
Pacific Graphics 2008
T. Igarashi, N. Max, and F. Sillion
(Guest Editors)

Volume 27 (2008), Number 7

Shrinkability Maps for Content-Aware Video Resizing

Yi-Fei Zhang1 Shi-Min Hu1 Ralph R. Martin2

1Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

2School of Computer Science, Cardiff University, UK

Abstract
A novel method is given for content-aware video resizing, i.e. targeting video to a new resolution (which may
involve aspect ratio change) from the original.
We precompute a per-pixel cumulative shrinkability map which takes into account both the importance of each
pixel and the need for continuity in the resized result. (If both x and y resizing are required, two separate shrink-
ability maps are used, otherwise one suffices). A random walk model is used for efficient offline computation of
the shrinkability maps. The latter are stored with the video to create a multi-sized video, which permits arbitrary-
sized new versions of the video to be later very efficiently created in real-time, e.g. by a video-on-demand server
supplying video streams to multiple devices with different resolutions. These shrinkability maps are highly com-
pressible, so the resulting multi-sized videos are typically less than three times the size of the original compressed
video. A scaling function operates on the multi-sized video, to give the new pixel locations in the result, giving a
high-quality content-aware resized video.
Despite the great efficiency and low storage requirements for our method, we produce results of comparable
quality to state-of-the-art methods for content-aware image and video resizing.

Categories and Subject Descriptors (according to ACM CCS): I.4.10 [Computing Methodologies]: Image Processing
And Computer Vision

1. Introduction

With the rapid growth of output devices with widely differ-
ing resolutions and processing power, adaptive resizing of
images and video is of increasing relevance. A good resizing
algorithm should be fast and preserve the important content
in an image or video while retaining spatio-temporal coher-
ence of video sequences.

When transferring video to a new resolution, simple meth-
ods have clear drawbacks. Scaling the output in x and y can
be performed in real-time using linear or higher-order inter-
polation. However, doing so causes distortion if the output
aspect ratio differs from the input aspect ratio. Furthermore,
even if the aspect ratio remains unchanged, if the output res-
olution is much lower than the input resolution, important
information may be lost if simple scaling is performed (e.g.
text in the image or video may no longer be readable).

A second approach is to use some form of cropping. The
simplest is to crop the output to the center of the input frame.

This can be performed in real-time and is typically supported
by modern wide-screen televisions. However, this fails when
objects of interest are too far off-center. Cropping is also
inappropriate if the output resolution is significantly lower
than the input resolution, as too much information of interest
may be discarded. More sophisticated cropping approaches,
such as pan-and-scan methods, usually require human inter-
vention to select the most appropriate portion of the scene,
especially if high-quality results are to be produced. Such an
approach is also usually targeted at a single specific output
resolution, and again fails if the information of interest does
not fit within the cropping rectangle.

Recently, Wolf et al [WGCO07] proposed a method for
content-aware video resizing. It produce much more satis-
factory results than cropping or uniform scaling methods,
in terms of retaining the information of interest. However, a
major disadvantage of this method is that it is slow. Speed is
particularly important for video resizing algorithms, due to
the large amount of data.
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We consider the particular case where a video-on-demand
server must supply video streams in real-time to devices of
many different output resolutions, which cannot necessarily
be predicted in advance. This precludes the precomputation
of a fixed number of videos at known new resolutions, using
e.g. high quality pan-and-scan techniques.

Two approaches could in principle provide the new video
data at the required rate. Firstly, a sufficiently fast algorithm
could resize video in real-time. This would seem difficult to
achieve, given the amount of data to be processed, especially
if a server is serving multiple streams of video; a variant of
the approach in this paper might be feasible if the multigrid
computations required were performed on a GPU.

More realistically, a video could be preprocessed offline to
produce some supplementary data to be used in conjunction
with the original video to enable video streams to be resized
in real-time. The combination of the original video with such
supplementary information can be called a multi-sized video.
Clearly, the extra storage required must not be too great: it
should be commensurate with the original video size.

