and intuitive. Ideally the user should be able to seamlessly
perform desired edits and manipulations with just a few imprecise
brush strokes. Such tools are fundamentally challenging to design
as the semantics of a scene or the underlying relations between ob-
jects are difficult to extract from an image. Even basic knowledge
of segmentation or connectivity of image parts can be used for in-
tuitive shape-aware geometry edits such as deformation of image
parts [Igarashi et al. 2005; Schaefer et al. 2006; Karni et al. 2009].
As an alternative to semantic interpretation, Lalonde et al. [2007]
propose Photo Clip Art for inserting elements into an image using
a data-driven approach, aiming to get plausible results by copying
closely resembling parts of other images. However, this approach
makes it hard to get fine control over selected objects, or to produce
novel image patches not already present in the database.

An and Pellacini proposed AppProp [2008], which has later been
refined by Xu et al. [2009], to propagate rough user edits to areas
with similar appearance using energy minimization. However, the
methods are oblivious to the underlying geometry and grouping
information. Automatic photo pop-up [Hoiem et al. 2005] infers
depth information from 2D images and enables interesting pop-up
effects. This method is targeted towards outdoor scenes and re-
quires users to label each region of an outdoor image as ground,
vertical, or sky. Recently, PatchMatch [Barnes et al. 2009] used
a randomized correspondence algorithm to approximate nearest-
neighbor field calculation, and demonstrated several applications
including retargeting, image completion, and reshuffling. Landes
and Soler [2009] analyzed layered structures in textures for im-
proved synthesis procedures. None of these methods attempts to
propagate edits across approximately repeated elements of a scene.

Repeated element extraction. Repeated elements are common
in natural and in manmade scenes. Detection of such repetitions
is an important research topic in computer vision, geometry pro-
cessing, and computational symmetry analysis. Leung and Ma-
lik [1996] propose a graph with individual image elements as nodes
and their affine transforms as edges. Distinctive repeated units of
nodes are extracted by growing elements using the graph. Sub-
sequently, significantly improved methods have been proposed to
detect structured repetitions. Liu et al. [2003] used a computational
model to find periodic patterns using frieze and wallpaper groups.
Berg et al. [2005] solved the correspondence problem by optimiz-
ing both local descriptor matching and global geometric transfor-
mation. Ahuja and Todorovic [2007] extracted natural texels by
finding subtrees with a similar structure within a segmentation tree
representing the whole image. However, their method takes tens of
minutes even for small to medium images, which is too slow for in-
teractive image editing applications. Local feature descriptors like
SIFT [Lowe 2004] and SURF [Bay et al. 2008] are widely used in

object detection tasks as they can establish correspondence between
instances of the same object across different views and illumina-
tion. However, the descriptors still match local image regions and
fail to capture high-level scene structure. Recently, structure detec-
tion for 3D geometry has been considered by Pauly et al. [2008].
They analyze pairwise patch similarities and use a non-linear opti-
mization to detect 2D grids in a suitable transformation space, with
the grids corresponding to regular structures of repeated elements.
However, images often have repeated elements scattered in irregu-
lar arrangements, with overlaps and subtle variations, making the
above methods unsuitable.

Object detection. Color or texture based segmentation using
window based correlation analysis can be unstable under occlusion,
missing parts, or illumination variation. Various shape descriptors
have been proposed for contour based object detection, including
shape contexts introduced by Belongie et al. [2002]. The shape
context at any point of a shape is computed using a histogram of
the relative polar coordinates of its neighbors. Globally optimal
correspondences are found by minimizing the sum of the individual
matching costs. However, this discrete histogram creation process
remains unstable for cluttered scenes; with significant missing data,
the method may perform worse than simper methods. Thayanan-
than et al. [2003] proposed a robust approach using chamfer match-
ing to handle scene clutter during shape context matching.

3 Overview

We introduce a novel pipeline to efficiently detect and extract re-
peated elements in images, allowing their simultaneous manipula-
tion. Figure 2 provides an overview of our system. Guided by high
level user scribbles, our system detects repeated object instances,
which may be subject to deformations, using a novel boundary
band method (Figure 3 and Section 4). We subsequently refine
the detected object boundaries using an active contour method with
shape priors to enforce geometric consistency (Section 5). We then
estimate the relative depth ordering of pairs of repeated instances
and establish a partial ordering across all instances using a topo-
logical sort (Section 5). Finally, we establish dense correspondence
between repeated instances, and complete missing parts of objects.

