Volume 0(1981), Number 0 pp. 1-14

Rendering Soft Shadows using Multi-layered Shadow Fins

Xiao-Hua Cat, Yun-Tao Jid, Xi Wang!, Shi-Min Hu* and Ralph R. Martif

1 Tsinghua University, Beijing, China
2 Cardiff University, United Kingdom

Abstract

Generating soft shadows in real-time is difficult. Exact methods (such as ray tracing, and multiple light source
simulation) are too slow, while approximate methods often over-estimate the umbra regions. In this paper, we
introduce a new algorithm based on the shadow map method to quickly and accurately render soft shadows pro-
duced by a light source. Our method builds inner and outer translucent fins on objects to represent the penumbra
area inside and outside hard shadows respectively. The fins are traced into multi-layered light space maps to
store illuminance adjustment to shadows. The viewing space illuminance buffer is then calculated using those
maps. Finally, by blending illuminance and shading, a scene with highly accurate soft shadow effects is produced.
Our method does not suffer from umbra over-estimation. Physical relations between light, objects, and shadows
demonstrate the soundness of our approach.

Categories and Subject Descriptgsiscording to ACM CCS) 1.3.3 [Computer Graphics]: Picture/lmage Genera-
tion: Bitmap and Frame Buffer Operations 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism:
Shading, Shadowing

1. Introduction ies[CDO03]. Although these methods have high performance,
their results suffer from an umbra over-estimation problem,
and can produce results far removed from reality. This prob-
lem becomes particularly evident when the light sources are
of large extent. In this paper, we introduce a new algorithm
based on the shadow map method to properly render soft
shadows quickly. Our approach does not suffer from the
'umbra over-estimation problem. Furthermore, its computa-
tions are based on realistic physical relations between light,
objects and shadows. Our approach assumes that the light
source lies within a plane.

On the other hand, fasoftshadow rendering, various off- In Figure 1 compare images of the same scene generated
line methods have been devised, suctliagibuted ray trac- using several methods. From left to right, the methods used
ing [CPCB84],lazy visibility evaluatiofHDG99], andlight arehard shadows, thesmoothiesnethod [CD03], our new
source samplingHH97]. However, computing accurate soft method, and aamplingmethod (which combines hard shad-
shadows is time consuming, and is still hard to do in real ows from 1024 point samples of the light source); the latter
time. is used as a reference image.

Shadows provide important cues to spatial relationships
in images, improving viewers’' understanding [SUC95], so
their computation has been widely studied. For interactive
requirements, two widely used methods are thoshatlow
volumeqCro77] andshadow mapBNil78]. The basic ideas
used by these approaches depend on point light sources only
and thus they generalard shadows. Further work has been
done to extend them to the generation of soft shadows, as we
will discuss shortly.

Compared to the shadow volume method, the shadow As in the approaches of [WHO03] and [CDO03], our main
map method is simpler and faster, and is not so sensitive to idea is to initially construct additional external planar geo-
scene complexity. Thus, many methods based on this tech- metric primitives (calledhadow finssee Figure 4) attached
nology have been devised to approximate soft shadows, suchto silhouette edges, and then generate shadows by consid-
asplateaus[Hai01], penumbra mappNVHO3], andsmooth- ering the scene including the information from these fins.

(© The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

Figure 1: Shadows produced by: hard shadows, smoothies, our new method, 1024 point sampling method.

light To avoid this problem, we useraultiple layerapproach,
source which partitions the constructed fins into multiple planar lay-
ers. These layers are parallel to the plane of the light source,
€ and the extruded fins are then rendered into a penumbra map

ye
for each layer, which includes both depth and weight infor-
a Plane 1 mation (see Figure 3, left). Because each fin affects all lay-
ers below it, a given fin may need to be rendered several
b Plane 2 times during the whole algorithm. In order to avoid doing

so explicitly, for efficiency, we implement this process in an
\I c Plane 3 accumulative manner—the penumbra map for each layer is
calculated by combining information from the previous layer
with the penumbra effects of any fins between these two lay-
Figure 2: Multiple objects along one beam of light ers. In this way, the complexity can be dramatically reduced.

In summary, the main advantages of our new soft-shadow
approach are as follows:

Our method differs in that previous methods only used out- 1. It is a fast method based on shadow maps; its perfor-

ward projecting fins, allowing them to take the outer penum- mance varies nearly linearly with scene complexity.

bra into account, whereas we use fins which extend both in- 2. It generates shadows based on realistic physical relations,
wards and outwards from the silhouette edges to simulate the providing highly accurate sizes and shading for umbra

penumbra area inside and outside hard shadows respectively. and penumbra areas.

3. It uses an incremental method for penumbra map calcu-

The size of these primitives is based on geometric rela- ; . ;
lation, leading to real-time performance.

tions between the light source, the shadow casters, and the
receivers. We accumulate the contributions due to these fins, The next Section discusses related work, and overviews
per-pixel, into illuminance intensities in screen space, and our approach. Section 3 explains the concepts in the con-
then blend them with the corresponding shading values to text of a single-layered algorithm, then Section 4 gives our
obtain a final image with highly accurate soft shadows. multi-layered algorithm. Section 5 discusses implementation
issues, Section 6 gives some results, and Section 7 discusses

However, taking the inner penumbra into account is much . .)
them. Finally, we give our conclusions.

more complicated here than in the cases handled by existing
soft shadow methods based on the shadow map approach.

This is becauseeveraldifferent shadow states may need 2. Previous work
to be taken into account corresponding to a single beam of
light, while a shadow map only storessaglevalue. Con-
sider Figure 2. Pointa, b andc on receiver planes 1, 2 and

3 correspond to one ray of light. A single stored value can
only represent information from one of them, preventing soft Real-time computation of hard shadows is normally done
shadows for such points from being rendered correctly. using one of two basic methodshadow volumefCro77]

Computation of shadows has a rich literature. Surveys such
as those by Woo et al. [WPF90] and more lately Hansefratz
et al. [HLHSO03] discuss a wide range of methods.

