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Construction of Iso-contours, Bisectors and
Voronoi Diagrams on Triangulated Surfaces

Yong-Jin Liu, Zhan-Qing Chen, and Kai Tang

Abstract—In the research of computer vision and machine perception, three-dimensional objects are usually represented by 2-manifold
triangular meshes M. In this paper, we present practical and efficient algorithms to construct iso-contours, bisectors and Voronoi
diagrams of point sites on M, based on an exact geodesic metric. Compared to Euclidean metric spaces, the Voronoi diagrams on M
exhibit many special properties that fail all the existing Euclidean Voronoi algorithms. To provide practical algorithms for constructing
geodesic-metric-based Voronoi diagrams on M, this paper studies the analytic structure of iso-contours, bisectors and Voronoi
diagrams on M. After a necessary preprocessing of model M, practical algorithms are proposed for quickly obtaining full information
about iso-contours, bisectors and Voronoi diagrams on M. The complexity of the construction algorithms is also analyzed. Finally
three interesting applications, surface sampling and reconstruction, 3D skeleton extraction and point pattern analysis are presented
that show the potential power of the proposed algorithms in pattern analysis.

Index Terms—Shape, geometric transformations, triangular meshes, exact geodesic metrics, point patterns.
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1 INTRODUCTION

VORONOI diagram is an elegant spatial structure
which has found diverse applications in a variety

of disciplines in natural science, including pattern recog-
nition, motion planning, operational research, informa-
tion retrieval, biological morphology, and so on. Vari-
ous extensions and derived distance transforms make
the Voronoi diagram a basic and appealing tool. In
Euclidean space, medial axis transformations [34], [66],
[20] and generalized Euclidean distance transformations
[19], [41], [46] are widely studied for digital images
and volume data. For spaces with non-Euclidean met-
rics, the domain of Voronoi diagrams has also been
extended to spheres [4], [50], polyhedral surfaces [49],
[30], [67], parametric surfaces [33], hyperbolic spaces [53]
and the general Riemannian manifolds [65], [36], [52].
For detailed surveys, the reader is referred to [5], [51]
and the references therein. In this paper, we study a
class of Voronoi diagrams on a triangulated 2-manifold
setting and propose practical and efficient algorithms to
compute them.

Recently with the rapid development of remote sens-
ing and laser scanning techniques, many complex 3D
objects, terrains and scenes are modeled by dense tri-
angular meshes [16], [31]. Shifting Voronoi diagrams
from Euclidean space such as images to 2-manifold
triangulated surfaces presents significant challenges and
plays an important role in point pattern analysis and
spatial optimization (see Figure 1 for an example).
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The first challenge concerns the distance metric. On 2-
manifold surfaces, a natural and widely used metric is
the geodesic distance. Research on geodesic computation
of mesh models can be dated back to twenty years ago
[45] and our presented work makes use of the MMP
algorithm [45] that outputs exact geodesic paths on
triangulated surfaces. The second challenge is regarding
the special structures inherent in the Voronoi diagram
on triangulated surfaces that make it unique and distinct
from its Euclidean counterpart. E.g., in Euclidean plane
three points not lying on a line uniquely determine a
circumcircle. However, there may be no such geodesic
circle or many geodesic circles existing on 2-manifolds.
The special analytic structure of Voronoi diagram on
triangulated surfaces is analyzed in this paper.

We make two contributions in this paper:
1) An analytic structure is analyzed and presented

for Voronoi diagrams on triangulated surfaces M.
The relations between iso-contours, bisectors and
Voronoi diagrams on M are also established. De-
tails are presented in Section 4.

2) Efficient and practical algorithms are presented to
compute iso-contours, bisectors and Voronoi dia-
grams with the proposed analytic structure. Details
are presented in Section 5.

The distinct properties of Voronoi diagrams on trian-
gulated surfaces M make them interesting and attrac-
tive in many pattern analysis applications. In Section
6, Three interesting applications, surface sampling and
reconstruction, 3D skeleton extraction and point pattern
analysis, are presented that show the potential power of
applying Voronoi diagrams on M in pattern analysis.

2 RELATED WORK
On a 2-manifold surface M, the shortest path between
two points on M is a geodesic on M. While the gen-
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Fig. 1. Iso-contours, distance field and Voronoi diagram of
seven point sites on a 2-manifold terrain model of 32,258
triangles. Top-left: the texture mapped model. Top-right:
the iso-contours with seven point sources. Bottom-left: the
distance field mapped by a color index. Bottom-right: the
Voronoi diagram on the terrain surface.

eral problem of computing the shortest paths among
polyhedral obstacles in R3 is NP-hard [9], computing
a geodesic on M can be solved in polynomial time.
Notably two classes exist for geodesic computation on
M: approximation and exact algorithms. Approximation
algorithms are characterized by the approximation ratio
ϵ, i.e., the length of computed approximation solution
is at most 1 + ϵ times the exact solution. Two typical
1+ϵ approximation algorithms running in sub-cubic time
are proposed in [1], [21]. A polyhedral surface can also
be viewed as a linear approximation of an underlying
smooth 2-manifold and thus numerical algorithms for
solving the Eikonal equation on triangular or quadri-
lateral grids can be used. The work in this direction is
exemplified by the fast marching methods [56], [29]. A
survey on approximate geodesic computation is present-
ed in [44].

Exact geodesic computation on general polyhedral
surfaces was first studied by Mitchell et al. [45], in
which an O(n2log2n) algorithm was proposed, where
n is the face number in M. Later, several researchers
improved this bound to O(n2) [11], [27] and O(nlog2n)
[28]. Recently, Surazhsky et al. [59] presented a nov-
el implementation of the MMP algorithm in [45] and
showed that, in practice, it runs much faster than the
other algorithms. Between two points on M, there could
be several geodesics connecting them. Balasubramanian
et al. [7] proposed an LOS-Floyd algorithm that runs in
cubic time and can report all geodesic paths between
two arbitrary points on M.

In this paper, we propose practical algorithms for
computing the Voronoi diagrams on 2-manifold trian-
gular meshes based on exact geodesic distance [45],
[59]. Distinct from Euclidean cases, Voronoi diagrams

on triangulated surfaces possess many unique proper-
ties. Mount [49] first studied some of these properties,
showing that Voronoi diagrams on M with m point
sites have the complexity O(m(m + n)). In the worst
case, the bisector between two point sites on M has
the complexity Ω(n2) [48]. A recent study [10] reveals
that the sum of the combinatorial complexities of the
order-j Voronoi diagrams on S, for j = 1, 2, · · · , k, is
O(k2n2+k2m+knm). Moet et al. [48] and Aronov et al.
[3] studied a class of realistic terrains, which is a special
kind of triangulated surface, showing that the worst-
case complexity is Θ(n) for a bisector and Θ(n+m

√
n)

for a Voronoi diagram, respectively, on realistic terrains.
Although rigorous constructive proofs are presented in
[49], [48], [3], [10], they are nevertheless of greater theo-
retical than practical interest, because the constructions
did not offer practical algorithms to explicitly build
Voronoi diagrams on general triangulated surfaces M
with concise data structures.

