
Volume 0(1981), Number 0 pp. 1–14

Rendering Soft Shadows using Multi-layered Shadow Fins

Xiao-Hua Cai1, Yun-Tao Jia1, Xi Wang1, Shi-Min Hu1 and Ralph R. Martin2

1 Tsinghua University, Beijing, China
2 Cardiff University, United Kingdom

Abstract

Generating soft shadows in real-time is difficult. Exact methods (such as ray tracing, and multiple light source
simulation) are too slow, while approximate methods often over-estimate the umbra regions. In this paper, we
introduce a new algorithm based on the shadow map method to quickly and accurately render soft shadows pro-
duced by a light source. Our method builds inner and outer translucent fins on objects to represent the penumbra
area inside and outside hard shadows respectively. The fins are traced into multi-layered light space maps to
store illuminance adjustment to shadows. The viewing space illuminance buffer is then calculated using those
maps. Finally, by blending illuminance and shading, a scene with highly accurate soft shadow effects is produced.
Our method does not suffer from umbra over-estimation. Physical relations between light, objects, and shadows
demonstrate the soundness of our approach.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Genera-
tion: Bitmap and Frame Buffer Operations I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism:
Shading, Shadowing

1. Introduction

Shadows provide important cues to spatial relationships
in images, improving viewers’ understanding [SUC95], so
their computation has been widely studied. For interactive
requirements, two widely used methods are those ofshadow
volumes[Cro77] andshadow maps[Wil78]. The basic ideas
used by these approaches depend on point light sources only,
and thus they generatehard shadows. Further work has been
done to extend them to the generation of soft shadows, as we
will discuss shortly.

On the other hand, forsoftshadow rendering, various off-
line methods have been devised, such asdistributed ray trac-
ing [CPC84], lazy visibility evaluation[HDG99], andlight
source sampling[HH97]. However, computing accurate soft
shadows is time consuming, and is still hard to do in real
time.

Compared to the shadow volume method, the shadow
map method is simpler and faster, and is not so sensitive to
scene complexity. Thus, many methods based on this tech-
nology have been devised to approximate soft shadows, such
asplateaus[Hai01], penumbra maps[WH03], andsmooth-

ies[CD03]. Although these methods have high performance,
their results suffer from an umbra over-estimation problem,
and can produce results far removed from reality. This prob-
lem becomes particularly evident when the light sources are
of large extent. In this paper, we introduce a new algorithm
based on the shadow map method to properly render soft
shadows quickly. Our approach does not suffer from the
umbra over-estimation problem. Furthermore, its computa-
tions are based on realistic physical relations between light,
objects and shadows. Our approach assumes that the light
source lies within a plane.

In Figure 1 compare images of the same scene generated
using several methods. From left to right, the methods used
arehard shadows, thesmoothiesmethod [CD03], our new
method, and asamplingmethod (which combines hard shad-
ows from 1024 point samples of the light source); the latter
is used as a reference image.

As in the approaches of [WH03] and [CD03], our main
idea is to initially construct additional external planar geo-
metric primitives (calledshadow fins, see Figure 4) attached
to silhouette edges, and then generate shadows by consid-
ering the scene including the information from these fins.

c© The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.



Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

Figure 1: Shadows produced by: hard shadows, smoothies, our new method, 1024 point sampling method.

light

source

eye

a

b

c

Plane 1

Plane 2

Plane 3

Figure 2: Multiple objects along one beam of light

Our method differs in that previous methods only used out-
ward projecting fins, allowing them to take the outer penum-
bra into account, whereas we use fins which extend both in-
wards and outwards from the silhouette edges to simulate the
penumbra area inside and outside hard shadows respectively.

The size of these primitives is based on geometric rela-
tions between the light source, the shadow casters, and the
receivers. We accumulate the contributions due to these fins,
per-pixel, into illuminance intensities in screen space, and
then blend them with the corresponding shading values to
obtain a final image with highly accurate soft shadows.

However, taking the inner penumbra into account is much
more complicated here than in the cases handled by existing
soft shadow methods based on the shadow map approach.
This is becauseseveraldifferent shadow states may need
to be taken into account corresponding to a single beam of
light, while a shadow map only stores asinglevalue. Con-
sider Figure 2. Pointsa, b andc on receiver planes 1, 2 and
3 correspond to one ray of light. A single stored value can
only represent information from one of them, preventing soft
shadows for such points from being rendered correctly.