While this paper was under review, Rubinstein et
al [RSA08] also published a method which can produce
multi-sized video, allowing real-time video resizing after
precomputation. However, their method has several draw-
backs: (i) the additional storage required in relation to the
original compressed video is very high, (ii) it is extremely
slow, and (iii) it only supports multi-sized video which al-
lows resizing in width or height, but not both.

In this paper, we present an algorithm which, after prepro-
cessing to produce a multi-sized video, allows for content-
aware video resizing to be performed on-the-fly, even allow-
ing running video to be dynamically resized if desired. Our
preprocessing method is efficient, and our multi-sized videos
take little additional space.

Our approach precomputes and stores a cumulative
shrinkability map, which takes into account both the impor-
tance of each pixel and the need for continuity in the re-
sized result. (If both x and y resizing are required, a separate
shrinkability map is needed for each direction, otherwise one
will suffice). The importance of pixels comes from an impor-
tance map, which for simplicity we compute in the same way
as [WGCO07], as it is not the main concern of this paper. In
real-time, a scaling function takes the cumulative shrinka-
bility map, and the target video size, to derive final pixel po-
sitions and sizes in the target video. These are then used to
control a texture mapping process, generating output pixels
from the source frames, following the approach in [Wol90].
The novelty of our paper lies in the shrinkability map con-
cept, and the scaling function. Use of a random walk model
allows efficient computation of the cumulative shrinkability
map. Shrinkability maps are also highly compressible, and
our multi-sized videos are typically less than three times the
size of the original video (using both x and y direction cu-
mulative shrinkability maps). Scaling in real-time has very

low computational cost, allowing a video server to readily
generate multiple different resolution streams of a video-on-
demand for transmission.

2. Related Work

The range of devices capable of displaying video has in-
creased rapidly over recent years, from mobile phones and
portable media players to high-definition televisions, and be-
yond. Thus, resizing videos both in dimension and aspect ra-
tio is an important topic. (We only consider spatial resizing,
not adjustments to the running time of the video).

Simply uniformly scaling video to the target size is not
‘content-aware’, ignoring the varying importance of differ-
ent areas, and their changes over time.

A second class of approach is based on cropping, or pan-
and-scan. Such papers as [LG06, TJS07] consider the prob-
lem of selecting an optimal rectangle from an input image
or video, where optimality is defined in terms of an impor-
tance or salience function; continuity requirements must also
be considered. Unfortunately, cropping alone often loses too
much of interest, particularly when important detail is lo-
cated towards more than one edge of the scene.

Thirdly, Wolf et al [WGCO07] give a video retargeting
method which is constrained to preserve the shapes of im-
portant regions. It does so by using a non-uniform global
warping. However, it use Cholesky decomposition to solve
a large sparse least-squares problem, which can be done in
real-time only for low-resolution video. Wolf et al do not
consider creating multi-sized video, and they only show re-
sults which reduce video size.

Very recently, Rubinstein et al [RSA08] proposed a video
retargeting algorithm which works by removing 2D seam
manifolds from 3D space-time volumes. They use a graph-
cut approach to find these seam manifolds. Compare to Wolf
et al’s approach, the quality of the results is not improved,
but they do support the creation of multi-sized video. How-
ever, their method only supports multi-sizing video in one di-
mension, and both the additional storage and computational
time requirements are very high.

Our method is similar in spirit to Wolf et al’s but is faster,
and it supports the creation of multi-sized video. Our ran-
dom walk model allows the resizing problem to be solved
efficiently using a multigrid algorithm, and in principle it
could readily be parallelized for GPU implementation, al-
though we have not yet done this. We can create multi-sized
videos by precomputing a cumulative shrinkability map, af-
ter which the video may be resized with very little computa-
tional effort in real-time, using a scaling function. Our cumu-
lative shrinkability maps are very smooth, so can be highly
compressed, meaning that our multi-sized videos are typi-
cally less than three times as big as the input video (when
using both x and y shrinkability maps).
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Random walk models have been used to solve a vari-
ety of problems in image processing such as interactive im-
age segmentation [Gra06] and real-time high quality mat-
ting [WAC07]. Problems formulated as random walks re-
quire the solution of a sparse, symmetric, positive-definite
system of linear equations. This may be done efficiently us-
ing a variety of methods, as discussed later. Here, we use a
random walk model because it is very suitable for modeling
the constraints on the shrinkability map, and allows rapid
calculatation of the cumulative shrinkability map.

