
Computer-Aided Design 43 (2011) 1089–1098
Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Industrial design using interpolatory discrete developable surfaces
Yong-Jin Liu a,∗, Kai Tang b, Wen-Yong Gong c, Tie-Ru Wu c

a Department of Computer Science and Technology, Tsinghua National Lab for Information Science and Technology, Tsinghua University, Beijing, PR China
b Department of Mechanical Engineering, Hong Kong University of Science and Technology, Hong Kong, China
c School of Mathematics, Jilin University, Jilin, PR China

a r t i c l e i n f o

Article history:
Received 18 October 2010
Accepted 3 June 2011

Keywords:
Developable surfaces
Boundary triangulations
Industrial design

a b s t r a c t

Design using free-form developable surfaces plays an important role in the manufacturing industry.
Currently most commercial systems can only support converting free-form surfaces into approximate
developable surfaces. Direct design using developable surfaces by interpolating descriptive curves is
much desired in industry. In this paper, by enforcing a propagation scheme and observing its nesting
and recursive nature, a dynamic programmingmethod is proposed for the design task of interpolating 3D
boundary curves with a discrete developable surface. By using dynamic programming, the interpolatory
discrete developable surface is obtained by globally optimizing an objective thatminimizes tangent plane
variations over a boundary triangulation. The proposed method is simple and effective when used in
industry. Experimental results are presented that demonstrate its practicality and efficiency in industrial
design.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A surfaceS is ruled if through every point onS there is a straight
line (called a ruling) lying in S. If at each ruling the tangent planes
to S remain unchanged, S is a developable surface. Developable
surfaces can be flattened into a plane without stretching and
distortions [1]. This unique property makes developable surfaces
much desired in many design tasks in the manufacturing industry,
including the design of aircraft, ship hulls, automobiles and
garments [2], using the inelastic material of sheet metal, plywood,
cardboard and cloth, etc.

Most commonly used free-form surfaces in industry are dou-
bly curved [3]. So special efforts have to be paid to design with
developable surfaces. The first computer treatments of devel-
opable surfaces were given in [4,5], in which two classes of de-
velopable surfaces were considered. The first is constructed with
a given directrix and a given generator direction, and the second
is constructed by interpolating two boundary curves. Developable
free-form surfaces, in terms of Bezier surfaces, were studied in
[6,7] and later were extended to B-spline form in [8]. How-
ever, nonlinear characterizing equations needed to be solved
for satisfying the developability conditions on these developable
free-form surfaces. A novelworkwas presented in [9] that can gen-
erate developable Bezier surfaces through a Bezier curve of arbi-
trary degrees, without solving nonlinear characterizing equations.

∗ Corresponding author. Tel.: +86 10 62780807.
E-mail address: liuyongjin@tsinghua.edu.cn (Y.-J. Liu).

0010-4485/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2011.06.001
Aumann’s developable Bezier surface [9] was extended to be com-
patible with B-spline control nets in [10].

Another distinct direction of designing with developable Bezier
and B-spline surfaces was to use the dual space from the point
of view of projective geometry. In this perspective, a developable
surface is treated as the envelope of a one-parameter family of
tangent planes, and thus can be represented by a curve in a dual
projective 3-space. This directionwas typified in thework [11–13].
If sufficient differentiability is assumed, developable surfaces can
only be part of plane, cone, cylinder, tangent surface S(t, r) =

c(t) + rc ′(t) of a twisted curve c(t) or a composition of them.
Design of smooth developable surfaces using the above analytic
methods often exhibits inflexibility behavior, i.e., very few degrees
of freedom can be provided.

Towards a flexible and efficient tool in industrial design, mesh
discretization of smooth developable surfaces has received consid-
erable attention recently. Both quadrilateral and triangularmeshes
were adopted. Liu et al. [14] showed that the quadrilateral meshes
with planar facets (called PQ meshes) are particularly suitable for
free-form glass structures in architectural design. The relation be-
tween PQ meshes and conjugate curve networks was also given
in [14]. For the discrete-differential-geometry properties of PQ
meshes, a rigorous analysis was presented in [15]. Constrained
triangular meshes are also studied in modeling and tessellating
arbitrary free-form developable shapes [16–22]. The condition of
a triangulation approximating a developable surface was given
in [16]. A nice property of these mesh discretizations is that both
smooth and buckled developable patches joined along crease lines
can be modeled in a unified framework [15,23,24].

http://dx.doi.org/10.1016/j.cad.2011.06.001
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:liuyongjin@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.cad.2011.06.001

1090 Y.-J. Liu et al. / Computer-Aided Design 43 (2011) 1089–1098
In this paper, we adopt a constrained triangulation as a
discrete developable surface. We formulate the constraints into
optimization criteria and present a simple dynamic programming
solution for finding such a mesh surface that achieves globally
maximized developability. A distinct characteristic of our method
is its compatibilitywith a user-friendly interactive design interface
with sketching. Compared to previous strip-based triangulation
methods [16,18,20], the presentedmethod constructs developable
meshes interpolating closed 3D curves which can enclose a
multiple-connected region when projected back to the sketching
plane.

2. Related work

Design directly using developable surfaces is desired in many
industrial applications. Many different design styles have been
proposed. In [7], to satisfy the nonlinear constraints, a strict and
complicated process is required to set up the positions of control
points of a developable Bezier surface. A better interaction process
was proposed in [9], in which the user first draws a Bezier curve
c1 of arbitrary shape and degree, and then a developable Bezier
surface is constructed by interpolating c1 and some points on the
other boundary curve c2. This method however had the limitation
that only five degrees of freedoms can be used to specify the point
positions on the curve c2. Design of a developable surface as a
3D curve in dual space offers a new perspective [11–13], but the
user usually loses some intuitions when interactively designing in
a projective dual space. A novel interactive style was presented
in [25] with which the user can control a geodesic to efficiently
animate a paper bending. The primitive shape represented in [25]
is however restricted to a rectangle strip.