(© The Eurographics Association and Blackwell Publishing 2005.

Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

or shadow map§wil78]. The shadow volume method con- resent light visibility factors. This no longer suffers from the
structs faces perpendicular to the light direction on silhou- robustness problem, has enhanced performance, and works
ette edges. By counting the numbers of front and back faces for any kind of light source. However, they need to con-
which are traversed by any line of sight from the light source, struct wedges and compute every fragment covered by each
one can decide whether the final receiver of the light is or is wedge, so their method requires a high rate of data transfer
not inside the shadow region. Heidmann [Hei91] presented between the CPU and graphics processor (GPU).

a hardware-based version of the method in 1991. The main
drawback of the shadow volume method is its high sensitiv-
ity to geometric complexity of the scene.

There are many methods based on the shadow map tech-
nigue. Reeves et al. [RSC87] give a subsampling technique
for blurring the shadow map. However, it only improves

The shadow map method renders objects using the light the blurring effect at the edges of the original hard shad-
source as a view point to initially generate a depth map ows, and does not produce real soft shadows. Heidrich et
(the shadow map). As it proceeds, it compares the depth al. [HBSO00] handle linear light sources by considering their
value of each fragment of the scene to the stored value two end points, but their method does not achieve real-time
in the shadow map to decide whether it is in shadow. Se- performance. Braded and Seidel [BS02] extended the idea to
gal et al. [SKVW'92] gave a hardware accelerated algo- handle area sources using simple sampling, but this method
rithm for this approach in 1992. The main problem when cannot produce self-shadows and seems only suitable for
using shadow maps is sampling aliasing which occurs at the low-resolution shadow maps.
edges of shadow#\daptive shadow mad&FBGO01], per-
spective shadow$DO02], shadow silhouette maSCHO3]
andalias-free shadow map#\L04] help to overcome this
aliasing problem, but they all still generate hard shadows.

Combining the ideas of shadow maps and shadow vol-
umes, Haines presented thiateau methodHai01], which
renders the soft shadow as a texture. It uses hard shadows to
initially approximate the umbra, then constructs cones (from

To produce accuratsoft shadows, the computation is terminal points of silhouette edges down to the receivers)
very costly. To overcome this, much work has been done and sheets (connecting neighbouring cones). Attenuation is
on approximate approaches, such lagered depth im- controlled by these primitives when light is cast to generate
ages[ARHMOO], vertex tracing[SR00], variousback pro- the penumbra. However, by only taking into account the dis-
jection techniques [DF94], and so on. Soler and Sil- tances from casters to the receiver, and not the size and the
lion [SS98] introduced a method based on convolution inim- position of the light source, the penumbra generated is not
age space. In an ideal situation for their method, the light, the physically accurate. Moreover, the receivers are restricted to
occluders, and the receivers lie on parallel planes, in which being planar.

case they obtain good results. For o.ther arrangements, they Wyman and Hansen [WHO3] introduced tpenumbra
try to control the error. However, this method renders the hod based | h |
scene layer by layer in such a way that it cannot cast shad- mapmethod based on plateaus. They also construct cones
X . ; and sheets, and render them as a texture. Because they take
ows from a single object onto itself. (Our method also uses . . :) .)
. . .~ the light source size and spatial configuration of silhouette

layers, but in a different way, so we do not suffer from this d . " . - p

roblem.) Such methods are too slow for real-time appli- edges into account, as welas computing various refinements
P) at the fragment determination stage, they do not have the

cations. Sloan et al. [SKS02] gave a sampling method for . S
) 2 A .~ planar receiver limitation. Furthermore, the penumbra they
a low-spatial-frequency approximation of the lighting envi- ;)
generate is more physically accurate.

ronment. This method can render objects and generate soft
shadows in real-time, but it needs a lengthy precomputation Chan et al.'s method [CD03] is similar to the previous one.
to determine radiance transfer between objects, and cannotit uses hard shadows to approximate the umbra as above, and
handle shadows in dynamic scenes where objects are changthen attaches geometry primitives, callemhoothiescom-

ing. Furthermore, when the light sources degenerate to a sin- prising rectangles and corner pieces, to silhouette edges. By
gle point source, the resulting shadow looks too soft. rendering such geometry, they generate the penumbra too.
However, this method only considers the spatial configura-
tion of silhouette edges, not the size of the light source and
its direction, so it produces fake penumbras. Instead of tak-
ing into account details of the light source, it uses a single

Akenine-Moller et al. [AMAO02] extended the shadow vol-
ume method to handle soft shadows. They replaced the tradi-
tional shadow volume with a four-faced penumbra wedge on
silhouette edges, and computed every covered fragment toglobal parameter to control the size of the smoothies to sim-
gene_rate soft shadow_s. However, this method can only han- ulate the effect of changes in size of the light source.
dle simple cases of silhouette edges as occluders. Because
neighbouring faces of wedges can share side planes, their The last three methods: plateaus, penumbra maps, and
method suffers from a robustness problem when construct- smoothies, are all real-time approaches. However, because
ing wedges. They improved this method in [AAMO3], where they use a hard shadow to approximate the umbra, then gen-
the wedges for the silhouette edges are now independenterate the penumbra only outside the umbra, all three over-
and a precomputed four-dimensional texture is used to rep- estimate the umbra, and cannot generate the shrinking effect

(© The Eurographics Association and Blackwell Publishing 2005.

Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

Shado

Q

9,

Inner Penumbra Map

QENQ

\ /
\
NS

Outer Penumbra Map Rendering Result

Figure 3: The single-layered method. Left (light space): depths and weights of the shadow map, inner penumbra map, and outer
penumbra map. Top right (screen space): illuminance buffer and shading buffer. Bottom right (screen space): resulting image.

seen with a real penumbra. Thus, they all generate quite un- 3. Single-layered algorithm
realistic soft shadows. If the light source is large, the poor

. In this section, we first explain some basic ideas using a
results are evident.

single-layeredalgorithm, upon which oumulti-layeredal-
gorithm is built.

One final method, based on ray tracing, by Parker et g ghape of the light source is assumed to be planar and
al. [PSS98], deserves to be mentioned here. They proposeirclar in our approach. This is not as serious a restriction
the concept ofoft-edge objectsvhereby objects are shrunk 55 it sounds: it is difficult for people to tell the shape of a
or magnified to approximately produce soft shadows. The light source from the shapes of soft shadows [Wan00]. We
amount of shrinking or magnification is decided by the size 44 5 as such a shape makes it easier for us to solve the
of the light source and the position of the silhouette of the problem. We use the centre of the light source to generate

object, so it is basically physically accurate. Butin order 0 arg shadows, and all silhouettes are computed relative to
prevent light leakage between two objects which are placed ihig point.

in contact or close together (due to shrinkage [PSS98]), in

practice, objects cannot be shrunk. This leads to this method The dataflow of our single-layered algorithm is shown in
over-estimating the umbra too, failing to simulate the smaller Figure 3 (from left, to top right, to bottom right). The algo-
umbra when a penumbra is present. Furthermore, ray tracing rithm has five steps which are carried out in object space,
is not suitable for real-time processing of large models. then light space, and finally, image space:

e In object space:

Overall, although many methods have been devised for — construct inner and outer shadow fins from geometric
soft shadow generation, current approaches lack the abil- primitives, and compute weights associated with each
ity to produce physically realistic results in real-time. Our
approach uses shadow fins and a multi-layered approach to
produce approximate shadows of high quality quickly. — render the shadow map

e In light space:

(© The Eurographics Association and Blackwell Publishing 2005.

Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

receiverwhere light ultimately falls in the scene after going

inner quads past a silhouette edge. Because we do not yet have informa-
J i fans} inner fins tion about where the receivers are, we use a reference plane
// ,; as a substitute. In practice, we use theplaneof the frus-
/ ! tum viewed from the light source. In a later step, we use a

!
refinement mechanism to improve the result computed using

the reference plane, as will be explained in Section 3.4.

1

1
k2%
L As can be seen in Figure 4, adjacent fins may overlap. We
accept such cases and skip the complex computations needed
to trim the fins. Instead, we control the effects computed for
each fin later in such a way as to ensure a smooth variation
of shadow corresponding to the overlap region.

silhouette edge

/
4

outer quads
outer fins _
outer fans -~

If more than two silhouette edges meet at a vertex, we
use Chan’s suggestion in [CDO03] to handle this special case.
First, we average the adjacent face normals to obtain a shared
vertex normah whose projection in the screen space of the
— render inner and outer penumbra maps light source has length Then we draw triangles that con-
nectn with each of the adjacent shadow fin edges.

Figure 4: Inner and outer fins

e In screen space:

— compute the illuminance buffer from the above maps;
compute the shading buffer
— render the final image We now build a shadow map by projection from the centre
See Figure 3. Firstly, we compute the depths and weights ©f the light source—this gives the hard shadow. This is done
for the shadow map, the inner penumbra map and the outer IN @ Standard way, as described in [Wil78].
penumbra map. These 3 map images are generated with re-
spect to th(_e centre of tht_a light source. Thenz with respectto 3 3 Rendering penumbra maps
the eye point, we combine these maps intaleminance
buffer. Lastly we take the shading of the scene into account, Next, still starting from the centre of the light source, we

to generate the final image with soft shadows. compute the penumbra maps of the inner and outer fins
which are used to simulate soft shadows.

3.2. Rendering the shadow map

3.1. Constructing shadow fins Eachpenumbra maginner or outer) is a combination of a

) . . depth map and a weight map, as shown in Figure 3—on the
Following the idea ofoft-edged objectsom [PSS98], we left side of each penumbra map is the depth map, while the

attac_h inward and outwa(d planar geometric prim_itives to right side shows the weight map. The depth map contains
the silhouette edges of objects, to en_able cgmputatlon of the depth values of the appropriate (inner or outer) fins relative
penumbra (see Figure 4). We call theseer finsandouter to the light source and is used later for soft shadow refine-
finsrespectively. ment. The weight map contains values used to simulate the
Assuming, the object is facettedjlhouetteedges are effects of soft shadows, computed as follows.
those edges which belong to two faces, one facing towards
the light, and the other facing away. There are many silhou-
ette detection algorithms, but we simply use a brute force
approach, considering all edges and marking the silhouette
edges.

The inner fins and outer fins of each silhouette edge are
treated in a similar way, except that outer fins are used to
add shadow, and inner fins are used to remove shadow, rela-
tive to the existing hard shadow. A smoothly varying shadow
strength weight is used varying from 0.5 at the silhouette

The inner and outer fins consist of quadrilaterals and fans. edge to 0 at the edge of the fin. The weights indicate the
Given a silhouette edge, lines are drawn outwards and in- magnitudeof illuminance adjustment (made to the shadows)
wards from the vertices at each end; these lines are per- at that point of the fin, theignis decided by whether the fin
pendicular to the edge, lying in a plane parallel to the light is aninner fin or outer fin. Thus the weight is
source plane. The two inner vertices and the ones from the _

. . . . s=05(1-t) (@)
original edge form an inner quad, while the outer vertices
and the original ones form an outer quad. Inner fans and wheret is the fractional distance of the point from the sil-
outer fans forming circular sectors are added to connect in- houette edge (or vertex for fan) to the edge of the fin.

ner and outer quads as necessary, as shown in Figure 4. When producing the weight maps, if multiple fins over-

The size of the fins must depend on the location of the lap, we need to define special rules to combine the weights

(© The Eurographics Association and Blackwell Publishing 2005.