In terms of applications in pattern analysis for Voronoi
diagrams on M, little work exists since there has been
no practical construction algorithms in previous work.
Peyre and Cohen [54] use recursively farthest points [15],
[47] to sample the surfaces and use Voronoi-Delaunay
duality [36] to remesh and parameterize the triangulated
surfaces. Approximate geodesic computation using the
fast marching method [29] was adopted in [54] for
sampling. Since the work in [54] uses the approximate
geodesic distance and the work in [38] uses the Eu-
clidean distance instead of geodesic distance, both meth-
ods can produce potentially large errors if the triangles
in M are extremely slivered. In this work, we re-examine
the uniform sampling strategy in Section 6.1 using the
exact geodesic computation. Hilaga et al. [22] proposed a
multiresolutional Reeb graph to estimate the similarities
of 3D shapes by topological matching. In [22], single-
source shortest paths along edges on M, output from
the classical Dijkstra’s algorithm [12], are used as a
rough approximation of geodesic paths and therefore,
the meshes of shapes have to be uniformly densified,
which also lead to a high computational load. In Section
6.2, with the tools of building Voronoi diagrams on
M, we propose a surface skeletonization method that
simplifies the skeleton’s topological structure from a
mixed cell-complex in R3 [20] to a 1D axis structure akin
to the planar smooth ones in [61], [6]. Voronoi diagrams
on M can also be used in point pattern analysis [64] and
we examine this case with examples in Section 6.3.

3 EXACT GEODESIC METRIC ON M BASED
ON MMP ALGORITHM IN [45], [59]

To make the paper self-contained and more easily read-
able, in this section we briefly summarize the novel
implementation in [59] of the MMP algorithm [45] to
establish the exact geodesic metric on triangulated 2-
manifold surfaces M. The surfaces M studied in this
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(a)  Three cases in visibility wedge (VW) propagation 
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Fig. 2. Geodesic paths encoding with visibility wedge
propagation [59].

paper are compact piecewise flat surfaces. The Hopf-
Rinow theorem [24] and its adaption to general piece-
wise flat surfaces [2] ensure that a minimal geodesic ex-
ists between two arbitrary points on this kind of surfaces.
Denote the topology of a triangular mesh surface M by
(V,E, F ), where V,E, F , are the vertex, edge and face
sets, respectively.

Given a surface M and one vertex v ∈ V , the MMP
algorithm [45] establishes a distance function Dv on M
such that for any point q ∈ M, Dv(q) is the exact
geodesic distance from q to v on M. The basic idea of the
MMP algorithm is to partition all faces in F ∈ M into a
2D subdivision structure. To establish this structure, the
following property is used. Inside every triangle in M,
the geodesics must be straight lines. When crossing a
triangle edge e, a geodesic must also be a straight line if
the previous triangle is unfolded along e into the plane
containing the next triangle (Figure 2b).

Definition 1: The vertices through which geodesics
pass are called pseudo-sources in this paper. Singular
vertices are those in V whose total surrounding angle
is larger than or equal to 2π.

Definition 2: Given a source p and any strip of unfold-
ed triangles starting at p, a visibility wedge is the set of
points on the strip that are visible from p.

From the triangles containing one or multiple sources
p, a set of initial visibility wedges (VWs) are identified.
These VWs are propagated (Figure 2a) until all the edges
E in M are covered. During the VW propagation, three

different cases as shown in Figure 2a would arise. It
is proved in [45] that the pseudo-source of each VW
can only be the singular vertices in V . To store the VW
information in the local plane defined by each triangle, a
8-tuple (b0, b1, d0, d1, τ, σ, Idnv, Idpt) is used in this paper
(Figure 2c), where b0, b1 are parameters measuring the
distance along the edge, the 2D unfolded position of the
nearest pseudo-source s is encoded by its distances d0, d1
to the endpoints b0, b1, respectively, Idnv and Idpt are the
identifiers of s and the original point site p, respectively,
τ specifies the side of edge on which s lies, and σ is
the length of the geodesic path from s = Idnv back to
the site p = Idpt. During the VW propagation, the new
emerging wedges may intersect some existing wedges.
Any two intersected wedges (bi0, b

i
1, d

i
0, d

i
1, σ

i), i = 1, 2,
are updated by solving the equation with unknown w
(Figure 2d):√

(w − s1.x)2 + (s1.y)2+σ1 =
√
(w − s2.x)2 + (s2.y)2+σ2

The solution is the intersection point of a branch of
hyperbola with the x axis.

Given one source point p 1, the VW propagation builds
a 2D subdivision structure (D1, D2, · · · , Dn) on M that
satisfies

∪n
i=1 Di = M and Di ∩ Dj = ∅, i ̸= j,

i, j = 1, 2, · · · , n. Each subdivision Di has a correspond-
ing Idnv(i) that is stored as a local 2D projection nvi on
each Di. Given an arbitrary target position q on M, the
geodesic path between p and q is computed as follows.

1) Find the subdivision cell Dq containing q. Set Dl =
Dq , r = q.

2) Connect r and the 2D position of nvl by a line l, in
the plane defined by Dl.

3) If nvl ̸= p, find the intersection x of the ray l with
the boundary of Dl; otherwise stop.

4) Find the adjacent subdivision Dj of Dl along the
intersection x. Set Dl = Dj , r = x. Go back to (2).

In the Supplementary Material A submitted along
with this paper, the complete 2D subdivision structure
of a 3D star model is illustrated. Due to the extreme
complexity of the 2D subdivision structure with curved
boundaries on M, we only store the 1D subdivision
with VWs on each edge of M and propose in the
following sections practical algorithms to compute the
iso-contours, bisectors and Voronoi diagrams of multiple
point sites on M. It was shown in [40] that the 1D
subdivision on edges of M can completely induce the
correct 2D subdivision on faces of M.