To avoid this problem, we use amultiple layerapproach,
which partitions the constructed fins into multiple planar lay-
ers. These layers are parallel to the plane of the light source,
and the extruded fins are then rendered into a penumbra map
for each layer, which includes both depth and weight infor-
mation (see Figure 3, left). Because each fin affects all lay-
ers below it, a given fin may need to be rendered several
times during the whole algorithm. In order to avoid doing
so explicitly, for efficiency, we implement this process in an
accumulative manner—the penumbra map for each layer is
calculated by combining information from the previous layer
with the penumbra effects of any fins between these two lay-
ers. In this way, the complexity can be dramatically reduced.

In summary, the main advantages of our new soft-shadow
approach are as follows:

1. It is a fast method based on shadow maps; its perfor-
mance varies nearly linearly with scene complexity.

2. It generates shadows based on realistic physical relations,
providing highly accurate sizes and shading for umbra
and penumbra areas.

3. It uses an incremental method for penumbra map calcu-
lation, leading to real-time performance.

The next Section discusses related work, and overviews
our approach. Section 3 explains the concepts in the con-
text of a single-layered algorithm, then Section 4 gives our
multi-layered algorithm. Section 5 discusses implementation
issues, Section 6 gives some results, and Section 7 discusses
them. Finally, we give our conclusions.

2. Previous work

Computation of shadows has a rich literature. Surveys such
as those by Woo et al. [WPF90] and more lately Hansefratz
et al. [HLHS03] discuss a wide range of methods.

Real-time computation of hard shadows is normally done
using one of two basic methods:shadow volumes[Cro77]

c© The Eurographics Association and Blackwell Publishing 2005.



Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

or shadow maps[Wil78]. The shadow volume method con-
structs faces perpendicular to the light direction on silhou-
ette edges. By counting the numbers of front and back faces
which are traversed by any line of sight from the light source,
one can decide whether the final receiver of the light is or is
not inside the shadow region. Heidmann [Hei91] presented
a hardware-based version of the method in 1991. The main
drawback of the shadow volume method is its high sensitiv-
ity to geometric complexity of the scene.

The shadow map method renders objects using the light
source as a view point to initially generate a depth map
(the shadow map). As it proceeds, it compares the depth
value of each fragment of the scene to the stored value
in the shadow map to decide whether it is in shadow. Se-
gal et al. [SKvW∗92] gave a hardware accelerated algo-
rithm for this approach in 1992. The main problem when
using shadow maps is sampling aliasing which occurs at the
edges of shadows.Adaptive shadow maps[FFBG01], per-
spective shadows[SD02],shadow silhouette maps[SCH03]
andalias-free shadow maps[AL04] help to overcome this
aliasing problem, but they all still generate hard shadows.

To produce accuratesoft shadows, the computation is
very costly. To overcome this, much work has been done
on approximate approaches, such aslayered depth im-
ages[ARHM00], vertex tracing[SR00], variousback pro-
jection techniques [DF94], and so on. Soler and Sil-
lion [SS98] introduced a method based on convolution in im-
age space. In an ideal situation for their method, the light, the
occluders, and the receivers lie on parallel planes, in which
case they obtain good results. For other arrangements, they
try to control the error. However, this method renders the
scene layer by layer in such a way that it cannot cast shad-
ows from a single object onto itself. (Our method also uses
layers, but in a different way, so we do not suffer from this
problem.) Such methods are too slow for real-time appli-
cations. Sloan et al. [SKS02] gave a sampling method for
a low-spatial-frequency approximation of the lighting envi-
ronment. This method can render objects and generate soft
shadows in real-time, but it needs a lengthy precomputation
to determine radiance transfer between objects, and cannot
handle shadows in dynamic scenes where objects are chang-
ing. Furthermore, when the light sources degenerate to a sin-
gle point source, the resulting shadow looks too soft.

Akenine-Möller et al. [AMA02] extended the shadow vol-
ume method to handle soft shadows. They replaced the tradi-
tional shadow volume with a four-faced penumbra wedge on
silhouette edges, and computed every covered fragment to
generate soft shadows. However, this method can only han-
dle simple cases of silhouette edges as occluders. Because
neighbouring faces of wedges can share side planes, their
method suffers from a robustness problem when construct-
ing wedges. They improved this method in [AAM03], where
the wedges for the silhouette edges are now independent
and a precomputed four-dimensional texture is used to rep-

resent light visibility factors. This no longer suffers from the
robustness problem, has enhanced performance, and works
for any kind of light source. However, they need to con-
struct wedges and compute every fragment covered by each
wedge, so their method requires a high rate of data transfer
between the CPU and graphics processor (GPU).