Cai, Jia, Wang, Hu, and Martin / Rendering S

from the multiple fins. As pointed out by Park [PSS98], over-
lapping shadows require three types of computation: addi-
tion, multiplication, and thresholding. However, distinguish-
ing these cases and treating them correctly is difficult. In-
stead, we use approximate rules based on thresholding:

e for inner fins, use the minimum of their individual
weights,

e for outer fins, use the maximum of their individual
weights.

While ignoring fins inside hard shadows leads to errors,
we overcome this problem to some extent by using multi-
ple layers in our improved algorithm, which we describe in
Section 4.

3.4. Computing the illuminance buffer

In this step, the depth and weight parts of #imdow map

and the inner and the outpenumbra mapsare combined

to give anilluminance buffer whose values represent how
much each part is illuminated. Unlike earlier computations,
this buffer is generated with respect to the eye point, not with
respect to the light source; its size is the same as the output
screen resolution.

Viewed from the eye point, firstly, we classify all screen
fragments into two categories: shadow regions (from which
the light sourceeannotbe seen) and lit regions (from which
the light sourcecan be seen), by comparing their depths to
the value stored in the depth map of shadow maygjust as
in the originalshadow mapnethod), but here we assign 0 to
the hard shadow region and 1 to the lit region.

Then, for each screen fragment, the corresponding values
in the weight maps of the inner and oupemumbra mapare
used to make adjustments for that fragment. Because inner
fins remove shadow and outer fins add shadow, we adjust the
shadow value as follows:

e forinner fins, we add its (refined—see below) weight;
o for outer fins, we subtract its (refined) weight.

If a fragment has weights corresponding to both inner fins
and outer fins, this means the different fins overlap, and we
simply apply their individual effects to ensure that no light

leakage occurs, as illustrated later in Figure 10. However,
this approximation introduces some artifacts which can be
seen in that example; these will be discussed in Section 7.2.

The result of this step is a map from the eye point, storing
real values in the range 0 to 1, representing how much each
part is in shadow.

In practice, the simple idea above is modified slightly
to produce improved results. Before accumulation of the
values in the penumbra maps, wefine them to satisfy
more accurately the geometric relations between shadows,
the light source, and silhouette edges. When the fins were
constructed, we did not know the position of the receiver

oft Shadows using Multi-layered Shadow Fins

light source

B, TN L
Blocker Av\ . ' L
\
B, —
BO = L()

Reference receiver

Figure 5: Refining shadow values

upon which light would fall during rendering, so for each
silhouette edge, we used an arbitrary size for the width of the
fins, computed using a reference receiver plane, as suggested
by [WHO03]. This reference plane is the far plane of the view-
ing frustum with respect to the centre of the light source.
When computing théluminance buffer we now have ac-
tual depth information available about the real receiver, so
we can recompute the results with more accurate fin widths
to produce a more accurate shadow value.

Furthermore, real shadows do not fall off linearly, and
they can be better modelled using a Bernstein inter-
polant [HaiO1]. This correction is also performed as the
penumbra maps are used.

For an actual receiver plane, the size of each fin can be
computed using the following equation (see [PSS98]):

_ (Dr —Dp)R
Br=""p)

Br is the size of the fin corresponding to the receiveDr

is the distance from the centre of the light to the receiver
point, Dy, is the distance from the centre of the light to the
silhouette edge of the shadow caster, &1id the radius of
the light source.

Because the (planar) fins are parallel to the light source
plane, if the receiver is a plane parallel to the light source
too, then Equation 2 can be rewritten as

(Lr—Lp)R ’LrLb)R 3)

wherel, is the distance from the light source plane to the
receiver plane andl, is the distance from the light source
plane to the fin plane.

Br:

Let Bt be the distance from the intersect point of the fin

(© The Eurographics Association and Blackwell Publishing 2005.

Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

and one ray of light to the silhouette edge of that fin. Then used a convolution method which performed computations

the fractional distance iB/Br. Substituting the value df in light space. Instead, we useshadow mamnd construct
from Equation 1, we get fins, which can be seen as performing convolution in object
5 — 1—tr B Br — Bt @ space.
2 2B Unlike the single-layered algorithm, tmeulti-layered al-

wheres; is the weight corresponding to the actual receiver. gorithmneeds to allocate inner and outer fins into appropri-
))))) ate layers to eliminate overlap cases. Then, we generate the
Consider Figure 5. We wish to determine the weight jjyminance bufferfor each layer in an incremental manner,
for the actual receiver, but we have the weiggtfor the from near to far in the light space.
reference receiver before refinement, where the subsgcript
denotes the value for the reference plane. We can make the Following the discussion above, we again consider three

adjustment using: steps of the revised algorithm in turdayering shadow fins
computing theilluminance buffer and renderingthe final
S = (1—t0)/2=(Bo—Bt)/2By, image.
S = (l*tr)/2= (Br — Bt)/ZBr
where 4.1. Layering shadow fins
Bo = ('—o—Lb)R’ g — (Lr—LR We create shadow fins using the same method as in the
Lo Lr single-layered algorithm, and a small number of extra op-
So, erations are used to allocate the fins to layers.
5 = 1 n @(_ }) ®) Sorting or splitting operations on shadow fins are avoided
T2 B % 27 in our approach, by use of a series of parallel clipping planes

to assign each fin to a particular layer. Our allocation method
In summary, when creating the fins, we use the reference only needs to know the distances of these successive clipping
plane as a receiver to determine the size of the fins, and to planes from the light source plane. As the shadow fins are at-
assign weighty for fins. When computing théluminance tached to silhouette edges, we simply use the centre position

buffer, which is a per-fragment operation, we can obtain the of each silhouette edge to determine the layer for each fin.
exact receiver point of every fragment, and so the more ac-

curate weights from Equation 5 are used. The depth maps
belonging to thggenumbra mapstorel g, and are used here
to computeBg andB;.