As an important design choice we designed an edge-based approach
for detecting and matching repeated elements, instead of a fea-
ture point-based one. For images with repeated elements, and thus
many similar feature points, we found point-based SIFT matching
to generate too much ambiguity, which is difficult to subsequently
resolve.

Our novel system can automatically detect correlation across re-
peated objects in a designated region of an image, and build an
object-level structure, which partially captures the underlying scene
semantics. This enables editing operations at the scene object level,
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Figure 3: Boundary Band Map (BBM) algorithm to detect repeated scene elements. Boundary image (a), which is obtained by hierarchical
segmentation of the foreground region, is used to derive BBM (b), a 2D vector field. (c) Boundary band matching result for Figure 1. The
matching score, computed between a detected candidate object and the template, is indicated by the intensity level of the center-dot on that
object. Boundaries of all detected objects that match the template are overlaid with color representing the local boundary orientation.

instead of at the pixel or patch level. The resulting intuitive and
powerful editing operations, which respect geometric and layering
relations between image components, are otherwise laborious and
difficult to achieve (Section 6).

4 Repeated Element Detection

Repeated scene elements in an image often vary in appearance
due to various factors including occlusion, missing parts, camera
projection, illumination variations, deformation between instances.
Any algorithm intending to extract such repeated elements needs to
segment the image and establish correspondences between repeated
elements, while factoring out the appearance variations. Such seg-
mentation and correspondence finding remain challenging tasks in
computer vision [Ahuja and Todorovic 2007]. State-of-the-art
methods do not meet the demanding speed requirements necessary
to enable interactive edits, and often fail to detect many repeated
elements, especially in the presence of large appearance difference
and occlusion.

We propose a method based on a Boundary Band Map to detect and
segment instances of deformable objects with the help of simple
user-input strokes. In this section, we first introduce our boundary
band map representation that incorporates local and global geomet-
ric information about candidate objects. We then give a distance
measure between this boundary band map and an object template,
which can be efficiently estimated using fast Fourier transform.

Boundary Band Map. A boundary band map (BBM), M =
{mp}H×W , is a 2D vector field associated with an image of size
H ×W . In a BBM, each pixel p is associated with a vector mp that
encodes local geometric information around this pixel, in particu-
lar, the local orientation and intensity in a boundary image. As an
example, the BBM of the image in Figure 1 is shown in Figure 3b.

To obtain the boundary image that is used to generate the BBM,
users are required to draw a few strokes on the original image to
indicate one object template and the background. Given these user-
input strokes, we apply a graph-cut based approach [Rother et al.
2004; Boykov and Lea 2006] to obtain the object template and
segment the entire foreground region. We then use hierarchical
segmentation [Paris and Durand 2007] to extract the boundary im-
age of the foreground region (see Figure 3a). The main motivation
behind our using this hierarchical segmentation approach is to avoid
detecting texture edges. It also provides confidence (or magnitude)
values associated with the detected boundaries (see Figure 3a-b).

We expand the initially detected boundary by a width b to accom-
modate possible deformation between the template and the can-

didate objects. To generate the BBM, for each boundary point
p, we initialize mp with the tangent vector of the boundary at p.
The magnitude of this vector indicates the boundary confidence
near p, while its angle reflects the local boundary orientation. The
BBM vectors at other points within a width b of the boundary are
assigned as describe in Algorithm 1: the BBM vector at such a
point is found by averaging the vectors of its already-initialized
neighbors. When calculating vector sums and averages, vectors
with opposite directions actually imply the same underlying local
geometry. Therefore, instead of direct summation of surrounding
vectors, we consider two versions of each vector — the vector itself
and the vector negated, and add to the local sum the one whose
direction is more consistent with its neighbors. For a local area that
has vectors of several different orientations, the magnitudes of the
sum and average vectors will be small, which is helpful information
since the boundary orientation in such an area is ambiguous and
less reliable, and the role of the area should be downplayed during
subsequent matching.