3. Algorithm

3.1. Overview

We now outline our algorithm. We treat resizing of images,
or video, as a warping problem, using four steps. The first
two steps are carried out as preprocessing, and the second
two at run-time. First, an importance map is computed indi-
cating the significance of each pixel. Next, using the impor-
tance map for each frame, we precompute separate cumula-
tive shrinkability maps for the x and y directions and store
them, after lossy compression, with the input video, giving a
multi-sized video. Thirdly, at run-time, a target resolution is
input. A scaling function uses this and the multi-sized video
to assign a new position and a new size for each pixel within
each target frame; again, x and y directions are processed in-
dependently. Finally, standard texture warping maps the im-
age to the target size using the new positions and sizes. The
novelty of our algorithm lies in the second and third steps.

In the rest of this section, for clarity of exposition, we con-
sider the case where only a reduction in width is to be per-
formed. If a new height is also desired, two passes of scal-
ing are made, first using the x direction shrinkability map to
compute new x positions for each target pixel, then using the
y direction shrinkability map to compute new y positions for
each target pixel. (If only width reduction is required, pixel
y coordinates are unchanged.)

In the first step, for simplicity, we use the same impor-
tance map as Wolf et al’s method, although we note that if
high quality resizing results are required (e.g. for a Holly-
wood movie), it may be desirable, and indeed necessary, to
hand-tune or hand-specify the importance map. The impor-
tance map assigns a value between 0 and 1 to each pixel
where 1 indicates highest significance. The importance map
E takes into account the local saliency (L2− norm of the gra-
dient), any areas detected as faces (faces often convey the
most significant information in a scene), and moving areas
(moving objects are important since they draw the viewer’s
attention). Further details can be found in Wolf et al’s pa-
per [WGCO07].

We now consider the second and third steps. Earlier meth-
ods directly calculate new pixel positions (and implicitly,
pixel sizes) based on the importance map and the new target

(a)

(b)

(c)

(d)

(e)

Figure 1: Reducing the width of a 3×1 image by 1 pixel. (a)
An assumed importance map E. (b) Shrinkability of pixels
according to importance. (c) Repositioning pixels according
to target size. (d) Random walk model with red and blue ter-
minal nodes. (e) Weights on edges come from the importance
map. Node labels are the computed new positions of the left
hand edges of pixels (the cumulative shrinkability map).

size, whereas we use a two-step approach. Initially, as a pre-
processing step, we calculate shrinkability for each pixel, to
give a cumulative shrinkability map. The aim is to selectively
reduce the width of each pixel. The cumulative shrinkability
map gives the new pixel locations in the particular case of
reducing the width of the image by one pixel. As cumulative
shrinkability maps are smooth functions, they can be highly
compressed. By storing the compressed cumulative shrinka-
bility maps with the original video, we create a multi-sized
video, which can then be resized to any target size on the fly.

Subsequently, at run-time, given initial and target widths,
we compute the desired reduction in width k, and then a scal-
ing function is used to compute new pixel positions from k
and the cumulative shrinkability map. Note that k is an input
to the scaling function: because the multi-sized video is valid
for any target size, and the scaling function is cheap to com-
pute (as is the final texture warping step), we can simulta-
neously generate multiple streams of video-on-demand with
little computational effort required by a server. We may even
change the new width as the video is playing, if desired.

Once the new pixel positions are defined, texture warp-
ing is performed by well known image resampling tech-
niques [Wol90].