We try to ensure an approximately equal number of sil-
houette edges in each layer to minimise the number of times
fins from the same layer may overlap each other. This is
done as follows. In light space, we first build a set of equally
spaced sub-layers, for example 1024 of them, and ultimately
3.5. Rendering the final image choose a final set of layers (for example 16 layers) from
these sub-layers in an unequally spaced way. We count the
number of silhouette edges in each sub-layer, and use these
counts to merge the sub-layers into the final layers.

Generating the final output image is accomplished by simply
multiplying the image without shadows by tiiliminance
bufferand then adding the ambient colour.

In general, overlaps will become less frequent as we in-
crease the number of layers. However, increasing the num-
ber of layers also increases the workload for the rendering
The single-layered algorithm is reasonably effective, but as pipeline. Therefore, we choose the number of layers to trade
mentioned before, it is not sophisticated enough to handle off accuracy with performance. Typically, we use 16 layers.
cases withseveraldifferent values of shadow status along
one ray of light. This will lead to errors if we only use one
layer to compute the relevant shadow. An example can be
seen later in Figure 7. The fins of the two-holed torus cast In the single-layered algorithm, we only compute dihe
shadows down onto the green plane, correctly. Butif we only minance bufferwhich is a map of shadow values from 0-1
use the weights from the two-holed torus to adjust the shad- representing how much each position is in shadow. In the
ows on the ground plane, we will get very obvious errors, multiple-layer algorithm, we compute an illuminance buffer
as the weights from the green plane should have been usedfor eachlayer.
instead.

4. Multi-layered algorithm

4.2. Computing the illuminance buffer

A simple implementation of this idea is to compute the in-
To tackle this problem, we now explain an improved ver- formation for each layer directly using the method described
sion of our algorithm, based on the userofltiple layers for the single-layered algorithm. However, because each fin
each parallel to the plane of the light source. This idea is sim- casts shadows on tipenumbra mapef all layers which are
ilar to that used by Soler and Sillion [SS98], although they below this fin, for each fragment, we in fact need to consider

(© The Eurographics Association and Blackwell Publishing 2005.

Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

light source’
-y L4
- \ L3
\ L1

Umbra
Penumbra

Lit

Figure 6: Incremental computation of illuminance buffer

not only the layer in which the fragment is located, but also
the layers above it. This will result in a complex calculation
when rendering the final image.

For efficiency, we do not compute tipenumbra mapef
each layer by considering all fins above it. Instead, we first
use the shadow fins belonging to the current layer to compute
the penumbra mapsand then combine this with thkbumi-
nance buffeiof the previous layersicrementally Thus, the
information in the illuminance buffer for each layer provides
the details of the shadows in that layer directly.

Combination of theélluminance bufferdelonging to two
layers is performed using the following rules according to
the region being considered in the current layer. The value
in theilluminance buffeiis taken as follows:

e Lit region: use the previous layer’s illuminance;

e Umbra region use this layer’s illuminance;

e Penumbra regionuse the minimum illuminance of the
two layers.

Consider Figure 6. Laydarshows thelluminance buffer
for the current layer, while layer— 1 shows it for the previ-
ous layer. The white region in both planes represents the lit

Figure 7: Comparison: (left) result of single-layer algo-
rithm; (right) result of multi-layer algorithm.

current layer inside penumbra regions, so illuminance val-
ues are combined with those from the previous layer: point
a gets its illuminance from layer, and pointb gets its il-
luminance from layei — 1. Pointsc andd are located on
the block, in umbra, so their illuminance values are both 0.
Pointse and f contain newly cast shadow information due
to the effect of the block shadowing tit8 layer.

We present performance data for this incremental ap-
proach and compare it to themoothiesmethod in Sec-
tion 7.1.

4.3. Rendering the final image

Because the computéliliminance bufferfor a given layer
gives the shadow situation for that layer directly, it is simple
to render the final image by multiplying these buffers with
the unshadowed scene image and then adding the ambient
colour. So, we render the scene layer by layer—triangles be-
longing to each layer are rendered using appropriate infor-
mation from that layer; clipping plane techniques are used
to select these triangles.

5. Implementation

We have implemented our algorithm using OpenGL, and
have used GPU hardware to accelerate the rendering
part. Finding silhouette edges and constructing shadow
fins are mainly done by the CPU, as are the allocation
computations (recording positions of the clipping planes)
in the multi-layer approach. Other operations are per-

area, the dark grey region represents the umbra area, and thdormed by the GPU. We usetRB_VERTEX_PROGR/&kd

light grey region represents the penumbra area.blbekis
representative of the shapes contained in the current layer.

We compute the weights for thgenumbra mapf the
block(in the current layer) first, and then combine the results
for theblockwith the previous layer'dluminance bufferin
Figure 6, rayd.,, Lo, andL3z intersect the currerit" layer
in the lit region, so we simply copy the illuminance value
from thei — 1" layer. Rayd.¢ andL; intersect the'" layer
inside the umbra because of the block, so values from the
previous layer are not used. Ralys and Ls intersect the

ARB_FRAGMENT_PROGRasMhe vertex shader and pixel
shader during rendering. When generating the inner and
outer weights, we us&XT_BLEND_MINMAXThe brute
force silhouette computation takes about 1/4 of the total
computation time. Using a quicker silhouette edge detection
algorithm could make a small improvement to the time taken
by our method.