4 STRUCTURES OF ISO-CONTOUR, BISECTOR
AND VORONOI DIAGRAM ON M
Given a set of distinct point sources P = (p1, p2, · · · , pm)
on M, the geodesic distance DP (x) for x ∈ M is
defined as argmini{Dpi

(x), pi ∈ P}. An iso-contour of
the distance field DP is the trace of those points on M
that have the same value of distance. A bisector of two

1. Multiple source points are handled in a similar way
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Fig. 3. The existence of singular points in an iso-contour.
For closed surfaces, the hole shown in the figure can be a
polygonal obstacle such as a prism with sufficient height.

points pi, pj ∈ P is the trace of points q on M satisfying
Dpi(q) = Dpj (q). The Voronoi diagram of P on M is
a set V D(P ) = (V C(p1), V C(p2), · · · , V C(pm)), where
V C(pi) = {q|Dpi(q) ≤ Dpj (q), q ∈ M, i ̸= j, j ∈ Im}. In
this section, we present four properties that show the
inter-structures and relationships among iso-contours,
bisectors and Voronoi diagrams on M. Figure 1 illus-
trates an example of distance field (bottom-left), iso-
contours (top-right) and Voronoi diagram with trimmed
bisectors (bottom-right).

4.1 Structure of Iso-contours

Due to the exitance of pseudo-sources, the iso-contours
on M have the following analytic structure. For a closed
surface M without boundary, each iso-contour of the
distance field on M consists of at least one closed curve.
Each closed curve consists of circular arc segments joined
at singular points.

Definition 3: The singular points are locations where the
nearest pseudo-source is changing from one to another.
The singular points can be grouped into segments: each
segment is continuous on M and is called a singular locus
in this paper.

The iso-contours can only be C0-continuous at a
singular locus. Definition 3 is based on the following
observations. The exact geodesic path on M is a polyline
and the only possibility of vertices in V (except for the
source points) existing along a geodesic path is that they
are singular vertices. Between each pair of sequential
singular vertices, the path goes through a series of
triangles which can be unfolded into a common plane
without overlap (ref. Fig. 2b) and the geodesic path in
the plane is a single straight line segment. So except for
the locations of singular points, locally in each triangle
an iso-contour is a circular arc. The existence of singular
points is shown in Figure 3: it is readily seen that the
iso-contour at the singular points can have C0 or C1

continuity.
Definition 4: A point p ∈ M is a critical point of the

distance field function D, if the partial derivatives of D
vanish at p. The index d of a critical point p is the number
of negative eigenvalues of a Hessian matrix of D at p.

Fig. 4. The front and back views of iso-contours of
a single source point on an eight model. The maximal
geodesic distance on M is normalized to 1 and the iso-
contour with value 0.5 is shown in red color which consists
of three distinct closed curves.
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Fig. 5. The data structure of iso-contours on M.

Property 1: The number of closed curves in an iso-
contour of multiple sources on the surface of a general
genus-r (r ≥ 0) object depends on the indices of critical
points of the distance field function on M.

This property is drawn from Morse theory and alge-
braic topology [17]. At d = 1 critical point, a minimum
increases and a maximum decreases the circle number
of iso-contours by one. At d = 3 critical points, a saddle
splits or merges circles in iso-contours.

A genus-2 model with ten iso-contours is shown in
Figure 4. It clearly shows the tangent discontinuities at
the singular points and an iso-contour that is separated
into three disjoint closed segments. Based on the Defi-
nition 3 and Property 1, we propose the data structure
listed in Figure 5 for iso-contours on M.

4.2 Bisectors of Point Sites on M
The bisector B(p, q) defined by point sites p and q is
the trace of points on M which have equal geodesic
distance to p and q. The bisectors on M may not be
one-dimensional as revealed in the following property:

Property 2: If a singular vertex of M lies on B(p, q),
then B(p, q) contains a 2D region on M.

To see Property 2, we develop the geodesic paths
from p and q, respectively, onto a plane. The shaded
2D area shown in Figure 6 lies in B(p, q). In this paper,
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Fig. 6. Illustration of Property 2.

Fig. 7. The front and back views of a bisector of two point
sites, with color-mapped distance field, respectively. Note
that in the bottom-right figure, pseudo-bisectors exist on
which the points have the same geodesic distance to an
identical source point, but from different directions.

we assume that all source points are distinct from each
other and no vertices of M have the same geodesic
distance to two or more source points. So the bisectors
of M consist of 1D curve segments. By Definition 3, the
singular loci of iso-contours contain all the bisectors. In
addition, singular loci also contain pseudo-bisectors on
which the points have the same geodesic distance to
an identical source point, but from different directions
(Figure 7 shows an example). Bisectors of source points
have the following structure.

Property 3: The bisector of two distinct source points
on a genus-r(r ≥ 0) object’s surface can have at most
r + 1 distinct closed curves.

Property 3 is based on the following observations. One
complete bisector cuts the surface into two parts. Each
part has shorter geodesic paths to one source point and
thus must contain that source point. On a genus-r model,
r+2 non-intersected closed curves cut the surface into at
least three distinct parts and there are only two source
points; a contradiction.

One example of a bisector on a genus-2 model con-
sisting of three closed curves is shown in Figure 7.

Definition 5: Each distinct closed curve of a bisector
can be decomposed at breakpoints. A breakpoint is the
location at which the nearest pseudo-source is changing
along the bisector from one side of a source point.

 

 

 

 

 

 

 

 

 

 

Fig. 8. Illustration of Definition 5.
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Fig. 9. The data structure of bisectors on M.

Pseudo-sources make the bisector behavior as an ad-
ditive weighted Voronoi diagram in a local 2D plane.
So between breakpoints, a bisector consists of hyperbolic
and line segments. The bisector is C0 continuous at break
points.

An illustration of Definition 5 is shown in Figure 8.
Based on Property 3 and Definition 5, we propose the
data structure listed in Figure 9 for bisectors on M.

4.3 Voronoi Diagram of Point Sites on M
Let P = {p1, p2, · · · , pm} ⊂ S and pi ̸= pj for any i ̸= j.
The region defined by

V C(pi) = {q|Dpi(q) ≤ Dpj (q), i ̸= j, q ∈ M}

is called the Voronoi cell of pi. For 2-manifold mesh-
es without boundary, all Voronoi cells are bounded
by bisectors, mutually exclusive or semi-exclusive, and∪n

i=1 V C(pi) = M. The set given by

V D(P ) = {V C(p1), V C(p2), · · · , V C(pm)}

is defined as the Voronoi diagram of point sites P
on M. Quite different from the Euclidean space cases,
the Voronoi diagram on 2-manifold M possesses some
unique properties.

Property 4: Each Voronoi cell on M is connected, but
it may not be singly connected.