3.2. 1D shrinkability

We now explain the concept of shrinkability maps and their
use. We start with a 1D case, an image comprising a single
row of pixels (see Fig. 1), and assume that the width of this
w×1 image I is to be reduced by 1 pixel.

The basic idea is to shrink different pixels by different
amounts, according to their importance given by the impor-
tance map. We define the 1D-shrinkability of a pixel as the
desired reduction in that pixel’s width when reducing the 1D
image width by 1 pixel. If s(i) is the shrinkability of pixel i,
the concatenation of these values is the shrinkability map.
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For this simple 1D case, we can analytically solve the
problem to find the s(i):

s(i) = 1/(E(i)
w

∑
j=1

1/E( j)), (1)

where E(i) is the importance map value for pixel i.

However, we now consider an alternative approach using
a random walk model to find shrinkability, as this extends
more readily to the 2D (image) and 3D (video) cases.

A general random walk model can be formulated as fol-
lows. Suppose G is a weighted graph with certain designated
terminal nodes (see Fig. 1(d)). Each node i has an associ-
ated label l(i). The labels of terminal nodes are predefined
in some way, while labels for other nodes are computed by
random walks. Suppose a walk starts at a non-terminal node.
At each step, it randomly moves to a neighboring node ac-
cording to given probabilities, until it reaches one of the ter-
minal nodes. The probability of the walk going from node
i to node j is given by p(i, j) = W (i, j)/∑k W (i,k), where
W (i, j) is the weight on edge (i, j). If many random walks
start at node i, each reaches some terminal node with value
T (i). We set the label l(i) for the starting node to the average
value of T (i) over all walks, in the limit that the number of
walks tends to infinity. To compute the l(i), we note that

l(i) = ∑
j

p(i, j)l( j) (2)

which leads to a linear system; its solution is considered in
Section 3.4.

We now return to the 1D shrinkability problem. To deter-
mine the cumulative shrinkability map, which corresponds
to reducing the width w of the image by 1 pixel, we con-
struct a linear random walk graph with w+1 nodes. Nodes 0
and w are the terminal nodes and are given values of zero and
one, respectively. The values for nodes 1 to w correspond to
the cumulative shrinkability u (see Fig. 1(c)) at pixels 1 to w
respectively (see Fig. 1(e)); note that u(0) = 0 by definition.
The cumulative shrinkability u(i) is related to the shrinkabil-
ity s(i) by:

u(i) =

{
0 if i = 0,

u(i−1)+ s(i) otherwise.
(3)

Because node w is initially allocated a cumulative shrinka-
bility of 1, the overall image width will be reduced by one;
cumulative shrinkability of all other pixels is determined by
the random walk.

We now consider choice of weights on the graph edges. To
selectively preserve content, more important pixels should
have lower shrinkability. In the 1D case we may simply set
the weight W (i− 1, i) for the edge between nodes i− 1 and
i to the importance map value E(i). This ensures that the
larger E(i), the closer the value of u(i−1) to u(i), and hence
the lower the shrinkability of pixel i. Assigning the weights

in this way leads to the same solution as in Eqn. 1. (See
Fig. 1(e))). Having solved the random walk problem to give
cumulative shrinkability values, the shrinkability map en-
tries can be simply found by s(i) = u(i)−u(i−1).

3.3. 2D and 3D shrinkability

We now turn to computing 2D (image) and 3D (video) cu-
mulative shrinkability maps. We first consider resizing a
2D image in width by 1 pixel. We define the x-axis-2D-
shrinkability s(x,y) as the shrinkability of pixel (x,y) when
reducing the image width by 1 pixel. We also define u(x,y)
to be the cumulative shrinkability of all pixels to the left of
pixel (x,y) in the same row. If we simply built a 1D ran-
dom walk model for each row of the image independently,
it is clear that this would degrade the image content by cre-
ating a zigzag effect [AS07]. Thus, we make a 2D random
walk model whose rows are those of the separate 1D ran-
dom walks, but with vertical edges also added in order to
preserve continuity as much as possible between rows. To
do so, u(x,y) should approximately equal u(x,y− 1). Dis-
tortion of more important areas should also be lower, i.e.,
the larger E(x,y), the more similar u(x,y− 1) should be to
u(x,y). This can be achieved by setting weights for vertical
edges in the random walk model to

W (u(x,y),u(x,y−1)) = K1 +K2×E(x,y) (4)

where K1 must be positive in order to meet the first require-
ment above and K2 positive to meet the second.