Boundary Band matching. In order to match an h × w object
template to an H ×W image, we first build a vector field for the

Algorithm 1 Building the BBM from a boundary image.
Initialize B = {p}, the set of all boundary pixels;
Initialize queue Q = /0;
for each boundary pixel p ∈ B do

mp = tangent vector of the boundary image, at p;
push all neighbors q of p onto Q for which q 6∈ B;

end for
Initialize i = |B| ∗ b, where |B| is the size of set B and b is a width
parameter;
while i 6= 0 and Q 6= /0 do

Pop p from Q;
mp = 0, num = 0;
for each already-initialized neighbor q of p do

if |mp + mq| > |mp − mq| then
mp = mp + mq;

else
mp = mp − mq;

end if
num = num + 1;

end for
mp = mp/num;
Push each uninitialized neighbor of p in the band onto Q;
i = i− 1;

end while
For each remaining uninitialized pixel p, set mp = 0;



(a) deformed template (b) trimap (c) graph-cut (d) completion
Figure 4: Object completion guided by a completion mask. (a) An unoccluded reference template is deformed and mapped to the partially-
occluded object. (b) Initial completion mask. White indicates using original object pixels, dark gray indicates using pixels from the deformed
template; in the remaining light-gray region, graph-cut is applied to find an optimal completion path. (c) The updated mask after integrating
graph-cut result. (d) Final completion result obtained using foreground color multiplied by its alpha value.

template, T = {tp}h×w. The vector magnitude for template contour
points is set to 1, and is set to 0 at all other points. The direction of
a non-zero vector is set to be the local orientation of the template
contour at that point. The template is moved across the image, and
at every possible location, the matching cost is calculated by local
correlation of the template’s vector field, T , and that part of the
image’s BBM that is covered by the template. Thus, at a location
(u, v) in the image, the boundary band matching score between the
template T and the BBM M is given as:

D(u,v)(T, M) =
h

∑
j=1

w

∑
i=1

(t(i, j) · m(i+u−1, j+v−1))2. (1)

At each location, the square of the dot product (t(i, j) ·
m(i+u−1, j+v−1))2, (t · m)2 for short, measures the correlation
between the local geometry of the template and that of the
boundary image. We use the squared dot product to resolve
ambiguity between a vector’s direction and its opposite direction.

The BBM boundary band encodes global geometry information of
the foreground objects. One can imagine that, if an object has very
different global geometry from the template, then some parts of the
template will lie outside the object’s boundary band, leading to zero
matching score in these parts, reducing the overall matching score.
Further, the proposed BBM allows for nonrigid shape deformations
of the template within the width of the correlating boundary.

Our algorithm is inspired by a shape band method [Bai et al. 2009a]
recently proposed in computer vision. The shape band represents a
deformable template expanded by a certain width. The best match
between the template and an object instance in the image is sought
within this width. We choose to expand the boundary image in-
stead of the template shape for two reasons. First, if we were to
expand the template, irrelevant boundary within the width of the
template would cause erroneous signal responses during correla-
tion. Irrelevant and spurious boundaries commonly arise in natural
images, especially as in our case where objects of interest overlap
and occlude one another. We found it is more robust to expand the
detected boundaries rather than the template. Second, estimated
orientation information in cluttered areas is often unreliable. By
using a boundary band, and estimating 2D vectors in the band using
averages of neighboring vectors, the resulting vectors in cluttered
areas tend to have small magnitudes which lead to lower matching
scores and reduce such areas’ influence on matching.

We use the boundary band matching score computed at every image
pixel location to select candidate object locations. The scores are
normalized to the range [0, 1]. Template locations corresponding to
local maxima of matching score are selected as candidate object po-
sitions. In practice, we ignore local maxima with matching scores
below a threshold tm. We also ignore a local maximum if there
is another local maximum with a larger matching score within a

distance threshold d. In our experiments, we set tm = 0.3 and d
to half the template size. The boundary band matching result for
Figure 1 is shown in Figure 3c.

In order to accommodate more shape changes in objects we scale
and rotate the template. In all our examples, we used three rotations
{−10◦, 0◦, 10◦} and three scale factors {0.8, 1.0, 1.2}. If desired,
the user can allow more rotations and scale factors. The bound-
ary band width b controls the amount of shape deformation BBM
permits. While bigger b allows detection of elements with larger
deformation, a very large b may lead to self-intersecting expanded
boundaries. We set b to 15 in all our experiments.

FFT-Based acceleration. The sum of squared dot-products in
Equation 1 would be computationally expensive if the search were
carried out naively. It can be accelerated by Fast Fourier Transforms
(FFT). We rewrite Equation 1 as:

D(u,v)(T, M) =
h

∑
j=1

w

∑
i=1

(t2
x m2

x + t2
y m2

y + 2txtymxmy). (2)

By considering t2
x , t2

y , txty, m2
x , m2

y and mxmy as separate terms,
Equation 2 is efficiently computed using FFT based acceleration
for sums of products [Kilthau et al. 2002].