There are many methods based on the shadow map tech-
nique. Reeves et al. [RSC87] give a subsampling technique
for blurring the shadow map. However, it only improves
the blurring effect at the edges of the original hard shad-
ows, and does not produce real soft shadows. Heidrich et
al. [HBS00] handle linear light sources by considering their
two end points, but their method does not achieve real-time
performance. Braded and Seidel [BS02] extended the idea to
handle area sources using simple sampling, but this method
cannot produce self-shadows and seems only suitable for
low-resolution shadow maps.

Combining the ideas of shadow maps and shadow vol-
umes, Haines presented theplateau method[Hai01], which
renders the soft shadow as a texture. It uses hard shadows to
initially approximate the umbra, then constructs cones (from
terminal points of silhouette edges down to the receivers)
and sheets (connecting neighbouring cones). Attenuation is
controlled by these primitives when light is cast to generate
the penumbra. However, by only taking into account the dis-
tances from casters to the receiver, and not the size and the
position of the light source, the penumbra generated is not
physically accurate. Moreover, the receivers are restricted to
being planar.

Wyman and Hansen [WH03] introduced thepenumbra
mapmethod based on plateaus. They also construct cones
and sheets, and render them as a texture. Because they take
the light source size and spatial configuration of silhouette
edges into account, as well as computing various refinements
at the fragment determination stage, they do not have the
planar receiver limitation. Furthermore, the penumbra they
generate is more physically accurate.

Chan et al.’s method [CD03] is similar to the previous one.
It uses hard shadows to approximate the umbra as above, and
then attaches geometry primitives, calledsmoothies, com-
prising rectangles and corner pieces, to silhouette edges. By
rendering such geometry, they generate the penumbra too.
However, this method only considers the spatial configura-
tion of silhouette edges, not the size of the light source and
its direction, so it produces fake penumbras. Instead of tak-
ing into account details of the light source, it uses a single
global parameter to control the size of the smoothies to sim-
ulate the effect of changes in size of the light source.

The last three methods: plateaus, penumbra maps, and
smoothies, are all real-time approaches. However, because
they use a hard shadow to approximate the umbra, then gen-
erate the penumbra only outside the umbra, all three over-
estimate the umbra, and cannot generate the shrinking effect

c© The Eurographics Association and Blackwell Publishing 2005.



Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

Shadow Map

Inner Penumbra Map

Outer Penumbra Map

Illuminance Buffer Shading Buffer

Rendering Result

Figure 3: The single-layered method. Left (light space): depths and weights of the shadow map, inner penumbra map, and outer
penumbra map. Top right (screen space): illuminance buffer and shading buffer. Bottom right (screen space): resulting image.

seen with a real penumbra. Thus, they all generate quite un-
realistic soft shadows. If the light source is large, the poor
results are evident.

One final method, based on ray tracing, by Parker et
al. [PSS98], deserves to be mentioned here. They propose
the concept ofsoft-edge objects, whereby objects are shrunk
or magnified to approximately produce soft shadows. The
amount of shrinking or magnification is decided by the size
of the light source and the position of the silhouette of the
object, so it is basically physically accurate. But in order to
prevent light leakage between two objects which are placed
in contact or close together (due to shrinkage [PSS98]), in
practice, objects cannot be shrunk. This leads to this method
over-estimating the umbra too, failing to simulate the smaller
umbra when a penumbra is present. Furthermore, ray tracing
is not suitable for real-time processing of large models.

Overall, although many methods have been devised for
soft shadow generation, current approaches lack the abil-
ity to produce physically realistic results in real-time. Our
approach uses shadow fins and a multi-layered approach to
produce approximate shadows of high quality quickly.

3. Single-layered algorithm

In this section, we first explain some basic ideas using a
single-layeredalgorithm, upon which ourmulti-layeredal-
gorithm is built.

The shape of the light source is assumed to be planar and
circular in our approach. This is not as serious a restriction
as it sounds: it is difficult for people to tell the shape of a
light source from the shapes of soft shadows [Wan00]. We
do so as such a shape makes it easier for us to solve the
problem. We use the centre of the light source to generate
hard shadows, and all silhouettes are computed relative to
this point.

The dataflow of our single-layered algorithm is shown in
Figure 3 (from left, to top right, to bottom right). The algo-
rithm has five steps which are carried out in object space,
then light space, and finally, image space:

• In object space:

– construct inner and outer shadow fins from geometric
primitives, and compute weights associated with each

• In light space:

– render the shadow map

c© The Eurographics Association and Blackwell Publishing 2005.



Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

A

B

silhouette edge

outer fins

inner fins

outer quads

outer fans

inner fans

inner quads

Figure 4: Inner and outer fins

– render inner and outer penumbra maps

• In screen space:

– compute the illuminance buffer from the above maps;
compute the shading buffer

– render the final image

See Figure 3. Firstly, we compute the depths and weights
for the shadow map, the inner penumbra map and the outer
penumbra map. These 3 map images are generated with re-
spect to the centre of the light source. Then, with respect to
the eye point, we combine these maps into anilluminance
buffer. Lastly we take the shading of the scene into account,
to generate the final image with soft shadows.

3.1. Constructing shadow fins

Following the idea ofsoft-edged objectsfrom [PSS98], we
attach inward and outward planar geometric primitives to
the silhouette edges of objects, to enable computation of the
penumbra (see Figure 4). We call theseinner finsandouter
finsrespectively.

Assuming, the object is facetted,silhouetteedges are
those edges which belong to two faces, one facing towards
the light, and the other facing away. There are many silhou-
ette detection algorithms, but we simply use a brute force
approach, considering all edges and marking the silhouette
edges.

The inner and outer fins consist of quadrilaterals and fans.
Given a silhouette edge, lines are drawn outwards and in-
wards from the vertices at each end; these lines are per-
pendicular to the edge, lying in a plane parallel to the light
source plane. The two inner vertices and the ones from the
original edge form an inner quad, while the outer vertices
and the original ones form an outer quad. Inner fans and
outer fans forming circular sectors are added to connect in-
ner and outer quads as necessary, as shown in Figure 4.

The size of the fins must depend on the location of the

receiverwhere light ultimately falls in the scene after going
past a silhouette edge. Because we do not yet have informa-
tion about where the receivers are, we use a reference plane
as a substitute. In practice, we use thefar planeof the frus-
tum viewed from the light source. In a later step, we use a
refinement mechanism to improve the result computed using
the reference plane, as will be explained in Section 3.4.

As can be seen in Figure 4, adjacent fins may overlap. We
accept such cases and skip the complex computations needed
to trim the fins. Instead, we control the effects computed for
each fin later in such a way as to ensure a smooth variation
of shadow corresponding to the overlap region.

If more than two silhouette edges meet at a vertex, we
use Chan’s suggestion in [CD03] to handle this special case.
First, we average the adjacent face normals to obtain a shared
vertex normaln whose projection in the screen space of the
light source has lengthl . Then we draw triangles that con-
nectn with each of the adjacent shadow fin edges.

3.2. Rendering the shadow map

We now build a shadow map by projection from the centre
of the light source—this gives the hard shadow. This is done
in a standard way, as described in [Wil78].

3.3. Rendering penumbra maps

Next, still starting from the centre of the light source, we
compute the penumbra maps of the inner and outer fins
which are used to simulate soft shadows.

Eachpenumbra map(inner or outer) is a combination of a
depth map and a weight map, as shown in Figure 3—on the
left side of each penumbra map is the depth map, while the
right side shows the weight map. The depth map contains
depth values of the appropriate (inner or outer) fins relative
to the light source and is used later for soft shadow refine-
ment. The weight map contains values used to simulate the
effects of soft shadows, computed as follows.

The inner fins and outer fins of each silhouette edge are
treated in a similar way, except that outer fins are used to
add shadow, and inner fins are used to remove shadow, rela-
tive to the existing hard shadow. A smoothly varying shadow
strength weight is used varying from 0.5 at the silhouette
edge to 0 at the edge of the fin. The weights indicate the
magnitudeof illuminance adjustment (made to the shadows)
at that point of the fin, thesign is decided by whether the fin
is an inner fin or outer fin. Thus the weight is

s= 0.5(1− t) (1)

wheret is the fractional distance of the point from the sil-
houette edge (or vertex for fan) to the edge of the fin.

When producing the weight maps, if multiple fins over-
lap, we need to define special rules to combine the weights

c© The Eurographics Association and Blackwell Publishing 2005.



Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

from the multiple fins. As pointed out by Park [PSS98], over-
lapping shadows require three types of computation: addi-
tion, multiplication, and thresholding. However, distinguish-
ing these cases and treating them correctly is difficult. In-
stead, we use approximate rules based on thresholding:

• for inner fins, use the minimum of their individual
weights,

• for outer fins, use the maximum of their individual
weights.