We next additionally take time into account. We define x-
axis-shrinkability s(x,y, t) as the shrinkability of pixel (x,y)
in frame t when resizing the video width by 1 pixel. A 3D
random walk model is constructed based on the time vary-
ing importance map E(x,y, t). A 2D random walk is sepa-
rately built for each frame as before, and these are connected
by edges between corresponding pixels of successive frames
into a 3D random walk model (we assume the video has not
changed to another shot, when coherence is irrelevant). Sup-
pose P and Q correspond to pixels at the same (x,y) location
in successive frames, and WPQ is the weight of the edge join-
ing P and Q. The weights of such edges are given by :

W (u(x,y, t),u(x,y, t +1)) = K3 +K4×E(x,y, t) (5)

using the same reasoning as when extending from the 1D to
2D case.

Parameters K1, . . . ,K4 control coherence from row to row,
and between frames. We suggest these values should be
K1 = K3 = 1 and K2 = K4 = 0.2, which work well for normal
pictures and videos. Setting K1 = K3 = 1 gives equal weights
to providing spatio-temporal coherence, and to keeping the
most important pixels. If retaining important regions is more
important than coherence, K1 and K3 can be set lower.
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3.4. Solving the random walk model

The random walk model requires the solution of the lin-
ear system in Equ 2. For example, for the 1D random walk
model, we have:

u(i) =
E(i)u(i−1)+E(i+1)u(i+1)

E(i)+E(i+1)
(6)

for i = 1,2, . . .(w−1), and u(0) = 0,u(w) = 1.

A more detailed discussion of the construction and prop-
erties of the linear systems associated with random walks
can be found in [Gra06]. The fastest way to accurately solve
such a linear system is to use a direct solver based on sparse
Cholesky decomposition [BBK05]. However, since pixels
are ultimately placed at integer locations, a high-precision
solution is not required. Thus, instead we use an itera-
tive multigrid solver which is faster but less accurate. Such
solvers are the most effective iterative solvers for this kind
of problem [Gra06].

Although we have not yet implemented such a scheme,
multigrid solvers can be efficiently parallelized to use a
GPU [BFGS03]. We note that such an approach provides the
potential capability to achieve video resizing in real-time by
computing cumulative shrinkability maps as required, rather
than using a precomputed multi-sized video.

Directly solving the full 3D model in one go would re-
quire too much memory, so we in practice use an approxi-
mation to our 3D random walk model. A 2D random walk is
initially solved for the first frame, treating it simply as an im-
age. For all other frames, we treat the problem as a two-layer
random walk, where the previous frame gives constraints on
the current frame, determined as described; we ignore any
links to the succeeding frame. This may be justified on the
basis of causality. This simplified method requires much less
memory and computational effort.

3.5. Scaling function

We now consider how to use the x cumulative shrinkabil-
ity map to shrink a video of width w not just by 1 pixel,
but by k pixels. Using the random walk framework, to do
so, we would simply set the value of the right hand termi-
nal nodes to k instead of 1. However, linearity of the random
walk model tells us that the solution to this problem sim-
ply results in new cumulative shrinkability values which are
each also multiplied by k. However, there is a small prob-
lem. Certain shrinkability values may now exceed 1. The in-
terpretation of such values is that the right-hand edge of the
pixel involved is moved leftwards past its left-hand edge. As
a result, pixels can change order locally in the final output,
potentially causing undesirable artifacts.