Design using discretemesh surfaceswidely enlarges the variety
of surface shapes that can be represented by developable meshes.
Rectangle-like developable triangle strips interpolating two arbi-
trary boundary curves were studied in [18,20]. The Hamilton prin-
ciple was introduced in [24] to animate an inelastic disk-like sheet.
With an optimized segmentation, developable triangle strips can
be used to model complicated 3D graphics models [21]. An elegant
optimization process was proposed in [14] for perturbing a quad
mesh into a PQmesh so that free-form shapes, especially architec-
tural structures, can be represented. The PQmesheswere extended
in [15] to model free-form developable surfaces with curved folds.
The developablemeshes generated by themethod in this paper in-
terpolates closed 3D curves and can model free-form shapes in an
intuitive and efficient way.

Paper-and-pencil-based sketches are suited well to the tradi-
tional design habits of human beings. Many sketch-recognition
systems have been proposed to support pen-input interaction con-
cerning general 2D geometry constructions [26]. Inspired by the
user-interface given in [19,27], in this paper we also develop a
sketch-based interactive design interface: The user sketches ar-
bitrary closed curves in a sketch plane and manipulates points’
normals to generate 3D boundary curves. In this work, a dynamic
programming solution is presented to efficiently generate a devel-
opable mesh surface interpolating the given arbitrary 3D bound-
ary curves, whose projection into the sketch plane can bound a
multi-connected region. Dynamic programming has been used in
[18,22] for modeling developable meshes in rectangle-like strips.
Since any triangle strip is trivially discrete developable, compared
to the work in [18,22], in this paper we use an elegant measure
of discrete developability and the major contribution is that by
optimization using the measure of developability, the free-form
developable shape thatwe canmodel is extended fromsimple rect-
angular strips [18,20,22] to branched shape (Fig. 10(a)) and shape
with inner holes (Figs. 12 and 17).
3. Overview of the design system

The goal of the proposed system is to provide a simple and easy-
to-use software tool with which common users can design free-
form developable surfaces for diverse applications. The system
interface (Fig. 1 left) explores a point in the tradeoff between ex-
pressiveness and naturalness. The user sketches (Fig. 1 right) arbi-
trary closed curves that are shown in the left panel of the interface.
The planar sketching curves are obtained by tracing pen/mouse
moving. The system reports the positions of pen/mouse motion
using a polyline with a large number of vertices. The polyline is
simplified using the classic Douglas–Peucker algorithm [28]. The
simplified polyline is the initial draft capturing the design inten-
tion of the user. As it is often desired that the initial draft can be
modified and refined by continuous interaction [29], the polyline
is approximated by a B-spline curve of degree three. The approxi-
mation error is globally controlledwithin a tolerance L/100, where
L is the length of the polyline. Non-professional users often prefer
to modify the curve shape by directly moving curve-points (called
handle points below). Advanced B-spline techniques [30] are pro-
vided in the system so that the user can modify the positions of
handle points on the curve, add or delete somehandle points on the
curve, all through simple sketching operations [27]. One or more
non-intersection closed curves representing amulti-connected re-
gion can be sketched in this phase.

The right panel of the system (left in Fig. 1) contains an OpenGL
window that renders the closed planar curves in R3. The user can
modify the positions of handle points in this window. But the
movement of handle points is restricted in the normal direction
of the sketching plane in the left panel. In this way the projection
of 3D curves (in the right panel) onto the sketching plane is
guaranteed to be the sketched 2D planar curves (in the left panel).
The interactive design of closed 3D curves is continuous in both left
and right panels.

Given a set of closed 3D curves as boundaries, an interpolatory
discrete developable surface is generated using the method pro-
posed in the next section. The user can browse the results in dif-
ferent rendering modes (shading, wireframe and others) also in
the right panel. Since the proposed developable surface interpola-
tion method is fast, the user can interactively modify the shape of
boundary curves and re-generate the interpolating surface in real-
time. User experiences in Section 5 show that great productivity is
achieved by this interactive manner and diverse free-form shapes
can be designed directly using discrete developable surfaces.

4. Interpolatory discrete developable surface

In this section we present a special type of triangulation as
a discrete developable surface and impose a measure of discrete
developability on it. Firstly the 3D curves sketched in the system
are discretized into polylines P using the solution to a Min − #
problem [18]. Given polylines P with edges EP and vertices VP , a
boundary triangulation of P is defined as a triangulation T of VP that
satisfies the following conditions:

1. EP ⊆ ET and VP = VT , where ET and VT are the edge set and
vertex set of T ;

2. For each v ∈ VT , the local surrounding area of v in T is home-
omorphic to a two-dimensional half space H2

= {(x1, x2) ∈

R2, x1 ≥ 0};
3. If an edge e ∈ T is incident to only one face, then e ∈ EP .

Some notations used in this paper are summarized in Table 1.
Observing the fact that along each ruling of a developable

surface, the tangent plane does not change,we define the following
objective function with which the optimal boundary triangulation
maximizes a discrete developability measure.