5 Boundary refinement and analysis

Shape prior based contour refinement. We discard candidate
regions having less than 30% of their pixels overlapping the seg-
mented foreground region. Next, each candidate object’s region is
updated by intersecting with the foreground mask. In order to fur-
ther refine the object boundaries, we employ a shape prior-guided
boundary finding method based on active contours. To obtain the
shape prior, we first apply the shape registration method proposed
by Ho et al. [2009] to estimate the best affine transformation be-
tween the template and the current candidate object. The trans-
formed template is then taken as the shape prior for this object.
Note that this registration step allows us to obtain the best pose
of the template that matches the object, unlike the limited number

Figure 5: Energy map for boundary refinement using active con-
tours. (Left to right) Edge strength, in conjunction with shape prior,
in conjunction with constraints on local orientation consistency,
and the detected object contour, respectively.



(e.g. 3) of rotations and scales attempted in the previous candidate
detection step (Section 4). Next, to delineate the object bound-
ary, we use an active contour based model [Sapiro et al. 1995].
Instead of simply considering local edge strengths like traditional
active contour models, we also take into account global and local
shape matching information between the object boundary and the
shape prior. Global shape dissimilarity is measured using the sum
of Euclidean distances between points on the candidate object and
the affine-transformed template (i.e. the shape prior). Local shape
similarity is measured by the squared dot product of normalized
template-candidate boundary orientation vectors. The values of
each of the three terms — edge strength, point distance, and orien-
tation difference — are normalized to be in the range [0.1, 1]. The
product of these normalized terms is taken as the total energy of the
active contour model. This leads the candidate object’s contour to
match the shape prior, i.e., affine-transformed template, not only in
terms of image gradient but also based on global and local shape
information (see also Figure 5). Hence our method better copes
with outlier edges by considering shape prior information.

Layer estimation. In the absence of actual 3D cues, relative
depth ordering or layering information is very important for image
editing. We infer the layering relation between two object instances
by analyzing their region of overlap, denoted by RI . First, a Gaus-
sian mixture model (GMM) of color is built for RI . Second, for each
object instance, we retrieve the matching template and identify the
region covered by RI . We denote such a region for one object by
RT1 , and for the second object by RT2 . Color GMMs are then built
for regions RT1 and RT2 , respectively. The object instance whose
template region’s color model is more consistent with that of the
image region RI is inferred to be in front. Such ordering information
for all overlapping element pairs in the image is then consolidated
into a consistent layer-ordering using topological sorting.

Matting. Although we have recovered the object contours, the
information is not suitable to be used for direct editing for two
reasons. First, active contour based methods can produce over
smoothed object boundaries, which lack in sufficient geometric de-
tail (see Figure 5). Second, a natural image I can be considered as a
linear combination of foreground F and background B images, i.e.,
I = αF + (1− α)B, where α is the foreground opacity, commonly
referred to as the alpha matte. The alpha value changes smoothly
along the object boundary. Severe artifacts may arise if we move an
object to another place without considering the opacity factor.

Thus, using the extracted layering information, we further refine
the object areas to find the corresponding alpha parameters. We use
alpha matting [Levin et al. 2008] to obtain a precise object region as
well as the associated opacity. To find the alpha matte of an object, a
trimap is used to specify the foreground, background and unknown
regions. Since we wish to process repeated image elements that of-
ten have very similar background and foreground colors, our trimap
should be carefully set in order to avoid poor results. We expand
the visible object boundary by 20 pixels width and find alpha values
in the boundary band; occluded parts of the object boundary should
not be expanded since they provide no information about the fore-
ground and background colors. Figure 6 shows the matting results
for the fish in Figure 5.

Dense correspondences. Given the detected repeated objects in
the image, we find a planar transformation T : R2 → R2 to map
arbitrary points of one object to points on another object. To do
this, we first establish correspondences between contour points us-
ing shape context as descriptors [Thayananthan et al. 2003]. These
contour points are good object features and their correspondences
tend to be more reliable than those of other points. We employ thin
plate splines [Bookstein 1989], a commonly used model for rep-

Figure 6: Alpha matting. (Left to right) For the second fish on the
last row in Figure 1 the extracted trimap, alpha value, and fore-
ground color, respectively.

resenting flexible coordinate transformations, to estimate a dense
pixel-wise transformation between points across element pairs.