We can overcome this difficulty by using a scaling func-
tion. Let sk(x,y, t) be the shrinkage for each pixel when
shrinking the video width by k pixels. It should depend only

on s1(x,y, t) and k:

sk(x,y, t) = S(k,s1(x,y, t)). (7)

The approach in the previous paragraph would result in

S(k,s) = ks. (8)

To avoid pixel reordering, we should design the scaling
function to ensure that no shrinkage exceeds 1. We have ex-
perimented with several ways of doing this, and have found
that a simple and effective approach is to use:

S(k,s) = min(k0s,1) (9)

where k0 is found for a particular k by solving
w

∑
x=1

min(k0s1(x,y, t),1) = k (10)

by binary search.

This scaling function prevents the edge flipping problem,
although at the expense of failing to fully preserve the verti-
cal and time direction constraints. However, in practice, us-
ing this modified scaling function introduces negligible ad-
ditional artifacts (most artifacts in our output come instead
from insufficient continuity of the importance map).

It is also of interest that our concept of shrinkability can be
used for enlarging or upscaling video too, if desired, simply
by making the shrinkability negative. (This results in unim-
portant areas of the video being expanded to fill the extra
pixels). Here the simple scaling function of

S(k,s) =−ks (11)

can be used without restriction, as, while pixels cannot
shrink in width by more than one unit, they can grow by
an arbitrary amount.

3.6. Multi-sized video compression

Clearly, our approach of precomputing a multi-sized video is
only useful if the multi-sized video is not too large—video
files are already very large. The size of the multi-sized video
clearly should be smaller than simply storing multiple (com-
pressed) videos at all or many desired target resolutions.

The multi-sized video stores the x and y cumulative
shrinkability maps with the video. Without compression,
each has the same size as the original uncompressed video
(i.e. much larger than the compressed video). However, each
cumulative shrinkability map is a smooth function, because
of its inbuilt continuity constraints for avoiding zig-zag ar-
tifacts and jitter. Because of this smoothness, they can be
highly compressed. (Being based on differences, shrinkabil-
ity maps might seem to require less storage than cumula-
tive shrinkability maps. However, accumulated errors in us-
ing shrinkability values when constructing the output video
negate any advantage due to ability to represent shrinkability
maps in fewer bits).
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An effective way to compress a single cumulative shrink-
ability map ut is to use a conventional video encoder. If we
use a uniform scaling function, 12-bit fixed point represen-
tation is sufficient to store u(x,y, t) values for videos of in-
put size up to 4096× 4096. Since after use of our chosen
lossy video compression algorithm, DivX 6, the lower bits
of a YUV color value may change, we encode each 12-bit
u(x,y, t) value into the highest 12 bits of a 24-bit color in
YUV space. We store the highest 6 bits u11...6 in Y, the next
3 bits u5...3 in U and the last 3 bits u2...0 in V, using the fol-
lowing equation:

Y = 32+3×u11...6 (12)

U = 112+4×u5...3 (13)

V = 112+4×u2...0 (14)

Converting u to YUV space in this way prevents quantiza-
tion errors due to lossy YUV compression from affecting u
significantly. After conversion, standard video compression
technology (e.g. the DivX 6 codec) can take advantage of
ut ’s inter- and intra-frame smoothness to achieve high rates
of compression. Using this method and the DivX 6 codec at
high-quality settings to compress ut , we achieve a somewhat
smaller size than the compressed input video. Any artifacts
specifically arising from compression have very little visual
effect on the output resized video.

4. Comparison and Experimental Results

4.1. Time and storage comparison

We compare our methods to Wolf et al’s non-homogeneous
retargeting algorithm [WGCO07]. Although his paper did
not address the creation of multi-sized videos, we note that
his algorithm allows the possibility to precompute and store
the sparse Cholesky decomposition for the linear system
involved, to give a different representation for multi-sized
videos, again allowing the least-squares problem for differ-
ent target sizes to be efficiently computed.