Y.-J. Liu et al. / Computer-Aided Design 43 (2011) 1089–1098 1091
Fig. 1. The interface of the working system. Left: A screen snapshot. Right: A typical working environment of the sketching system.
Table 1
Some notations used in this paper.

Notation Meaning

T (P) A boundary triangulation of P
OT (P) The optimal boundary triangulation of P

That maximizes the measureM(T).
π The sketch plane
P2D The projection of P onto π

Supporting line segment (SLS) A line segment inside P that starts at some
Vertex pi ∈ P , goes through some concave
Vertex pj ∈ P and ends in an edge of P .

A rung ⟨m, n⟩ A line segment connecting pm and pn that is
Entirely inside P except its two ends.

A gate rung A rung that is a part of an SLS
A regular rung A rung that is not a gate rung
Optimal rung A rung that is an edge in OT (P)

Bridge triangulation BT (P) A boundary triangulation in which every
triangle has at most two rungs.

OBT (P) The optimal bridge triangulation of P that
Maximizes the measureM(BT).

L(i) The set of valid rungs emanating from pi

Let P discretize smooth curves C . The vertices in P are oriented
so that when one walks along the P , the interior region bounded
by P (P possibly has several disjoint closed polylines) is always on
the right-hand side. For any boundary triangulation T of P , each
edge e ∈ T consists of two vertices pi, pj ∈ VP . Denote the tangent
vectors in the smooth curves C at the positions of pi, pj by ti, tj,
respectively. The discrete normal vector to the discrete surface T
at position pi, with respect to pj, is defined by nj

i =
(pj−pi)×ti

∥(pj−pi)×ti∥
. A

twist measure of edge e = (pi, pj) is defined by

m(e) =

nj
i · n

i
j − 1, e ∉ P

0 e ∈ P.

The discrete developability of T is measured by the total twist
M(T):

M(T) =

e∈T ,e∉P

m(e). (1)

Since the measure m(e) is always less than or equal to zero,
and m(e) = 0 only if perfect developability is achieved, given
an T , the larger M(T) is, the better the developability obtained.
Note that a similar measure of developability for semi-discrete
surfaces is used in [31] to define developable surface strips.
Among all the possible boundary triangulations of P , let OT
be the triangulation that maximizes the measure M(T). If the
sampling density of P is increased to the infinate, the boundary
triangulation OT (P) maximizing the developablity measure (1)
converges to a smooth developable surface or a composition of
several developable surfaces joined along crease lines, while other
boundary triangulations may converge only to a ruled surface. In
this paper, OT (P) is regarded as a quasi-developable surface of P .
Fig. 2. Polyline resampling: Supporting line segment (SLS), gate and regular rungs.

Fig. 3. Polyline P partitioning by a rung l: Two halves P(l+) and P(l−), and two
bridge triangles from l in P(l+).

4.1. Optimal bridge triangulation of a single closed curve

Let π be the sketch plane specified in Section 3. Denote the
projection of P onto π by P2D. Let P2D be indexed using the right-
hand-side rule specified at the beginning of Section 4. With this
order, wemake no distinction between sampling P and its polyline.
A point in P is said to be concave in R2 if its interior angle is larger
than π , otherwise it is convex in R2. Refer to Fig. 2. A supporting
line segment (SLS) of P is a line segment inside P that starts at some
vertex pi ∈ P , supports (goes through) some concave vertex pj ∈ P
and ends in an edge of P . Assume that the original polyline P can be
resampled so that for any SLS, both its ends are vertices in P . A line
segment connecting pm and pn, denoted as ⟨m, n⟩, is called a rung
if it is entirely inside P except its two ends. In particular, it is called
a gate rung if it is a part of an SLS, e.g., ⟨i, j⟩ in Fig. 2; otherwise, it
is a regular rung. When a rung ⟨i, j⟩ is referred to, it is assumed that
i < j.

As P is simple, any rung l = ⟨i, j⟩ divides P into two halves.
Denote by P(l+) = P(⟨i, j⟩+) the half that has the vertex pi+1 and
by P(l−) = P(⟨i, j⟩−) the other half (Fig. 3). If a rung l is an edge

1092 Y.-J. Liu et al. / Computer-Aided Design 43 (2011) 1089–1098
Fig. 4. Topological structure of P around a gate rung ⟨i, j⟩.

Fig. 5. Change of topological structure when a gate rung is encountered.

in an OT of P (referred to as an optimal rung), it is obvious that the
following equations hold:

M(OT (P)) = M(OT (P(l+))) + M(OT (P(l−))) + m(l). (2)
Recall that OT (P) is the optimal triangulation of sampling P under
the twist measureM(·). We first study a particular type of triangu-
lation called bridge triangulation (BT): BT is a boundary triangula-
tion in which every triangle has at most two rungs.

Refer to Fig. 3. For any optimal bridge triangulation (OBT) of
P(l+), it must have either rung ⟨i, j−1⟩ or ⟨i+1, j⟩ as an edge. The
following recursive rule holds for a regular optimal rung l = ⟨i, j⟩:
M(OBT (P(⟨i, j⟩+)))

= max{M(OBT (P(⟨i + 1, j⟩+))) + m(⟨i + 1, j⟩),

M(OBT (P(⟨i, j − 1⟩+))) + m(⟨i, j − 1⟩)} (3)
with the boundary condition that this recursion terminates at j =

(i+ 2) mod n. The recursive rule forM(OBT (P(⟨i, j⟩−))) is defined
similarly. Given rule (3), the dynamic programming method [32]
can be applied to find an OBT of P if the projection of P onto the
sketch plane is convex.