Property 4 is based on the following observation. By
definition, each Voronoi cell V C(pi) must contain its
point site pi and ∀p ∈ V C(pi), the geodesic path between
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Fig. 10. An illustration of a Voronoi diagram of three point
sites on an eight model: each Voronoi cell has more than
one closed curve on the boundaries.
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Fig. 11. The data structure of Voronoi diagrams of point
sites on M.

p and pi must also be contained in V C(pi). So V C(pi) is
connected. Since according to Property 3 the boundaries
of the cell can have more than one closed curve, it
could be multiple-connected: an example is shown in
Figure 10. Based on Property 4, we have the following
definition.

Definition 6: Each Voronoi cell in V D(P ) is bounded
by one or more closed curves. Each closed curve consists
of bisectors. The bisectors are trimmed and joined into
closed curves at the branch points. A branch point is the
location on M which has the same distance value to its
three closest sites. The boundary of a Voronoi cell does
not have to contain a branch point.

One example showing the existence of branch points
is presented in Figure 1. For the model shown in Figure
10, none of the Voronoi cells have any branch points on
the boundary. Given the Property 4 and Definition 6, we
propose the data structure listed in Figure 11 for Voronoi
diagrams of point sites on M.

As a short summary, some of the definitions and
properties presented in this section are not new: Property
1 is well explained in [17] but in a different form,
Property 4 and Definition 6 have been given and studied
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Fig. 12. A constructive example shows that the distance
field values on e′ can have worst-case O(n) extrema.

in a much broader scope in Riemannian manifold [65],
[66]. Nevertheless we present and study these definitions
and properties systematically, persisting on triangulated
2-manifold M, so they benefit use in constructing the
practical algorithms proposed in the next section.

5 PRACTICAL COMPUTATION ALGORITHMS

Based on the properties and data structures stated in
Section 4, in this section we propose efficient and prac-
tical algorithms to explicitly construct the iso-contours,
bisectors and Voronoi diagrams of point sites on tri-
angulated surface M. Recall that we use a 8-tuple
(b0, b1, d0, d1, τ, σ, Idnv, Idpt) explained in Section 3 to
represent a visibility wedge on an edge e of M, where
Idpt is the ID of source point and Idnv is the nearest
pseudo-source which may or may not be identical to
Idpt. Throughout this section, n and m denote the num-
ber of triangles in M and the number of point sites in
V D(P ), respectively.

The arrangement of triangles on M can exhibit var-
ious wild scenarios that lead to high-complexity iso-
contours and bisectors. In the following subsections, we
preprocess the triangular meshes such that pathological
worst cases can be avoided in these more realistic mod-
els, which also make efficient and practical algorithms
feasible.

5.1 Iso-contours
Property 5: For an edge e of M, the distance function

on e can have in the worst case O(n) extrema.
This property is proved in [40] and an example is con-

structed in Figure 12. Assume that triangles T, t1, · · · , tn
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Fig. 13. Model preprocess. (a) A triangle with the distribu-
tion of distance field value shown in green for three edges.
(b) Triangle is subdivided using bold black new edges. (c)
The triangulation in neighbor triangles is completed using
red edges. (d) New created edges with multiple extrema
of distance field value is further subdivided.

lie in the same plane pl. Referring to Fig. 12a, each ti
has vertices v0i , v

1
i , v

2
i and the edge e of T consists of

the edges (v1i , v
2
i ), i = 1, 2, · · · , n. All the vertices v0i sit

on the same circle centered at O of radius r. Define the
distance from O to edge e to be h, h > r, r → ∞, so all the
isosceles triangles ti can be regarded congruent to each
other. Referring to Fig. 12b, between each pair (ti−1, ti) of
triangles in tandem, let point pti be out of plane pl with
sufficient distance and edges (pti, v0i ), ((pti, v

0
i−1)) be per-

pendicular to edges (v0i , v
1
i ), (v

0
i−1, v

2
i−1), respectively, so

the geodesics from O to edge e can only go through
triangles t1, · · · , tn. It is readily seen that, as shown in Fig.
12c, the distance field function DO(x) along edge e has
O(n) extrema. To complete the triangulated 2-manifold
setting, let triangle T be partitioned by an interior point
c, c is very close to v1 and the angle ∠cv0v1 is very close
to zero (Fig. 12d). So the edge e′ = (c, v0) has the same
distribution of values of distance field function of e.

Preprocess. Since the distance field value on an edge
e of M can have in the worst-case O(n) extrema, we
partition e into subedges such that the distance field
value on each subedge is monotone and linear. For each
triangle t containing partitioned edges, t is subdivided
by constrained Delaunay triangulation and the geodesic
visibility wedges on the new added edges in t are
locally updated (Figure 13). Since the number of 2D
subdivision regions (ref. Supplementary Material A) in
each triangle is bounded by O(n) [40], the complexity
of the preprocess is O(n2) in the worst case, while in all
our experiments, it runs in only linear time: an example
is shown in Figure 14. Denote the number of triangles
in a preprocessed mesh by n′.

After preprocessing, each triangle has three edges on
which the geodesic distance is linear. Without loss of

Fig. 14. Preprocess triangular meshes. Left column: a
coarse mesh before preprocess. Right column: two views
of the preprocessed mesh with the same iso-contours as
those in Fig. 4.

 

 

 

 

 

 

 

 

 

 

Fig. 15. Two situations of iso-contour in one triangle. Left:
the triangle contains only one arc iso-contour. Right: Two
arcs are intersected at a singular point and are made up
of an iso-contour in a triangle.

generality (subject to a shift by a scalar value), explicit
construction of the iso-contour zero is considered below.

Property 6: On a preprocessed mesh, the zero-value
iso-contour only passes through the triangles that have
opposite signs at two of its three vertices. If at two edges
the two wedges, which contain zero geodesic distance
value, have the same nearest pseudo-source Idnv , then
the triangle contains one single arc segment. Otherwise
the triangle contains one singular point which is the
intersection point of two arc segments.

Given Definition 3, a sketch illustrating Property 6 is
shown in Figure 15. While in a carefully constructed
artificial model (Fig. 12) an iso-contour can have Ω(n2)
complexity, it has only O(n′) complexity in a prepro-
cessed model since each triangle can have at most one
connected piece in an iso-contour.