Theoretically, both Wolf et al’s algorithm and our ap-
proach need to solve a linear system AX = b of the same
size. As noted earlier, we reduce the problem to one of solv-
ing m linear systems of size N where m is the number of
frames and N is the number of pixels in each frame. Each
matrix A has only O(N) non-zero values. The time complex-
ity of solving such a linear system is O(N) [BBK05]. How-
ever, compared to Cholesky decomposition which is used in
Wolf et al’s algorithm, our approach uses a multigrid algo-
rithm, which is much faster than Cholesky decomposition
if a high-precision solution is not required, the reasons for
which were noted earlier. Furthermore, multigrid algorithms
are amenable to parallelization for GPU implementation, al-
though we have not yet done so. An important point is that,
while Wolf et al’s algorithm could also be accelerated by
replacing the Cholesky decomposition by a multigrid algo-
rithm, this could only by done for a fixed target size.

Turning now to storage requirements, for each frame, our
approach needs to store N cumulative shrinkability values,
while Wolf et al’s method would need to store the sparse
Cholesky decomposition of A. Even for sparse matrix input,
this decomposition need no longer be sparse, although re-
ordering can be done to reduce the number of non-zeros val-
ues after decomposition. We compared our method with a
variant of Wolf et al’s method adapted to give multi-sized
images, using an approximate minimum degree ordering al-
gorithm for this purpose [ADD04]. It resulted in about 34N
non zeros; it was also necessary to store the position of each
in the decomposed matrix. Thus, in practice, our approach
needs much less storage than the sparse Cholesky decom-
position approach used in Wolf et al’s method. In addition,
our cumulative shrinkability map is very smooth and can be
highly compressed, as we note later.

Thus, our shrinkability maps are useful because they sup-
port the creation of multisized videos which are highly com-
pressible and can be computed efficiently using the GPU.
The method in [WGCO07] also permits use of a multigrid
method but it does not support multi-sized video. Storing the
Cholesky decomposition would permit multi-sized video,
but it would also require a huge storage space and would
not permit multigrid acceleration.

4.2. Experimental results

Most multi-sized videos considered in this section only in-
clude a single cumulative shrinkability map for resizing the
video’s width, for simplicity, although we also show one ex-
ample where both width and height are changed. Original
videos and our cumulative shrinkability maps were com-
pressed using the lossy DivX 6 encoder with ‘Home The-
ater Profile’. All times were measured using an Intel 2.4GHz
Dual Core Desktop with 2GB memory.

Table 1 gives the times needed by our algorithm and
Wolf et al’s algorithm to produce multi-sized video, for two
input video clips taken from ‘Prison Break’ (see Fig. 2,
624× 352× 24fps, PB for short) and ‘Harry Potter and the
Order of the Phoenix’ (see Fig. 3, 720× 352× 24 fps, HP
for short). Table 2 gives the storage required by the corre-
sponding multi-sized video. Clearly, our multigrid solver is
much faster than Cholesky decomposition, and our cumula-
tive shrinkability map needs much less storage than the cor-
responding Cholesky decomposition information. Our cu-
mulative shrinkability maps, after lossy compression, are
even smaller than the compressed input video, and the er-
ror caused by lossy compression has negligible affect on the
output resized result, compared to not using compression.
(See Fig. 3 for a comparison).

After creating the multi-sized video, we can decompress
it and produce the resized result at over 100 frames per sec-
onds with an unoptimised single threaded program, showing
the potential to transmit simultaneous multiple video streams
from a single server.
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(a) (b) (c) (d)

(e) (f)

Figure 2: Resizing a frame from ‘Prison Break, Season 3, Episode 10’: (a) input frame, (b) our method, (c) Wolf et al’s method,
(d) uniform scaling, (e) cropping, (f) our method, enlarging the width while reducing the height

(a) (b) (c) (d)

Figure 3: Resizing a frame from ‘Harry Potter and the Order of the Phoenix’: (a) input frame, (b) our method, uncompressed
shrinkability map, (c) our method, lossy compression of shrinkability map, (d) seam carving method.