We use OpenGlextra clip planedo rapidly partition the
sub-layers into several layers rather than using algorithmic
methods to sort or and split fins or scene triangles. Assuming

(© The Eurographics Association and Blackwell Publishing 2005.

Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

Figure 8: Shadow with large light: (left) our rendering re- ~ Figure 10: Shadows for nearby objects: (above left) ren-

sult; (right) ground truth. (Below): close-up.) dered by our method, (above right) rendered by 1024 point
light source sampling; (below) artifacts arising in our

method due to overlap.

Figure 9: Shadow with non-parallel receiver: (left) our ren-) : :)
dering result; (right) ground truth. (Below): close-up. Figure 11: Effects of shadow fin refinement: (left) without

refinement; (right) with refinement.

6. Results
that we have chosen to usdayers, then the number of tri-
angleg to be processed will be multipligdtimes. Note that
this extra processing is only done by the vertex shader—after
this step the clip plane stage produces a single layer for later
stages of processing. Thus, the pixel shader only processes a As noted earlier, Figure 7 shows a problem caused by us-
single layer, not layers, so the number of triangles handled ing the single layer version of the algorithm, where shadow
by the pixel shader using our algorithm is stilthis step is information goes through to the ground. It also shows the re-
rapid. it is important to note that in our approach, the vertex sult produced by the multi-layered version, where the light
shader is simple, while the pixel shader processing is com- is correctly blocked by the occluder. Indeed for more com-
plex, leading to a highly efficient algorithm overall. Thus, plex scenes, more layers are needed, and more time will be
while our algorithm is slower than a typical (hard) shadow taken for rendering. If insufficient layers are used, problems
map program, it still can achieve real-time performance. similar to those in Figure 7(left) will occur. In practice, all

For the tests described here, we used a Pentium 2.4GHz with
256Mb main memory and an ATI RADON 9800Pro graph-
ics card with 128Mb of memory.

(© The Eurographics Association and Blackwell Publishing 2005.

Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

Figure 12: Complex scenes, rendered using hard shadows, our method, and 1024 point light source sampling respectively.

scenes used for testing can be rendered well using no morearea where they nearly meet. However, thare obvious
than 16 layers. visible artifacts in the regions near the ends of the overlap

) . .) of their shadows. We discuss these cause of such artifacts in
Figure 8 is a scene to illustrate that our shadow algorithm g tion 7.2

is able to handle the case when the light source is large rel-

ative to the occluder. Figure 9 shows shadows generated for Figure 11 shows the improvements produced by the re-
a receiver not parallel to the light source plane; again good finement step of our method. After refinement (right), the
results are obtained. shadow falling on the green plane is more realistic.

Figure 10 shows shadows generated for two boxesinclose Figure 12 provides three sets of comparative results for
proximity. Note that there is no light leakage into the shadow complex models. In each case the three images compare

(© The Eurographics Association and Blackwell Publishing 2005.

Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

results produced using hard shadows, our method, and the
combination of hard shadows from 1024 point samples to
give a reference image. There are 24366, 8184, and 9135

triangles in the cannon scene, the helicopter scene, and the
playground scene respectively. These scenes can be dis-

played at 7, 15 and 14 frames per second respectively. All
were rendered using 16 layers.

7. Discussion

We now discuss various issues concerning our new algo-
rithm, in particular a comparison with [CDO03], aliasing aris-
ing in our method, and rendering complexity.

7.1. Comparison to smoothies

Our algorithm has many similarities to themoothies
method [CD03]—for example our outer fins are similar to
smoothies. Both start from Parlké®ft objectidea [PSS98],
and both combine Soler and Sillion’s [SS98] convolution ap-
proach.

However, there are important differences between their
method and ours:

e They only construcbutward primitives (smoothies) on
objects, omitting the inner penumbra, so they suffer from
umbra over-estimation. We create both inner fins and
outer fins on objects, which overcomes the umbra over-
estimation problem. However, we have to introduce multi-
ple layers to tackle complex cases involving inner penum-
bras.

They do not consider the effect of the size of the light
source when constructing smoothies, but instead use a sin-
gle global control parameter to vary the size of the shad-
ows. Poor choice of this parameter relative to the size

7.2. Shadow overlap aliasing

Given two adjacent objects, our algorithm does not leak light
(see Figure 10). However, theaee obvious visible artifacts

in the regions near the ends of the overlap of their shadows,
caused by improper handling of the shadow overlap case.

While in most cases usinmax and min operations to
combine shadows gives essentially correct results, in more
complex cases, addition may be required, as discussed in
Sections 3.3 and 3.4. In the particular case illustrated, the
artefacts occur in the hard shadows of the boxes where three
fins overlap: two inner quads and one outer quad (for sim-
plicity we ignore the fans here). Lej ands, indicate the
inner fins’ parameters, argd indicate the outer fin's param-
eter. In this case, they should be combined using

Sat+SH+S (6)

whereas our rules use
(7

This causes the computed shadow to be darker than the cor-
rect result. This happens because we consider inner fins and
outer fins separately in two passes. We have no simple an-
swer to this issue—we cannot perform the correct computa-
tion without modifying our two pass methodology. Further-
more, correctly identifying and processing all such special
cases would be very time consuming. However, in justifica-
tion of our approach, we note that in general scenes, such
cases are uncommon, and occupy relatively little area on the
screen.

min(sa, S) + Sc.