The dynamic programming method has been used in [18,22]
to obtain an optimal bridge triangulation of a rectangular strip.
However, concave vertices are not considered in [18,22]. In general,
the projection of P could enclose a concave region in the sketch
plane π . Refer to Fig. 4. Consider a gate rung l = ⟨i, j⟩ with j
being the supported concave vertex and k the vertex on the other
end of the associated SLS. At a concave vertex pj, P(⟨i + 1, j⟩+) is
well defined, but not P(⟨i, j − 1⟩+) since ⟨i, j − 1⟩ is not a rung (it
intersects P). To extend rule (3) for including concave vertices, the
following recursive rule is established for a gate rung ⟨i, j⟩:
M(OBT (P(⟨i, j⟩+)))

= max{M(OBT (P(⟨i + 1, j⟩+))) + m(⟨i + 1, j⟩),
M(OBT (P(⟨i, k − 1⟩+))) + m(⟨i, k − 1⟩)

+M(OBT (P(⟨k − 1, j⟩+))) + m(⟨k − 1, j⟩)}. (4)
In rule (4), we assume i < k < j after a cyclic reordering of P .
Rule (4) considers the case that the gate rung ⟨i, j⟩ is moving out of
a pocket. The opposite case is that the rung propagation enters a
pocket, as shown in Fig. 5. The corresponding rule of this opposite
case is as follows:

M(OBT (P(⟨i, j⟩+))) = M(OBT (P(⟨i, k⟩+))) + m(⟨i, k⟩)

+M(OBT (P(⟨k, j⟩+))) + m(⟨k, j⟩). (5)

Generally in each SLS there is only one concave vertex. In
rare scenarios, degenerate cases may occur that several concave
vertices lie in an SLS. Refer to Fig. 6: Two concave vertices pj and
pk lie in an SLS. In this case, we duplicate pk with a dummy convex
vertex p′

k. Then we treat (i, j, k′) and (i, k, l) as two different SLSs.
Applying dynamic programming on this treatment will produce
a dummy triangle △(i, k, k′) in an optimal triangulation OT . To
process degeneracies, we find and delete all the dummy triangles
in OT . Our split-dummy-vertex method falls into the symbolic
perturbation strategy in [33] in which elegant analysis on this
strategy is discussed in a much broader scope.

Given rules (2–5), the standard top–down dynamic-progra-
mming algorithm [32] is applied to find an OBT of P . To start up
the algorithm, consider an arbitrary convex vertex pi. Let L(i) be
the set of valid rungs emanating from pi. Any valid triangulation
of P must contain either a rung in L(i) or the rung ⟨i − 1, i + 1⟩.
Therefore by applying rule (2) to every rung in L(i)∪{⟨i−1, i+1⟩},
the triangulation with the maximum twist measure (1) is an OBT
of P .

Amemorization technique [32] is used to improve the efficiency
of the dynamic programming method while maintaining the
top–down strategy. Explicitly, two n × n scalar matrices M+ and
M− are utilized to record the twist values M(OBT (P⟨i, j⟩+)) and
M(OBT (P⟨i, j⟩−)). i.e., M+

[i, j] = M(OBT (P⟨i, j⟩+)) and M−
[i, j] =

M(OBT (P⟨i, j⟩−)). In addition to obtain the maximum twist value
of the OBT, another n × n structural matrix N is built to record the
local advancement of the rungs returned from rules (2–5), so that
the final OBT can be reconstructed. The total running time of the
memorized dynamic-programming algorithm is O(n3), where n is
the number of sample points in P .

4.2. Optimal triangulation of a single closed curve

The optimal triangulation obtained by applying the rules (2–5)
is limited to bridge triangulation only, i.e., every trianglemust have
an edge in P . Thus the shape shown in Fig. 7 cannot be found. Next
we develop a recursive rule for the general optimal triangulation
OT .

Let l = ⟨i, j⟩ be a rung, either regular or gate. A vertex pk is said
to be rung-visible from l if both ⟨i, k⟩ and ⟨k, j⟩ are rungs (again we
assume i < k < j after a cyclic reordering). Since P is simple, if pk
is rung-visible, the triangle (pi, pj, pk) lies entirely inside P except
the three vertices. Denote by V (i) the set of indices of the vertices
rung-visible from pi, the following rule for the general optimal
triangulation is established:

M(OT (P(⟨i, j⟩+))) = max{M(OT (P(⟨i, x⟩+))) + m(⟨i, x⟩)
+M(OT (P(⟨x, j⟩+)))

+m(⟨x, j⟩) : x ∈ V (i) ∩ V (j) ∩ P(⟨i, j⟩+)}.
,

Fig. 6. Handling degenerate cases when multiple concave vertices lie in a SLS.

Y.-J. Liu et al. / Computer-Aided Design 43 (2011) 1089–1098 1093
Fig. 7. A composite developable surface: Three cone patches joined with a plane,
and the boundary curve is shown in red. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Recall that if e ∈ P,m(e) = 0, i.e., M(T) does not count the
edges in P , we can slightly modify the above rule to include the
OBT case:

M(OT (P(⟨i, j⟩+))) = max{M(OT (P(⟨i, x⟩+))) + m(⟨i, x⟩)
+M(OT (P(⟨x, j⟩+)))

+m(⟨x, j⟩) : x ∈ (V (i) ∪ i + 1)

∩(V (j) ∪ j − 1) ∩ P(⟨i, j⟩+)}. (6)

By using rules (2) and (6) with the boundary conditions speci-
fied by rules (2–5), the general OT is found after the recursion of the
top–down dynamic-programming algorithm. Note that the rung-
visibility is locally updated after each marching step, so that V (i)
and V (j) only contain non-visited vertices.