Based on whether critical points exist or not, below
we classify 2-manifold models into two classes and
propose two corresponding algorithms. To determine
the critical points and index number on M, the O(n)
algorithm proposed by Takahashi et al. [60] is adopted.
Their method scans the circular list of neighbors for each
vertex v in M in counter-clockwise order and reduces
the sequence of neighbors by computing the sums of all
positive ∆i and all negative ∆i, respectively, where ∆i
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is the distance field value difference between neighbors
nbi and v. Finally the elements in a reduced vertex list
Lc are the extracted critical points.

5.1.1 Models with Single-Piece Iso-Contour
If a triangulated surface M has no critical points with
indices 1 or 3, by Property 1, any iso-contour on it is a s-
ingle closed curve. To explicitly construct the iso-contour
with any prescribed value on this kind of models, we
preprocess the model as follows. Given a source point
p, we compute the geodesic distance field on M and
find the farthest point q on M. Then we construct a
geodesic path from p to q. The path goes through a set
of triangles: each of them covers a distance interval and
all the intervals in them are continuous in tandem. We
sort these triangles into a binary tree indexed by the
distance interval. To construct a particular iso-contour,
we search the binary tree and find the triangle whose
distance interval contains the iso-contour value.

Given a starting triangle, the algorithm runs in a
marching process. Without loss of generality, we assume
that the iso-contour value is zero. Given the first triangle
through which the iso-contour passes, we trace the iso-
contour using the edge which has the opposite signs
at its two vertices. Each such edge guides the iso-
contour from one triangle to another triangle. For each
marched triangle, the inside iso-contour is determined
by Property 6. If the iso-contour goes through a vertex
v of M, the 1-ring neighbor triangles of v is checked
to find the next triangle to be marched. Our marching
method is topology-oriented, since we first check the
sign of vertices of each marched triangle. So our method
is robust to degeneracy and is topologically consistent.

Property 7: The iso-contour construction algorithm
for preprocessed models with single-piece iso-contours
takes O(log n′ + k) time, where k is the number of
triangles through which the iso-contour passes.

To see the above property, note that the geodesic path
and the iso-contour both have the O(n′) complexity in
preprocessed models. So searching the binary tree takes
O(log n′) time to identify the starting triangle and the
marching process takes O(k) time. Finally the overall
complexity is O(log n′ + k).

5.1.2 Arbitrary Genus-r (r ≥ 0) Models
The algorithm for arbitrary genus-r models is more
complicated than that for models studied in Section 5.1.1.
We preprocess the model as follows. We compute the
geodesic distance field with a prescribed source p on M.
Each triangle in M covers a distance interval. We sort
all triangles in M into an interval tree [13], [42] indexed
by the distance interval of each triangle.

The genus-r iso-contour algorithm also runs in a
marching process. Given a particular iso-contour value,
we search the interval tree for stabbing query and
sort all the triangles, whose distance interval covers
the iso-contour value into a queue Que. The following
algorithm reports the inquired iso-contour with the

number of closed curves.

Algorithm 1: genus_r_isocontours(M, c)
Input. An iso-contour value c, a preprocessed mesh M

with constructed distance field and interval tree.
Output. The requested iso-contour with the number of

closed curves.
1. Stabbing query in the interval tree and output

the result in a queue Que;
2. Set curve number cn = 0;
3. While (Que is not empty)
3.1. cn = cn+ 1;
3.2. Pop the first element t of Que;
3.3. Marching triangles with the initial triangle t;
3.4. Remove all the marched triangles from Que.

Property 8: Algorithm 1 for arbitrary genus-r models
takes O(log n′ + k log k) time, where k is the number of
triangles through which the iso-contour passed.

We sketch the proof of Property 8 as follows. An
interval tree for a set of n′ intervals reports all intervals
that contain a query point in O(log n′ + k) time, where
k is the number of reported intervals [13], [42]. The Que
can be built in O(k) time and removing an element with
a specified key from Que takes O(log k) time [12]. So
Algorithm 1 runs in O(log n′ + k log k) time.

Before running Algorithm 1, the distance field on M is
constructed in O(n2 log n) time [45] and an interval tree is
constructed for all the triangles in M in O(n′ log n′) time.
Since multiple point sources behave like pseudo-sources,
the construction of iso-contours of multiple sources is
identical to that of a single source.

5.2 Bisectors
According to Definition 3, the singular loci of a multi-
source geodesic distance field contain the trimmed bisec-
tors that contribute to the Vornoi diagram of the point
source set P on M. In this section, we explicitly construct
the bisector of two source points p and q on M.

Property 9: The bisector B(p, q) goes through an edge
e at the location that delimits two visibility wedges at e
and the two wedges have the source point ID Idpt = p
and Idpt = q, respectively.

Preprocess. In the worst case, one bisector can go
through a triangle as many as n times [48], [40].
Similar to iso-contour construction, the mesh model
is also preprocessed to avoid this hypothetical worst-
case complexity. We first examine each edge in M
and guarantee that each edge contains at most one
intersection point with the bisector: if this is not the
case, the edge is subdivided. Denote the number of
triangles in a preprocessed mesh by n′. Starting from
p and q, we propagate the visibility wedges in a
continuous-Dijkstra fashion. During propagation, we
use a list to store those edges at which a visibility
wedge is updated with a neighbor wedge belonging
to a different source. To the end, the edge list is
converted into a queue Que which contains all the
triangles through which the bisector passes. Similar to
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Fig. 16. The Voronoi diagrams of 30 randomly generated points on different models of genus-0. The statistical data is
summarized in Table 1.

iso-contours, the following marching algorithm is used
to construct the bisector on a general genus-r model.

Algorithm 2: genus_r_bisector(M, p, q)
Input. A preprocessed mesh M and two point sites p, q.
Output. The requested bisector with the number of

closed curves.
1. Build the distance field on M with point sites p, q

and output the queue Que;
2. Set curve number bn = 0;
3. While (Que is not empty)
3.1. bn = bn+ 1;
3.2. Pop the first element t of Que;
3.3. Marching triangles with the initial triangle t;
3.4. Remove all the marched triangles from Que.

Property 10: Algorithm 2 runs in O(n2 log n) time.
The proof of Property 10 is sketched as follows. It

takes O(n2 log n) time to compute the geodesic distance
field [45] and report all triangles containing the bisector
B(p, q) with the triangle number k < n′ < n2. The
marching process takes O(k) time and the queue Que
operations in O(k log k) time. So the total running time
is O(n2 log n).

5.3 Voronoi Diagrams

The preprocess step for constructing Voronoi diagrams
on M is the same as that for the bisector construction.
Also similar to the bisector case, we record a list to store
those edges at which a visibility wedge is updated with
a neighbor wedge belonging to a different source. After
the geodesic distance field construction, the list of edges
LE is converted into a list of triangles LT incident to LE.
From Definition 6 and Property 9, the following property
holds.