7.3. Shadow fin aliasing

of the light source leads to inappropriate shadows. Their Figure 4 shows shadow fin construction for silhouettes. For
shadows are not based on correct geometry, while ours most cases, it works very well. Where two silhouette edges

truly reflect the size of the light source. meet at a very sharp angle, the shadow fins constructed cause
aliasing as shown in Figure 13: there is a soft shadow dis-
tortion (see inside the blue circles). This is caused by the
structure of the shadow fins, and is a general problem for all
methods which construct additional primitives in this kind

of way. Clearly, the shadow intensity at the corner (the sharp
intersection point of two silhouettes) should be larger than
0.5, as more than half of the light can be seen from there.
The smaller the angle is, the larger the shadow illuminance
should be at the corner. However, as we place the ends of the
shadow quads (inner quads and outer quads) at the end point
of the silhouette edge, the maximum shadow illuminance in-
side the quads can be no greater than 0.5 (from Equation 1),
leading to a soft shadow discontinuity between the shadow
quads and the shadow fans; this problem will be larger with
sharper angles.

Our algorithm is more complex than trenoothiesap-
proach, and so takes more time. We construct twice as many
fins compared t@moothiesHowever, this does not greatly
affect the performance, because the number of silhouette
edges is insignificant compared to the total number of edges
in the scene. During vertex shader computations, our compu-
tation time is approximately times that used bgmoothies
our method uses layers, where each layer represents the
whole scene. During pixel shader computations, the num-
ber of triangles handled is about the same as the number in
the original scene (we have a few inner fins extra), while we
have two more operations to perform: combination and re-
finement. Because the pixel shader has a greater effect on
the efficiency of the algorithm than the vertex shader, our al-
gorithm overall takes about 3—4 times longer tsaroothies
When rendering the scenes in Figure 12, our algorithm can
dosoat7, 15 and 14 frames per second, wét@othiegan
do so at 25, 61 and 55 frames per second.

(© The Eurographics Association and Blackwell Publishing 2005.

One solution to this issue is to adjust the position of the
end point of the shadow quads in a manner proportional to
the size of the light, and to add another primitive between the

Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

Model Our algorithm ~ Shadow map method 1024 light samples
(Polygons) (fps) (fps) (fps)
984 33.12 350.0 1/1.765
1536 31.68 300.2 1/2.094
3516 29.12 200.6 1/4.688
6620 23.84 120.3 1/6.171
7172 19.36 95.21 1/7.031
9906 14.08 54.80 1/15.47

Table 1: Rendering speed (frames per second) for various models, using different algorithms.

‘¢4 ‘ 1 ln"‘

xa '36

Figure 13: Shadow fin aliasing for sharp angles. (Left) ren-
dered by our algorithm; (right) rendered by 1024 point light
source sampling.

e Shadow map generatio®ur method is a shadow map

based method. This part is very fast and its computation
time is independent of scene complexity.

e Silhouette edge detection and shadow fin construction
Like shadow volume methods, we have to detect silhou-
ette edges and construct fins as the scene dynamically
changes. For each silhouette edge, we only have to con-
struct two fins, and the number of silhouette edges is rela-
tive small compared to the total number of polygons. This
part is also fast, taking about 10% of the total rendering
time.

e Multiple layersThe more layers used, the longer the time
taken to render the scene. However, as explained in Sec-
tion 5, the main work of the shadow computation is exe-
cuted by the pixel shader, and this does not increase much
as the number of layers increases. Overall, for example,
when rendering a scene using 16 layers, the complexity
will be 3-4 times higher than when using a single layer,
which can still gives real-time performance.

8. Conclusions and future work

shadow quads and the fans. This will make shadow fins con- In this paper, we have provided a new algorithm to approxi-
struction and computation more complicated. Again, how- mate soft shadows. Our method is based on creating shadow
ever, in many real scenes, such cases will be rare, and oc-fins, and uses an incremental multi-layer approach to shadow
cupy little screen area, and the extra complexity is probably computation. Our contribution has the following attributes:

not worthwhile.

7.4. Rendering complexity

Table 1 gives the rendering times for various dynamic

scenes, using our algorithm (16 layers), the shadow map

method, and 1024 light samples as ground truth. All shadow
maps used were of siZ2x 512 Given a fixed number of
layers, our algorithm exhibits nearly linear complexity in the
number of polygons, with a good fit to

t = 2269+ n/23872ms ©)

wheret is rendering time, and is the number of polygons
in the model.

In more detail, the rendering complexity of our algorithm
depends on the following factors:

e ltis afast soft-shadow method based on shadow maps; its

performance varies nearly linearly with scene complexity.

It generates approximate shadows based on accurate geo-
metric relations, leading to shadows of generally accurate
size and intensity in both umbra and penumbra areas.

e It uses an incremental method for penumbra map calcula-

tions, to keep rendering overheads low.
Various future work remains to be done:

Adaptive partitioningOur current implementation uses a
fixed number of partitioning layers, and uses the mid-
points of silhouette edges to assign them to layers. Layers
are selected to give layers of equal complexity. However,
adaptively determining the required number of layers, and
using a more sophisticated layer assignment algorithm,
should give better results.

(© The Eurographics Association and Blackwell Publishing 2005.

Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

e Shadow overlap artefact®vercoming shadow overlap
artefacts, or minimising their visual effects, requires fur-
ther study.

e Construction of findPresently, we use a simple method
to construct shadow fins, and we ignore overlaps of adja-
cent fins. More sophisticated geometric offsetting meth-
ods should be considered.

Acknowledgements

This work was supported by the Natural Science Founda-
tion of China (Project Number 60225016, 60321002), and
the National Basic Research Project of China (Project Num-
ber 2002CB312101). This work was done in Key Lab of Per-
vasive Computing, Ministry of Education, China.

References

[AAMO3] ASSARSSONU., AKENINE-MOLLER T.: A
geometry-based soft shadow volume algo-
rithm using graphics hardwareACM Com-
puter Graphics (Proc. of SIGGRAPH '03) 26

2 (2003), 511-520.

[ALO4] AILA T., LAINE S.: Alias-free shadow maps.
In Proceedings of Eurographics Symposium
on Rendering 20042004), Eurographics As-

sociation, pp. 161-166.