To implement the algorithm, we need to compute the rung-
visibility setV (i) for all vertices in P . This equals building a visibility
graph VG(P) of a simple polygon P and removing the edges in P
fromVG(P).We use the optimal output-sensitive algorithm in [34]
to build VG(P) in O(m + n log log n) time, where m is the number
of edges in VG(P).

4.3. Optimal triangulation of multiple closed curves

Generally a developable surface canhavemultiple closed curves
as its boundary. Our sketching interface provides an flexible
tool for constructing this kind of boundary with continuous
interactive editing: First,multiple planar closed curves that enclose
amultiple-connected region are specified in the sketch plane; then
the handle points of B-spline curves aremodified along the normal
direction to make 3D boundaries.

Consider a non-simple polygon P in the sketch plane which is
bounded by the curve set Ω = {Q ,H1,H2, . . . ,Hm}, where Q is
the external closed boundary curve andH1,H2, . . . ,Hm arem non-
intersecting holes forming the internal boundary of P . The vertices
on holes are ordered counter-clockwise, so that when one walks
along the boundary Ω , the interior region is always on the right-
hand side. Refer to Fig. 8. Our strategy is to cut P along some rungs
and then convert P into a simple polygon P ′, for which the rules
(2–6) can be applied.

To guarantee OT (P) = OT (P ′), the choice of cutting rungs is
important. Let vi

c be a vertex on the convex hull of a hole Hi. vi
c is

called a sink if every rung in L(vc) connects Hi to Q . We have the
following two properties:

Property 4.1. If three sequential vertices vi
j−1, v

i
j, v

i
j+1 of Hi lie on the

convex hull of Hi, then any boundary triangulation of P must contain
at least one rung in L(vi

j) that connects Hi to another boundary curve
in Ω \ Hi.

Proof. Denote the three sequential vertices of Hi that lie on the
convex hull of Hi, in counter-clockwise order, by vi

j−1, v
i
j and vi

j+1.
If Property 4.1 does not hold, then all the rungs in L(vi

j) connect vi
j

to some other vertex vi
k of Hi. Since (1) any boundary triangulation

T of P contains vi
j as a vertex which has a degree no smaller than

3, and (2) two edges (vi
j−1, v

i
j) and vi

j, v
i
j+1 lie on the convex hull of

Hi, all remaining edges (a nonempty set) in T which are incident to
vi
j must cross the interior of hole Hi. That is a contradiction to the

definition of boundary triangulation. So Property 4.1 holds. �

Property 4.2. If three sequential vertices vi
j−1, v

i
j, v

i
j+1 of Hi lie on the

convex hull of {H1,H2, . . . ,Hm}, then vi
j is a sink and any boundary

triangulation of P must contain at least one rung in L(vi
j) that connects

Hi to Q .

Proof. Let Ω be the convex hull of inner boundaries (H1,H2, . . . ,
Hm), and vi

j−1, v
i
j, v

i
j+1 be three sequential vertices ofHi, in counter-

clockwise order, lying on Ω . If vi
j is not a sink, then all the rungs in

L(vi
j) connect vi

j to some other vertex v
j
k of Hj. Since vi

j−1, v
i
j , v

i
j+1

lies on Ω , all the rungs in L(vi
j) must cross the interior of hole Hi, a

contradiction. So Property 4.2 holds. �

Since boundary Ω consists of smooth curves, if the sampling of
Ω is sufficiently dense, a sink vertex always exists. Based on the
Properties 4.1 and 4.2, we use the following procedure to find an
optimal set of cutting rungs.

Step 1. Let external boundary beQ and internal boundaryH =

{H1,H2, . . . ,Hm}.
Step 2. Find the convex hull of H and identify a sink vertex vc .
Step 3. For every rung l in L(vc).

Step 3.1. Cut the region using l which connects a Hk to Q ;
Step 3.2. Set Q = Q ∪ Hk and H = H \ Hk;
Step 3.3. If H ≠ ∅.

Step 3.3.1. Go to Step 2.
Step 3.4. Else stop.

The convex hull of a simple polygon can be efficiently found
in linear time [35]. To find the convex hull of several polygons,
we apply the marriage-before-conquest method in [36] that runs
in O(n log h) time, where n is the number of vertices of input
polygons and h is the number of vertices on the output hull. Finally,
for helping identify sink vertices, we use the output-sensitive
scheme in [37] to build the visibility graph of simple polygon Q
,

Fig. 8. Cutting a non-simple polygon into a simple one along some rungs.

1094 Y.-J. Liu et al. / Computer-Aided Design 43 (2011) 1089–1098
a b c

(a) Sample a multi-connected

region on a conic surface

(b) The optimal triangulation

of our method

(c) The optimal ruled surface

in [22]

Fig. 9. Reconstruction of a multi-connected region in a conic section, using the proposed optimal triangulation method and the optimal ruled surface method [22],
respectively. Dash circles outline the major difference in triangulations. The developability is visualized using Gaussian images.
Top view

Bottom view

(c) Two triangulations are

aligned together along

the same boundary

(a) Optimal triangulation of a

composite boundary

(b) Bridge triangulation of the

same boundary in (a)

Fig. 10. Developable surface reconstruction by interpolating a composite boundary: (a) the optimal triangulation; (b) the optimal bridge triangulation; (c) two triangulations
have the exact same boundary.
with respect tom polygonal obstacles {H1,H2, . . . ,Hm}, in optimal
O(E + T + m log n) time, where E is the size of the visibility
graph and T is the time required to triangulate the simple polygon
with obstacles. The overall dynamic-programming algorithm for
multiple close curves has the time complexity of O(nm+3) in the
worst case. Since we use several output-sensitive schemes in the
algorithm, in all our experiments, our algorithm is fast: If there
are a few hundred sample points, the running time is less than
one second. In our experiments, all the tests are performed on a
Core2Duo 2.4 GHz laptop computer with 2GB of memory.