Object completion. Occluded object parts are common in images
with repeated objects. To facilitate general editing we have to plau-
sibly complete missing regions. We exploit redundancy present
across repetitions to address this task. To complete a partially-
occluded object we map the unoccluded reference template onto
the object, as shown in Figure 4a. Pixels from the mapped reference
covering occluded regions are shown in dark gray (Figure 4b). For
unoccluded pixels whose values only differ slightly between the de-
formed reference and the current object, we use the original object
pixels (white in Figure 4b). For the remaining pixels (light gray in
Figure 4b), we used a graph-cut algorithm [Boykov and Lea 2006]
to find a path along which the average color difference between the
deformed reference and the original object is minimized to enable a
seamless completion. Typically we try three unoccluded references
to complete the current partially-occluded object and choose the
one with the lowest cut cost as the result.

6 Editing Applications

Our system1 is interactive and targeted towards high level image
editing. We have implemented our algorithm on a computer with 2
Xeon(R) CPUs at 2.27GHz and 12GB RAM. Our FFT-accelerated
boundary band matching typically takes 0.4 seconds to process an
800 × 600 image under three rotations and three scalings. For our
automatic completion and correlation used by matting, the com-
putation time depends on the size and number of objects, but is
typically between 0.4 and 0.8 seconds.

Aided with a few user scribbles, the system detects repeated ele-
ments and completes missing parts at interactive rates, while es-
timating the relative deformations and layered depth ordering be-
tween the extracted elements. Dense correspondences are also es-
tablished across detected repeated elements. For example in Fig-
ure 1, repeated fishes are detected while finding dense correspon-
dences across them, along with their layering order. This informa-
tion makes possible a variety of image editing applications, as we
describe next.

Image element rearrangement. In the real world we are used to
changing relative position and ordering of objects. It is desirable
to have a similar metaphor for interacting with images, which are
mirrors of real world scenes. However, the pixel-level image rep-
resentation does not allow such an intuitive interaction. Using the
extracted image structure, we allow the user to (partially) rearrange
the scene, while we automatically find plausible completion for the
newly exposed background areas. Figure 1 shows an example of
rearranging fish. We bring the top-center fish to the front layer
and move its position relative to the other fish. Since all repeated
fish are detected and their missing parts completed, this process

1 For critical code components, please refer to our project webpage
(http://cg.cs.tsinghua.edu.cn/imgedt/main.htm).

http://cg.cs.tsinghua.edu.cn/imgedt/main.htm


(a) rearranging repeating elements (b) deformation propagation

(c) image based edit transfer (d) user-sketch transfer

Figure 7: Element-level manipulation of repeated image elements. In each subfigure, source image is on the left, and manipulated image is
on the right. (a) Content aware element rearrangement. (b) A pose deformation, specified using control points, is transferred to others with
image completion being used to automatically fill in missing background information. (c-d) Edits specified using an image template (shown
on top-left inset) or user sketches are transferred across repeated elements.

is simple. The background region of this image is synthesized by
the PatchMatch method [Barnes et al. 2009]. Our rearrangement is
similar to reshuffling [Cho et al. 2008; Simakov et al. 2008]. The
main difference is that we operate on scene objects and edit not only
their relative positions but also their layering order. In Figure 9b we
reposition the persimmons to bring them to a linear arrangement.
The layering order of these persimmons is also changed to respect
the perspective. More feasible layering can also be integrated by
considering local layering [McCann and Pollard 2009].

Repeating highly-textured image content is well studied by the tex-
ture synthesis community. However, many synthesis methods en-
counter difficulties when there exists a group of repeated patterns
with clear structure. We show, in Figure 7a, that our method can
achieve repetition effects by adding more image elements and rear-
ranging them. Note that the new cups are not simple copies of the
existing ones, since our completion algorithm automatically finds a
completion path using graph-cut to seamlessly combine parts from
different images. For instance, the top-left new cup combines fea-
tures from several other cups. In Figure 9j we present another
example with repeating flowers. It would be difficult to achieve a
similar effect using previous methods as there are no local patches
in the original image that contain both red fruits and yellow flowers.

Edit transfer. In scenarios where a user wants to edit a group
of repeated elements in an image, it is difficult for the user to
maintain consistent editing across all individuals. Using our esti-
mated dense correspondences, we can easily transfer edits between
repeated elements along with subtle deformations. Figure 7c shows
an example of grabbing a door portion and pasting it onto a hut.
The editing action is transferred to all other huts, which are edited
appropriately. Similarly in Figure 9b a rose leaf from another image
is transferred to the top of the cakes. Appprop [An and Pellacini
2008] also propagates user edits to spatially-close regions of simi-
lar appearance. Unlike such a pixel or patch level editing, we aim
to propagate higher-level editing — for instance, propagating edits
at particular positions on an object to similar positions on other
repeated instances.