Film clip PB HP
Input video running time 4s 4s
Cholesky decomposition 257s 297s
Multigrid Solver 14s 16s
DivX Compression 2s 3s

Table 1: Precomputation time for multi-sized video.

Fig. 2 compares the quality of resized images obtained
by our method and other resizing algorithms. In each case
the same importance map was used. Uniform scaling makes
people too narrow, while cropping loses context. Our ap-
proach produces results of a similar quality to Wolf et al’s
algorithm. Both approaches need to solve a linear equation;
in fact, it can be shown that is possible to modify the weights
in our random walk model to exactly reproduce Wolf et al’s

Film clip PB HP
Input video storage requirement 952KB 3.1MB
Cholesky decomposition 4.5GB 5GB
Uncompressed shrinkability map 64MB 73MB
Compressed shrinkability map 632KB 2MB

Table 2: Storage needed for multi-sized video.

results. However, our approach is faster, and is amenable to
lossy compression of the cumulative shrinkage map.

In Fig. 3, our algorithm preserves the structure of the red
pole on the right hand side much better than seam-carving.
This is because the seam-carving algorithm is a discrete
method while our method is continuous method. The rea-
son for this improvement may be explained as follows. Con-
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sider an image containing a single, important, sloping, thick
line. The desirability of removing any vertical seam from
top to bottom is identical (each seam enters and leaves the
sloping line exactly once). In such cases, the seam-carving
algorithm will choose some seam at random to remove (in
practice, one determined by local noise), which will destroy
the structure of the sloping line. In the continuous methods,
different pixels will shrink by different amount depending
on their importance, and it is not too difficult to see that in
this particular case, this reduces to uniform scaling, which is
a much better choice than deleting arbitrary seams.

For more complex images, it may be best to completely
remove unimportant pixels, whereas in other cases, uniform
or non-uniform scaling may be the best choice. Discrete
methods always remove pixels, while continuous methods
can remove pixels in some areas (i.e. by scaling them to zero
size), and scale them elsewhere, automatically. (See for ex-
ample Fig. 3, where pixels around Harry’s head have been
removed, while pixels belonging to the red pole have been
uniformly scaled.)

Clearly, in order to fit all the objects of interest into the
new size, content-aware resizing technologies must change
distances between objects. While this flexibility is often an
advantage, the consequence is that it is much harder to avoid
jitter than when using cropping or scaling based approaches,
such as pan-and-scan. For certain applications (e.g. high-
quality movie production), these disadvantages may be con-
sidered to outweigh the advantages of content-aware resiz-
ing, although careful hand-tuning of the importance maps
may alleviate these problems to some extent. Carrying out
experiments of determine to what extent content-aware re-
sizing is really useful would require a serious effort. Despite
this issue, we believe that there are plenty of cases and poten-
tial applications for which our algorithm works well enough,
and in such cases, our approach can give a solution for video
resizing which is efficient in both time and storage.

5. Conclusion

We have given a novel method for performing content-aware
dynamic video resizing. We define the shrinkability of each
pixel to give a cumulative shrinkability map, which can re-
duce the width or height of an image by one pixel. We pre-
compute cumulative shrinkability maps for x and y direc-
tions, and store them as a multi-sized video, after lossy com-
pression, with the original video. At run-time, we then use a
scaling function to generate a solution for reduction (or en-
largement) by an arbitrary number of pixels, to give a high-
quality content-aware resized video. Our approach is effi-
cient both in time, and the size of the multi-sized video.

A random walk model is used to find the shrinkability of
each pixel, leading to a linear system which can be solved
by a multigrid solver, allowing for efficient implementation,
which in principle could readily be adapted for use on a

GPU. While being much faster, and more economical of
storage, our approach produces results of a comparable qual-
ity to state-of-the-art methods for image and video resizing.
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