5. Experiments

The proposed discrete developable surface design system
(Fig. 1) is built on the platform of Visual C++.net with Qt 4 GUI.
The distinct features of the system include supporting sketch input
and supporting free-form shape design using discrete developable
surfaces. Belowwe present a series of experiments to demonstrate
these features. Since along each ruling of a developable surface S,
the tangent plane does not change, the Gaussian image of S is a
spherical arc. Based on this property, we use the Gaussian image
to visualize the quality of discrete developability.

Developable surface design with a multi-connected region. As a
simple and demonstrative example, we sample a multi-connected
region on a (developable) conic surface (Fig. 9(a)). Given the
sampled boundary P , we apply our algorithm to reconstruct the
developable patch interpolating P (Fig. 9(b)). Fig. 9(c) shows the
comparison to the optimal ruled surface using the method in [22].
Since our algorithm minimizes the tangent plane variation and

Y.-J. Liu et al. / Computer-Aided Design 43 (2011) 1089–1098 1095
Table 2
Statistic data of the models presented in Section 5. The interactive design time includes the creative idea generation.

Model name Pieces of dev. patches Triangle number Interactive design time (min)

Tent (Fig. 12 bottom) 4 407 15
Lantern (Fig. 13) 12 1152 5
Flower (Fig. 14) 36 2304 75
Ship hull (Fig. 15) 4 160 20
Car hood (Fig. 16) 8 5928 60
Architectural base (Fig. 17 bottom) 1 264 10
Fig. 11. Quadrilateral meshes converted from the optimal triangulations shown in
Figs. 9(b) and 10(a), respectively.

the optimal triangulation is not limited to bridge triangles, it is
clearly shown in the companion Gaussian images that our optimal
triangulation of P better approximates the developable surface
than the optimal ruled surface method in [22]. Other examples
of free-form surface design with a multi-connected region are
presented in Figs. 12 and 17. Compared to the previous work
[18,20,22] that builds bridge triangulations in rectangular strips,
the shape that encloses multiple inner holes in the sketch plane π
(e.g., the ones shown in Figs. 12 and 17) can only be modeled by
the method proposed in this paper.

Composite developable surface design. Our algorithm designs
developable surfaces by interpolating given boundaries. In this
manner composite developable surfaces can be efficiently built
as follows. Given two pieces of patch boundaries with consecu-
tive portions P1 = {b11, . . . , b

n
1} and P2 = {b12, . . . , b

m
2 }, if some

portions in two patches satisfy bi1 = bj2, then the two patches
can be joined together and we denote this by P1 ⊕ P2 =

{. . . , bi−1
1 , bj+1

2 , . . . , bj−1
2 , bi+1

1 , . . .}. We can further impose con-
tinuity conditions such as G1 or G2 between boundary segments
bi−1
1 , bj+1

2 and bj−1
2 , bi+1

1 , so that smooth composite boundary P1 ⊕

P2 can be achieved. Fig. 10 shows developable surfaces interpolat-
ing smoothly joined composite boundary P which is akin to the
composite example shown in Fig. 7. Fig. 10(a) shows the optimal
triangulation OT (P) and Fig. 10(b) shows the special bridge op-
timal triangulation OBT (P) from [22]. The reconstruction quality
of these two triangulations is shown in the Gaussian images. This
example clearly demonstrates that using only bridge triangles can
find limited success in a few special cases [20,22] while the pro-
posed optimal triangulation is a generalization suitable in a wider
range of applications.

Connection to quadrilateral meshes. Both quadrilateral and tri-
angular meshes are widely used for a discrete surface represen-
tation in industry. An optimal triangulation obtained from the
proposed algorithm can be post-processed into a quadrilateral
mesh,which in turn can serve as an initial input towards anoptimal
PQ mesh [14,15]. Let the optimal triangulation OT (P) of boundary
P be denoted by a graph G(V , E), where V ⊆ P . For each vertex
v ∈ V , if the degree of vertex deg(v) > 3, then v is called a can-
didate vertex. For each edge e ∈ E, if both its vertices are candi-
date vertices, then e is called a candidate edge. For each candidate
edge ce, denote the dihedral angle of two triangles incident to ce by
Dih(ce). The following algorithm converts an optimal triangulation
OT (P) = G(V , E) into a quadrilateral mesh.

1. Compute the degrees of all vertices in G and identify all the
candidate vertices.

2. Identify all the candidate edges and put them into a heap H
indexed by Dih(ce).

3. While H is not empty
3.1. Extract a candidate edge ce with minimum index from H .
3.2. Delete ce from E and locally update H .

4. Update G and identify all the candidate vertices in G.
5. For each candidate vertex v
Fig. 12. Two tent models. Top: Composite quasi-developable surface design without holes. Bottom: Windows are modeled by trimming two patches with inner holes.