Property 11: If any triangle in LT has all its three edges
contained in LE, then it contains a branch point. Each
triangle in LT that does not contain a branch point is
passed through by a single piece of a bisector.

Property 11 gives us a valuable means to compute
the analytic structure of the Voronoi diagram on M.
We separate the list LT into two sub-lists. One is LBT
whose elements contain branching points. The other is
LTT = LT\LBT . The following algorithm constructs
the Voronoi diagram of point set P on M using the
data structure as shown in Figures 9 and 11.

Algorithm 3: genus_r_Voronoi_diagram(M, P )
Input. A preprocessed mesh M and a point site set P .
Output. The requested Voronoi diagram using the data

structure depicted in Figures 9 and 11.
1. Build the distance field on M with the set P and

output the lists LE and LT ;
2. Separate LTT into LBT and LTT ;
3. Create a branch-point list BP : each point bpi with

sources (si(1), si(2), si(3)) corresponds to a triangle
ti in LBT .

4. For all the branch points bpi ∈ BP
4.1. For m = 1 to 3
4.1.1. If the bisector B(si(m), si((m+ 1)%3)) is not

computed
4.1.1.1. Marching B(si(m), si((m+ 1)%3)) started

from ti and ended at another tj in LBT .
4.1.1.2. Remove all marched triangles from LTT .
5. While (LTT is not empty) //some bisectors do not

//have branch points by Definition 6
5.1. Create a new entry in the bisector list;
5.2. Pop one element t in LTT ;
5.3. Marching triangles with the initial triangle t;
5.4. Remove all the marched triangles from LTT .

Property 12: Algorithm 3 runs in O(n2 log n) time.

The proof of Property 12 is sketched as follows. It takes
O(n2 log n) time to compute the geodesic distance field
[45] and report the set LE, LBT and LTT . Let k be the
number of triangles passed by the boundaries of V D(P ).
The two loops in Steps 4 and 5 take time O(k log k). So
the total running time is O(n2 logn).
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Fig. 17. The Voronoi diagrams of 30 randomly generated points on different models of genus-r, r ≥ 1. The statistical
data is summarized in Table 1.

5.4 Experiments

We test the proposed algorithms on diverse triangulated
surfaces which are chosen from two classes. The first
class contains shapes with simple topological types (Fig-
ure 16) and the second contains topologically complex
shapes (Figure 17). All the shapes in two classes have
the triangle numbers ranging from 3, 000 to 10, 000. For
each shape, using the random point sampling method
presented in Section 6.3, thirty points are sampled and
used as the point set P to generate the Voronoi diagram
V D(P ). The Voronoi diagrams of different numbers of
samples on a genus-1 cat model, are shown in Figure
18. The performance data of output Voronoi diagrams
are summarized in Tables 1 and 2. The running time
is measured on a laptop with Intel Core 2 Duo CPU
running at 2.13GHz.

Our first observation is drawn from the sphere model
in Figure 16. Although the exact bisector of two spherical
points is a great circle on an ideal sphere, triangulated
spherical surfaces only provide a linear approximation:
induced from Definition 5, each bisector on a triangulat-
ed surface consists of hyperbolic and line segments, and
it may not be tangent continuous at break points.

Define the combinatorial complexity of the Voronoi
diagram to be the total number of point sites, bisectors
and branch points. If a sufficiently dense sampling Pdense

on S is used, the V D(Pdense) will behave locally as for
the Euclidean plane case in which the complexity is Θ(n)
(See [52] for a detailed discussion on dense sampling and
the linear complexity). If a mild sampling is used, Tables
1 and 2 empirically reveal that the V D(P ) complexity is
linear: this can be explained by (1) each bisector can have
at most r+1 distinct circles on a genus-r model2; (2) the
boundary of a Voronoi cell may not contain a branch
point (see Definition 6).

We measure the time complexity of the Voronoi dia-
gram V D(P ) in an output-sensitive manner. The term
cplx in Tables 1 and 2 is defined as 1000 × timesec

numptri
,

2. When using different graphics models, r could be different and
we assume that r is small and less than a fixed integer.

Fig. 18. The front and side views of Voronoi diagrams
on the cat model with 60, 75 and 90 random samples,
respectively. The statistic data is summarized in Table 2.

where timesec is the running time measured in second
and numptri is the number of of triangles passed by the
V D(P ) boundaries. In Table 2, exp is defined as 8× cplx√

s
,

where s is the number of random sample points. The
results show that our marching algorithm is empirically
O(numptri

√
s) for preprocessed meshes, i.e., linear to the

number of triangles passed by bisectors and increase
with the number of samples with exponential rate 0.5.

6 APPLICATIONS

Geodesic-metric-based Voronoi diagrams reveal an in-
trinsic structure of point sites on triangulated surfaces
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model tri no bh pt bs no bk pt time(sec) cplx
sphere 4,074 54 81 558 11.9 + 0.55 0.574
shark 3,412 53 81 523 14.47 + 0.98 0.592
tooth 5,036 50 75 648 20.31 + 0.57 0.604

penguin 4,416 56 84 613 17.6 + 0.61 0.596
dinosaur 3,433 48 74 570 11.68 + 0.48 0.556

horse 3,212 52 80 497 9.89 + 0.48 0.606
sharp 4,680 50 78 642 20.11 + 0.54 0.548

tri-dome 7,824 72 108 1,141 42.25 + 1.17 0.679
cat 10,960 58 87 1,117 55.67 + 0.98 0.611
cup 8,400 62 93 1,034 52.37 + 0.95 0.632
part 4,272 68 102 626 14.73 + 0.70 0.651

TABLE 1
The complexity (number of triangles, branch points,
bisectors, break points and time in seconds) of the

Voronoi diagrams on diverse shapes, shown in Figures
16 and 17. The time is measured in two parts, for
distance field construction and Voronoi diagram
construction, respectively. See Sec. 5.4 for cplx.

samples branch pt bisector no break pt cplx exp
15 28 42 851 0.436 0.901
30 58 87 1,117 0.614 0.897
45 90 135 1,265 0.793 0.945
60 118 177 1,449 0.96 0.991
75 148 222 1,576 1.117 1.032
90 174 261 1,705 1.196 1.009

TABLE 2
The complexity of the Voronoi diagrams on the cat model

shown in Figure 18, with different sample points. See
Sec. 5.4 for exp.

M. Below we present three applications that show the
power of the Voronoi diagrams on M as a basic tool in
pattern analysis.