[AMAO2] AKENINE-MOLLER T., ASSARSSONU.: Ap-
proximate soft shadows on arbitrary surfaces
using penumbra wedge$2roceedings of the
2002 Eurographics Symposium on Rendering

(2002), 309-318.

[ARHMO00] AGRAWALA M., RAMAMOORTHI R.,
HEIRICH A., MoLL L.: Efficient image-
based methods for rendering soft shadows.
ACM Computer Graphics (Proc. of SIG-

GRAPH ’00)(2000), 375-384.

[BS02] BRABEC S., SIDEL H.-P.: Single sample
soft shadows using depth mapk Proceed-

ings of Graphics Interfac€002), 219-228.

[CDO03] CHAN E., DURAND F.: Rendering fake soft
shadows with smoothiesProceedings of the
2003 Eurographics Symposium on Rendering

(2003), 208-218.

[CPC84] Cook R. L., PORTER T., CARPENTERL.:
Distributed ray tracing. Computer Graphics

18, 3 (1984), 137-145.

[Cro77] Crow F. C: Shadow algorithms for com-
puter graphics. ACM Computer Graphics
(Proc. of SIGGRAPH '77) 112 (1977), 242—

248.

(© The Eurographics Association and Blackwell Publishing 2005.

[DF94]

[FFBGO1]

[Haio1]

[HBSO00]

[HDG99]

[Heio1]

[HH97]

[HLHSO03]

[PSS98]

[RSC87]

[SCHO3]

[SD02]

[SKS02]

DRETTAKIS G., HUME E.: A fast shadow al-
gorithm for area light sources using backpro-
jection. ACM Computer Graphics (Proc. of
SIGGRAPH '94)1994), 223-230.

FERNANDO R., FERNANDEZ S., BALA K.,
GREENBERGD. P.. Adaptive shadow maps.
ACM Computer Graphics (Proc. of SIG-
GRAPH '01)(2001), 387-390.

HAINES E.. Soft planar shadows using
plateaus. Journal of Graphics Tools ,61
(November 2001), 19-27.

HEIDRICH W., BRABEC S., EIDEL H.-P.
Soft shadow maps for linear light®roceed-
ings of the 2000 Eurographics Symposium on
Rendering2000), 269-280.

HART D., DUTRE P., GREENBERGD. P. Di-
rect illumination with lazy visibility evalua-
tion. ACM Computer Graphics (Proc. of SIG-
GRAPH '99)(August 1999), 157—154.

HEIDMANN T.: Real shadows, real timéxis
Universe(November 1991), 18:23-31. Sili-
con Graphics Inc.

HECKBERTP. S., HERF M.: Simulating soft
shadows with graphics hardwareCarnegie
Mellon University Tech. RepCMU-CS-97-
104 (January 1997).

HASENFRATZ J.-M., LAPIERRE M.,
HoLzsCHUCHN., SILLION F. X.: A survey
of real-time soft shadows algorithnSomput.
Graph. Forum 224 (2003), 753-774.

PARKER S., HIRLEY P., SwITsS B.: Single
sample soft shadowslniversity of Utah Tech.
Rep, TR UUCS-98-019 (October 1998).

REEVES W. T., SALESIN D. H., Cook
R. L. Rendering antialiased shadows with
depth mapsACM Computer Graphics (Proc.
of SIGGRAPH '87) 213 (July 1987), 283—
291.

SEN P., CAMMARANO M., HANRAHAN P..
Shadow silhouette maps.ACM Computer
Graphics (Proc. of SIGGRAPH '03) 223
(July 2003), 521-525.

STAMMINGER M., DRETTAKIS G.: Perspec-
tive shadow mapsACM Computer Graphics
(Proc. of SIGGRAPH '02) 213 (2002), 557—
562.

SLOAN P.-P., Kautz J., NYDER J.. Pre-
computed radiance transfer for real-time ren-
dering in dynamic, low-frequency lighting en-
vironments. ACM Computer Graphics (Proc.
of SIGGRAPH '02) 313 (2002), 527-536.

Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

[SKVW*92] SEGAL M., KOROBKIN C.,VAN WIDENFELT
R., FORAN J., HAEBERLI P. Fast shad-
ows and lighting effects using texture map-
ping. ACM Computer Graphics (Proc. of SIG-
GRAPH '92)(1992), 249-252.

[SRO0] STARK M. M., RIESENFELD R. F.: Exact
illumination in polygonal environments using
vertex tracing. Proceedings of the 2000 Eu-
rographics Symposium on Renderi(2000),
149-160.

[SS98] SoLER C., SLLION F. X.: Fast calcula-
tion of soft shadow texture using convolu-
tion. ACM Computer Graphics (Proc. of SIG-
GRAPH '98)(1998), 321-332.

[SUC95] SLATER M., USOH M., CHRYSANTHOU Y.:
The influence of dynamic shadows on pres-
ence in immersive virtual environments. 8-21.

[Wan00] WANGER L.: The effect of shadow qual-
ity on the perception of spatial relationships
in computer generated imagerin Proceed-
ings of Symposium on Interactive 3D Graph-
ics (2000), 39-42.

[WHO03] WYMAN C., HANSEN C.: Penumbra maps:
Approximate soft shadows in real-timéro-
ceedings of the 2003 Eurographics Sympo-
sium on Renderin(2003), 202—207.

[Wil78] WiLLIAMS L.: Casting curved shadows on
curved surfaces. ACM Computer Graphics
(Proc. of SIGGRAPH '78) 1,8 (1978), 270—
274,

[WPF90] WoO0 A., POULIN P., FOURNIERA.: A sur-
vey of shadow algorithms.|[EEE Computer
Graphics and Applications 1@ (November
1990), 13-32.

(© The Eurographics Association and Blackwell Publishing 2005.