1096 Y.-J. Liu et al. / Computer-Aided Design 43 (2011) 1089–1098
Fig. 13. A Chinese lantern model made up of 12 quasi-developable patches with 1152 triangles.
Fig. 14. A flower model made up of 9 petals with 2304 triangles: (a) the rendering; (b) one petal; (c) the planar flattening of (b).
Fig. 15. A ship hull model. Top row: The ship hull model in Gouraud shading
and wireframe representations. Bottom row: a papercraft model made from planar
flattening of discrete developable patches.

5.1. Duplicate the vertex with deg(v) − 2 copies and distribute
the copies in a predefined small interval (−ε, ε) centered
at position of v on P .
Fig. 16. A car hood model made up of 8 quasi-developable patches.

5.2. Locally update the connectivity of v in the subgraph
incident to v, such that each copy of v has degree 3.

Y.-J. Liu et al. / Computer-Aided Design 43 (2011) 1089–1098 1097
Fig. 17. Architectural base design with a projected multi-connected region. Left: One inner hole. Right: Two inner holes.
Fig. 11 shows two examples of quadrilateral meshes converted
from the examples shown in Figs. 9(b) and 10(a). As shown in
Fig. 11, few planar polygons other than quadranglesmay be output
from the above algorithm and they can be further converted into
quadrilaterals using the methods in [38].

Evaluation of sketch-based interface. To the authors’ best knowl-
edge, there is no commercial system that offers the function of
design directly using free-form developable surfaces. In [18] a
plug-inmodule of approximating free-formB-spline surface by de-
velopable strips with a controllable global error bound is devel-
oped in the CATIA V5 R16 system. We present both the CATIA V5
R16 system with the developable approximation module and the
proposed sketching system to nine college students (4 females and
5 males) aged between 17 ad 23. The same design task to be ful-
filled by both systems was assigned to the nine users. Then we
asked the users to comment on both systems. All the users com-
mented that CATIA is powerful, but it is not easy to learn at first
glance. All the users also commented that the sketching system is
simple and easy to use, and the design intent of users can be ad-
dressed fluently. Table 2 summarizes the interactive design time
(including the creative idea generation) of six sophisticated mod-
els using the sketching interface. With this data, we conclude that
the sketching interface explores a point in the tradeoff between
expressiveness and naturalness, with which users can focus on
the task without excessively switching amongmenus, buttons and
keyboard hits.

Aesthetic and industrial design. The sketching system provides
a promising tool for using developable surfaces in aesthetic and
industrial design. Figs. 12 and 13 show two tents and a Chinese
lantern, which are made of 4 and 12 quasi-developable patches,
respectively. Fig. 14 shows a composite flower model that uses
36 quasi-developable patches: One graduate student took 75 min
to sketch all the boundaries and a total of 2304 triangles are
generated by the optimal triangulations. A ship hull consisting
of 4 quasi-developable patches, in a symmetric configuration, is
shown in Fig. 15 in which the papercraft model constructed from
planar development is also presented. A sophisticated car model
is presented in Fig. 16 in which the hood is designed using a
composite quasi-developable surface. An example in architectural
design is presented in Fig. 17. Table 2 summarizes the statistics
data of all the models (developable patches, number of triangles,
and the interactive design timeusing the sketching interface). Once
the boundary curves are specified, the models in all the examples
are generated in timebetweenone to onehundredmilliseconds, on
a Core2Duo 2.4 GHz laptop computerwith 2GBmemory, indicating
that real-time shape manipulation and modification are achieved
by the proposed system.
6. Conclusions

In this paper, we have presented a dynamic programming
method for generating optimal discrete developable surfaces
interpolating given 3D boundary curves. Compared to previous
works, a distinct feature of the proposed method is that our
design system separates developable surface modeling into three
phases: (1) interactive design of boundary curves in a sketching
plane, (2) interactive modification along normal directions, and
(3) automatic generation of discrete developable surfaces that
interpolate the given boundaries. Unlike previous strip-based
methods, on the sketching plane, the boundaries in our system
can enclose several inner holes and then form a multi-connect
region. To facilitate the proposed system, a sketching interface
is utilized that offers a design tool to allow designers to
construct sophisticated free-form shapes naturally and efficiently.
Experimental results are presented, showing that sophisticated
free-form developable surfaces can be designed by users in a low
cognitive load, by using the three-phase design system with a
sketching interface.

Acknowledgments

The authors thank the reviewers for their comments that help
improve this paper. This work was supported by the National
Science Foundation of China (Project 60970099, 60736019),
the National Basic Research Program of China 2011CB302202
and Tsinghua University Initiative Scientific Research Program
20101081863.

References

[1] do Carmo M. Differential geometry of curves and surfaces. Prentice-Hall, Inc.;
1976.

[2] Liu Y, Zhang D, Yuen M. A survey on CAD methods in garment design.
Computers in Industry 2010;61(6):576–93.

[3] Farin G. Curves and surfaces for CAGD. 5th ed. Morgan Kaufmann Pub.; 2002.
[4] Gurunathan B, Dhande S. Algorithms for development of certain classes of

ruled surfaces. Computers & Graphics 1987;11(2):105–12.
[5] Weiss G, Furtner P. Computer-aided treatment of developable surfaces.

Computers & Graphics 1988;12(1):39–51.
[6] Aumann G. Interpolation with developable Bezier patches. Computer Aided

Geometric Design 1991;8(5):409–20.
[7] Lang J, Roschel O. Developable (1, n)-Bezier surfaces. Computer Aided

Geometric Design 1992;9(4):291–8.
[8] Maekawa T, Chalfant J. Design and tessellation of b-spline developable

surfaces. Transactions of the ASME. Journal ofMechanical Design 1998;120(3):
453–61.