6.1 Geodesic Remeshing

Nowadays 3D reconstruction from range data often pro-
duces dense triangle meshes with non-uniform triangle
aspect ratio [16]. For many applications, partial differ-
ential equations need to be solved on these triangulated
surfaces M [57]. To achieve better numerical precision,
it is often required to remesh M into M′ such that the
triangles in M′ are as close as possible to equilateral
triangles.

To uniformly sample the surface M, farthest point
samples are used [15], [47]. Given a set of samples
P = {p1, p2, · · · , pm} on M, we define the dispersion in
P by

δ(P ) = sup
x∈S

{min
p∈P

Dp(x)}

where Dp(x) is the geodesic distance between p and x. To
find a new sample pm+1 that minimizes the dispersion
δ(P ∪ pm+1), the position of pm+1 must be at one of the
branch points of V D(P ) or lie on the bisector which
does not end at branch points. This property dramati-
cally reduces the search space in M. Starting from an
arbitrary sample, more samples are added one by one

Fig. 19. Geodesic remesh of a tooth model. The first row
shows two views of uniform samplings (red points) on an
original mesh. The second row shows the remesh with
the uniform samples.

by incrementally updating the Voronoi diagram. Leibon
and Letscher [36] show that if the samples are sufficiently
dense, the dual triangulation of the Voronoi diagram on
M exists and thus offers us a solution to the geodesic
remeshing problem. An example is shown in Figure 19.

Peyre and Cohen [54] presented an approach similar to
ours, but used an approximate geodesic metric which is
computed by Kimmel and Sethian’s fast marching algo-
rithm [29]. Since the original meshes can have extremely
slivered triangles before remeshing, the numerical fast
marching methods might be contaminated by numerical
errors, while our method is more accurate and robust3

since we use the exact geodesic metric.

6.2 Tree Skeleton Extraction and Classification
Skeletons of 3D articulated models reveal rich topo-
logical information and play an important role in pat-
tern recognition and computer animation. Many elegant
mathematical tools have been investigated for extracting
skeletons from 3D models, including medial axis, shock
graphs, Reeb graphs with Morse functions, etc [17], [58].
Despite the novelties in these tools, the resulting skele-
tons do not take the full advantage of vision perception
and are not visually simple. E.g., mixed 1D and 2D cell
types appear in the medial axis/surface of 3D objects
and are sensitive to tiny noises on surfaces [20].

Observing that the human vision system is able to
infer visually simple skeletons with full functionality,

3. To robustly handle the degenerate cases arisen in numerical
computation of our constructive algorithms, we use the toolkit pro-
posed in [39], which classifies and handles degeneracies in two types:
degeneracies on geometric intersection and degeneracies on geodesic
discontinuities.
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Fig. 20. The process of tree-skeleton extraction. (a) A
branched 3D model; (b) Mesh saliency computation [35]:
the most salient areas are circled in red; (c) Candidate
critical point determination by clustering: saddle points
(green) and extreme points (yellow); (d) Critical point filter-
ing by protrusion part saliency [55]; (e) Geodesic distance
field with extreme points: Voronoi diagram on surface
(brown curves) and iso-contours (black curves); (f) Per-
ceptual salient skeleton extracted from iso-contours.

regardless of noises or wrinkles on object surfaces [32]4,
we use the following guidelines in human vision to
design a computer program of skeleton extraction:

• Human perceives a global shape structure by inte-
grating local pattern elements [8], [55];

• At the early visual process of human beings, the
primate visual cortex selectively filters signals ac-
cording to the spatial frequencies and orientations
of local patterns [8].

• A theory called minima rule was examined in [23]
in which human vision detects local patterns along
negative minima of the principal curvatures on sur-
faces.

The overall algorithm is sketched in the following two
steps and is illustrated in Figure 20.

• Step 1. A three-pass computation is used to simulate
the filtering process in the primate visual cortex.

4. We emphasize that Kovacs et al.’s work [32] is mainly for 2D
dynamic shape, and the related studies on 3D perception remain to be
done.

cat1 cat2 dolphin1 dolphin2 human1 human2
cat1 1.0 0.85 0.18 0.33 0.44 0.55
cat2 0.85 1.0 0.46 0.48 0.19 0.28

dolphin1 0.18 0.46 1.0 0.85 0.05 0.22
dolphin2 0.33 0.48 0.85 1.0 0.3 0.43
human1 0.44 0.19 0.05 0.3 1.0 0.97
human2 0.55 0.28 0.22 0.43 0.97 1.0

TABLE 3
The skeleton similarity of six models shown in Fig. 21.

First, the potential critical points (extrema and sad-
dle points) are weighted by perceptual salience [35].
Only the most salient points5 are used to identify
local parts of a 3D shape. Secondly, each segmented
local part is evaluated for its perceptual salience
when compared to the overall shape. Thirdly, each
most salient part is clustered and represented by one
prototype to be used in Step 2.

• Step 2. A multi-source geodesic distance field on
surface is established for all prototypes. The Reeb
graph of the distance field provides the desired,
perceptually salient tree skeleton. The Reeb graph
can be efficiently constructed by tracing the changes
in the number of closed curves in each iso-contour.

Step 2, using the iso-contour construction algorithm
proposed in this paper, is illustrated in Figure 21. Our
obtained 1D tree skeleton is similar to the medial scaf-
fold in [37] and the skeletal curves in [63]. While the
methods in [37], [63] extract skeletons from the general
3D point cloud, our proposed method is concentrated on
triangulated 2-manifolds M and the obtained skeletons
are perceptually simple.

Given the 1D tree skeletons, we use the graph match-
ing method in [6] to measure the similarity between
the 3D objects. We choose the method in [6] since it
does not consider the topological structure of skeleton
trees and is suitable in our application6. The skeletons
of six articulated objects, two dolphins, two cats and
two humans, with different poses, are extracted (Figure
21) and are used for shape similarity measures (Table
3). From the similarity values, the threshold 0.8 well
classifies the objects into the three correct classes.

To test our approach in large databases, we use the
McGill 3D Shape Benchmark [43]. 190 models are se-
lected and categorized into 19 classes, each of which
contains an equal number of models. Five representative
matching methods are performed and compared with
our approach: extended Gaussian images [25], spin im-
ages [26], D2 shape distribution [18], bending invariant
signature [14], geometric moment invariants [68]. Two
performance measures in [18] are used in our test: given
an inquiry model in class C and a number K of top
matches, precision is the ratio of the top K matches

5. We use the standard deviation at top scale σ = 2ε in the Gaussian
filter in [35], where ε is 0.3% of the diagonal length of bounding box
of the model.