Figure 7d shows an example of transferring a user-drawn pattern
on one cake to appropriate positions on other cakes. Transferring
user-editing strokes is generally valuable since stroke-based image

editing is a very common kind of user input and used by a large
number of methods for various applications such as matting [Levin
et al. 2008], editing [An and Pellacini 2008], and completion [Sun
et al. 2005]. Similar user editing transfer can also be used to refine
detection and segmentation results. In the fish example of Figure 1,
initially the segmented fish tail had a small part missing, and we
added another stroke to correct it. This editing is transferred to all
other fish in our example, and their tails are then fully-automatically
detected and completed with this guidance.

Deformation propagation. A user can also deform a group of
repeating elements in an image using our system. The user deforms
one object instance from these repeated elements, and the control
points selected on this instance, before and after deformation, are
mapped to other object instances. Thus we can simultaneously de-
form a group of repeated image elements by modifying just one
element. We have implemented the deformation method proposed
by Igarashi et al. [2005]. Other deformation methods [Schaefer
et al. 2006; Karni et al. 2009] could also be used. Examples of
deformation propagation are shown in Figure 7b and Figure 9d.

Instance replacement. We can further replace repeated objects
in one image with copies of a different object from another image
while preserving the relative location and layering of the original
objects. This is done by detecting repeated objects in both images
and replacing objects in one image with objects from the other.
During replacement, the new objects are properly scaled, rotated

Figure 8: Replacing ducks in the left image by swans. Note that
due to strong pose variations we fail to recover the correct poses
for some of the swans.



Figure 9: Various applications of our framework: rearrangement; deformation propagation; object replacement; editing transfer; repetition.

and re-layered according to the geometric and spatial layout of the
original objects.

Figure 8 shows an example of replacing ducks in an image with
swans from another image. By simple strokes over the two images,
the ducks and swans can be detected and extracted. Then the user
drags the swans to replace ducks in the original ducks image. Our
system automatically adjusts the swans’ orientation, scale, and lay-
ering order to match those of the ducks. We show more replacement
examples in Figure 1 and Figure 9d.

Limitations. Our repeated element detection algorithm is ro-
bust to intra-class illumination and appearance variations, and also
somewhat to occlusion and deformations. As with all detection ap-
proaches, our algorithm fails in some cases. In particular, images
with heavily cluttered object instances, large deformation variations
or severe occlusion, cause our algorithm to fail to correctly detect
all repeated instances. Figure 10 shows two failure examples. How-
ever, because our framework is interactive, the user can specify
additional strokes to correct detection errors.

7 Discussion

Our framework can efficiently detect repeated image content with
very little user interaction. By automatically completing the miss-
ing parts of occluded objects and estimating their depth ordering,
our framework enables a number of applications such as image re-
arrangement, edit transfer, deformation propagation, and instance
replacement. Figures 7 and 9 show a series of applications enabled
by our framework. Such editing operations are otherwise difficult
to achieve without relevant information about layering and corre-
spondences between individual instances.

Figure 10: Failures of our system. Objects in the left image have
large deformations. Objects in the right image suffer from severe
occlusion.

Future work. We highlight a few of the many exciting future
work directions for repeated elements detection and manipulation.
First, the computation of our current dense correspondences across
objects only considers shape information. Thus some correspond-
ing points are not guaranteed to have similar appearance. It will be
interesting to incorporate appearance similarity constraints to make
the correspondences more consistent in local appearance. Second,
we currently require there exists at least one repeated instance for
user to select as a ‘master’ instance, and leave processing images
where all elements are partially occluded to future work. Third,
although we have demonstrated several useful applications of our
processing pipeline, we also plan to implement others such as image
factorization and animation from still images.

In conclusion, we have presented a novel framework for efficiently
detecting and extracting repeated elements in an image scene, and
for determining their mutual relations, i.e., partial depth ordering,
relative location and orientation. We also compute dense pixel-wise
correspondences across repeated instances. These enable a variety
of intuitive editing operations and manipulations that are otherwise
laborious or difficult to achieve. Instead of operating at the pixel or
patch level, we aim to enable editing at the level of scene objects,
thus allowing a natural user experience. We have only scratched the
surface of image manipulation at the object level in an attempt to
mimic real world user experience but in the context of images.
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