[9] Aumann G. A simple algorithm for designing developable Bezier surfaces.
Computer Aided Geometric Design 2003;20(8–9):601–19.

1098 Y.-J. Liu et al. / Computer-Aided Design 43 (2011) 1089–1098
[10] Fernandez-Jambrina L. B-spline control nets for developable surfaces.
Computer Aided Geometric Design 2007;24(4):189–99.

[11] Bodduluri R, Ravani B. Design of developable surfaces using duality
between plane and point geometries. Computer-Aided Design 1993;25(10):
621–32.

[12] Bodduluri R, Ravani B. Geometric design and fabrication of developable Bezier
and b-spline surfaces. Transactions of the ASME. Journal of Mechanical Design
1994;116(4):1042–8.

[13] Pottmann H, Farin G. Developable rational Bezier and b-spline surfaces.
Computer Aided Geometric Design 1995;12(5):513–31.

[14] Liu Y, PottmanH,Wallner J, Yang Y,WangW.Geometricmodelingwith conical
meshes and developable surfaces. In: ACM SIGGRAPH 2006. 2006. p. 681–9.

[15] Kilian M, Flory S, Chen Z, Mitra N, Sheffer A, Pottmann H. Curved folding. In:
ACM SIGGRAPH 2008. 2008. p. Article No. 75.

[16] Frey W. Boundary triangulations approximating developable surfaces that
interpolate a closed space curve. International Journal of Foundations of
Computer Science 2002;13(2):285–302.

[17] Julius D, Kraevoy V, Sheffer A. D-charts: quasi-developable mesh segmenta-
tion. In: Eurographics 2005. 2005. p. 581–90.

[18] Liu Y, Lai Y, Hu S. Stripification of free-form surfaces with global error bounds
for developable approximation. IEEE Transactions on Automation Science and
Engineering 2009;6(4):700–9.

[19] Rose K, Sheffer A, Wither J, Cani M, Thibert B. Developable surfaces from
arbitrary sketched boundaries. In: Eurographics symposium on geometry
processing. 2007. p. 163–72.

[20] Tang K, Wang C. Modeling developable folds on a strip. Journal of Computing
and Information Science in Engineering 2005;5(1):35–47.

[21] Wang C. Computing length-preserved free boundary for quasi-developable
mesh segmentation. IEEE Transactions on Visualization and Computer
Graphics 2008;14(1):25–36.

[22] Wang C, Tang K. Optimal boundary triangulations of an interpolating ruled
surface. Journal of Computing and Information Science in Engineering 2005;
5(4):291–301.

[23] Frey W. Modeling buckled developable surfaces by triangulation. Computer-
Aided Design 2004;36(4):299–313.
[24] Liu Y, TangK, JonejaA.Modeling dynamic developablemeshes by theHamilton
principle. Computer-Aided Design 2007;39(9):719–31.

[25] Bo P, Wang W. Geodesic-controlled developable surfaces for modeling paper
bending. In: Eurographics 2007. 2007. p. 365–74.

[26] LaViola J. Sketch-based interfaces: techniques and applications. In: ACM
SIGGRAPH. Course notes 3. 2007.

[27] Ma C, Liu Y, Yang H, Teng D, Wang H, Dai G. Knitsketch: A sketch pad for
conceptual design of 2D garment patterns. IEEE Transactions on Automation
Science and Engineering 2011;8(2):431–7.

[28] Hershberger J, Snoeyink J. Speeding up the Douglas–Peucker line-simpli-
fication algorithm. In: Proc. 5th symp. on data handling. 1992. p. 134–43.

[29] Liu Y, Ma C, Zhang D. Easytoy: A plush toy design system using editable sketch
curves. IEEE Computer Graphics & Applications 2011;31(2):49–57.

[30] Piegl L, Tiller W. The NURBS book. 2nd ed. Springer-Verlag; 1997.
[31] PottmannH, Schiftner A, Bo P, Schmiedhofer H,WangW, Baldassini N,Wallner

J. Freeform surfaces from single curved panels. In: ACM SIGGRAPH 2008. 2008.
p. Article No. 76.

[32] Cormen T, Leiserson C, Rivest R. Introduction to algorithms. The MIT Press;
1990.

[33] Edelsbrunner H, Mucke E. Simulation of simplicity: A technique to cope with
degenerate cases in geometric algorithms. ACM Transactions on Graphics
1990;9(1):66–104.

[34] Hershberger J. Finding the visibility graph of a simple polygon in time
proportional to its size. In: Proc. 3rd annual symposium on computational
geometry. 1987. p. 11–20.

[35] McCallum D, Avis D. A linear algorithm for finding the convex hull of a simple
polygon. Information Processing Letters 1979;9(5):201–6.

[36] Kirkpatrick D, Seidel R. The ultimate planar convex hull algorithm. SIAM
Journal on Computing 1986;15(1):287–99.

[37] Kapoor S, Maheshwari S. Efficiently constructing the visibility graph of a
simple polygon with obstacles. SIAM Journal on Computing 2000;30(3):
847–71.

[38] Toussaint G. Quadrangulations of planar sets. In: Algorithms and data
structures. LNCS, vol. 955. 1995. p. 218–27.

	Industrial design using interpolatory discrete developable surfaces
	Introduction
	Related work
	Overview of the design system
	Interpolatory discrete developable surface
	Optimal bridge triangulation of a single closed curve
	Optimal triangulation of a single closed curve
	Optimal triangulation of multiple closed curves

	Experiments
	Conclusions
	Acknowledgments
	References