6. Visually similar skeletons may have different topological struc-
tures, as shown in Figure 21.
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Fig. 21. Iso-contour-based tree skeleton extraction of six models: cat1, cat2, dolphin1, dolphin2, human1, human2.
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Fig. 22. Plots of precision versus recall of six approaches
(D2 [18], G2 [14], EGI [25], GMT [68], SPIN [26], and the
Voronoi-based skeleton match V-SKL).

that are members of class C, and recall is the ratio of
models in class C returned within the top K matches.
The curves of precision versus recall (averaged over all
models in the database) are plotted in Figure 22. Ideally
a perfect matching result corresponds to a horizontal
line at precision being 1 in the plot. Generally, the more
area enclosed under the plot of precision versus recall,
the better the matching performance is. The skeleton
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Fig. 23. Plots of precision versus recall of six approaches,
testing with the noised database.

extraction and matching result using our approach is
summarized in the Supplementary Material B. Observed
from Figure 22, Our approach and D2 shape distribution
[18] have better performances than other methods.

To assess the noise-insensitivity, we generate a noised
version of database by disturbing each vertex along
its normal direction: the magnitude of disturbance is
randomly chosen between (−L,L) with the zero mean,
and L is 0.1 times the diagonal length of the bounding
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Fig. 24. Four simulated point patterns on a 2-manifold model. Top: top views of color-mapped distance field. Bottom:
Voronoi diagrams of sample points. From left to right: uniform sampling, random sampling, small cluster sampling
(µ = 12, ω = 8) and big cluster sampling (µ = 40, ω = 20).

box of the model. The plots of precision versus recall
of the six approaches are shown in Fig. 23, from which
we conclude that our voronoi-skeleton matching (V-
SKEL), D2 shape distribution [18] and bending invariant
signature G2 [14] are robust to noise, while geometric
moment invariants GMT [68], extended Gaussian images
EGI [25] and spin images [26] are more sensitive to noise.
This can be interpreted by that noises heavily change the
normals and areas of models, and GMT uses integral of
area and EGIs and spin images use normals.

6.3 Point Pattern Analysis on M
The Voronoi diagrams on triangulated 2-manifolds M
can also be used to examine whether or not a pattern ex-
ists in a set of sampling points on M. The sampling may
represent the population of a state (geography), artefacts
in a site (archaeology), subcellular localization in tissues
(biology), etc. Using the Voronoi diagram construction
algorithm proposed in this paper, the polygonal based
method in [64] can be extended to the domain of 2-
manifold surfaces M.

We use the following methods to generate different
point patterns on M:

• Random point sampling. An array A is generated with
the number of triangles in M, i.e., A[i] corresponds
to the triangle ti. Each element in A stores the trian-
gle areas accumulated so far, i.e., A[i] =

∑i
j=1 ∆tj ,

where ∆tj is the area of triangle tj . A random
number generator is used to sample between 0 and
A[n]. Each generated number x corresponds to a
sample point on M which lies in the triangle tk with
A[k − 1] < x ≤ A[k].

• Uniform point sampling. The farthest point sampling
method on M presented in Section 6.1 is used.

• Clustering point sampling. First the cluster origins
oi are randomly distributed. Secondly a number

measure uniform random small cluster big cluster
pattern pattern pattern pattern

ARF 0.7614 0.6926 0.6542 0.6311
RFH 0.5512 0.5106 0.5404 0.5371
AD 0.6835 0.4573 0.1244 −1.2184

TABLE 4
The mean of three measures in ten simulations for the

four different point patterns in Figure 24.

measure uniform random small cluster big cluster
pattern pattern pattern pattern

ARF 0.0055 0.007 0.0122 0.0172
RFH 0.0341 0.0412 0.0526 0.0547
AD 0.0465 0.0451 0.182 0.3757

TABLE 5
The standard deviation of three measures in ten
simulations for the four different point patterns.

of points are generated for each cluster i from a
random distribution with mean µ. Thirdly the points
in a cluster i are distributed according to a Gaussian
function centered at oi and with standard deviation
ω.

Four patterns (one random, one uniform, two cluster
distributions with different µ, ω) are generated in a 2-
manifold model and shown in Figure 24. We generate
the Voronoi diagrams for different point samples. For
each Voronoi cell V C(pi), denote its area by A(i) and
its perimeter by L(i). Three measures are defined below
(ARF and RFH are adopted from [64]) to test the
pattern in the sampling:

ARF =
1

n

n∑
i=1

RF (i), RF (i) =
4πA(i)

L2(i)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 8, PAGE 1502-1517, AUGUST 2011 15

RFH = 1− σRF

RFav

AD = 1− σA

Aav

where σA is the area standard deviation, Aav is the mean
area and σRF is the standard deviation of RF (i). The
performance data of the three measures on the patterns
shown in Figure 24 is collected. To test the stability
of the measured values, we run ten simulations with
the four different patterns. The mean and the standard
deviation of the measured values are listed in Tables
4 and 5, respectively. We also test the three measures
ARF , RFH and AD in a large U.S. geological survey
(USGS) database [62]. Ten geographic models, on each
of which ten simulations are run with the four different
patterns, are selected from [62]. These testing models and
performance data (the mean and standard deviations of
three measures) are summarized in the Supplementary
Material C. The results are similar to the ones in Tables
4 and 5. From these results, it is observed that AD is
the most significant measure to discriminate between
the four patterns (ref. Table 4) and it is also very stable
with small deviation (compared to the mean values) as
observed in Table 5.

7 CONCLUSION

Analytical structures of the Voronoi diagram and prac-
tical algorithms to compute them are often desired in
diverse pattern analysis applications. In this paper, we
systematically study some important properties of iso-
contours, bisectors and Voronoi diagrams on triangulat-
ed 2-manifold surfaces M. Based on these properties,
a concise data structure is established to facilitate the
explicit description of the Voronoi diagram and practi-
cal algorithms are proposed to efficiently construct the
isocontours, bisectors and Voronoi diagrams of a set of
point sites on M.

Our proposed algorithms are based on the exact
geodesic metric on M and thus, compared to previous
work [30], [56], [57], are insensitive to triangle shape
and triangle density in M. Experiments and three s-
elected applications are presented to demonstrate the
effectiveness and novelty of the Voronoi diagram on M
as a basic tool in pattern analysis. In future work, more
applications of Voronoi diagrams on M should be ex-
plored, including the study of spatial-temporal processes
of Voronoi diagrams on a time-varying 2-manifold M(t)
and the locational optimization of observation points on
M(t).
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