While ignoring fins inside hard shadows leads to errors,
we overcome this problem to some extent by using multi-
ple layers in our improved algorithm, which we describe in
Section 4.

3.4. Computing the illuminance buffer

In this step, the depth and weight parts of theshadow map,
and the inner and the outerpenumbra maps, are combined
to give anilluminance buffer, whose values represent how
much each part is illuminated. Unlike earlier computations,
this buffer is generated with respect to the eye point, not with
respect to the light source; its size is the same as the output
screen resolution.

Viewed from the eye point, firstly, we classify all screen
fragments into two categories: shadow regions (from which
the light sourcecannotbe seen) and lit regions (from which
the light sourcecan be seen), by comparing their depths to
the value stored in the depth map of ourshadow map(just as
in the originalshadow mapmethod), but here we assign 0 to
the hard shadow region and 1 to the lit region.

Then, for each screen fragment, the corresponding values
in the weight maps of the inner and outerpenumbra mapsare
used to make adjustments for that fragment. Because inner
fins remove shadow and outer fins add shadow, we adjust the
shadow value as follows:

• for inner fins, we add its (refined—see below) weight;
• for outer fins, we subtract its (refined) weight.

If a fragment has weights corresponding to both inner fins
and outer fins, this means the different fins overlap, and we
simply apply their individual effects to ensure that no light
leakage occurs, as illustrated later in Figure 10. However,
this approximation introduces some artifacts which can be
seen in that example; these will be discussed in Section 7.2.

The result of this step is a map from the eye point, storing
real values in the range 0 to 1, representing how much each
part is in shadow.

In practice, the simple idea above is modified slightly
to produce improved results. Before accumulation of the
values in the penumbra maps, werefine them to satisfy
more accurately the geometric relations between shadows,
the light source, and silhouette edges. When the fins were
constructed, we did not know the position of the receiver

light source

Actual receiver

Reference receiver

Blocker

L0

Lr

Lb

Bt

Br

B0

Figure 5: Refining shadow values

upon which light would fall during rendering, so for each
silhouette edge, we used an arbitrary size for the width of the
fins, computed using a reference receiver plane, as suggested
by [WH03]. This reference plane is the far plane of the view-
ing frustum with respect to the centre of the light source.
When computing theilluminance buffer, we now have ac-
tual depth information available about the real receiver, so
we can recompute the results with more accurate fin widths
to produce a more accurate shadow value.

Furthermore, real shadows do not fall off linearly, and
they can be better modelled using a Bernstein inter-
polant [Hai01]. This correction is also performed as the
penumbra maps are used.

For an actual receiver plane, the size of each fin can be
computed using the following equation (see [PSS98]):

Br =
(Dr −Db)R

Dr
. (2)

Br is the size of the fin corresponding to the receiverr, Dr

is the distance from the centre of the light to the receiver
point, Db is the distance from the centre of the light to the
silhouette edge of the shadow caster, andR is the radius of
the light source.

Because the (planar) fins are parallel to the light source
plane, if the receiver is a plane parallel to the light source
too, then Equation 2 can be rewritten as

Br =
(Lr −Lb)R

Lr
(3)

whereLr is the distance from the light source plane to the
receiver plane andLb is the distance from the light source
plane to the fin plane.

Let Bt be the distance from the intersect point of the fin

c© The Eurographics Association and Blackwell Publishing 2005.



Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

and one ray of light to the silhouette edge of that fin. Then
the fractional distance isBt/Br . Substituting the value oft
from Equation 1, we get

sr =
1− tr

2
=

Br −Bt

2Br
(4)

wheresr is the weight corresponding to the actual receiver.

Consider Figure 5. We wish to determine the weightsr

for the actual receiver, but we have the weights0 for the
reference receiver before refinement, where the subscript0
denotes the value for the reference plane. We can make the
adjustment using:

s0 = (1− t0)/2 = (B0−Bt)/2B0,

sr = (1− tr )/2 = (Br −Bt)/2Br

where

B0 =
(L0−Lb)R

L0
, Br =

(Lr −Lb)R
Lr

.

So,

sr =
1
2

+
B0

Br
(s0− 1

2
). (5)

In summary, when creating the fins, we use the reference
plane as a receiver to determine the size of the fins, and to
assign weights0 for fins. When computing theilluminance
buffer, which is a per-fragment operation, we can obtain the
exact receiver point of every fragment, and so the more ac-
curate weightsr from Equation 5 are used. The depth maps
belonging to thepenumbra mapsstoreL0, and are used here
to computeB0 andBr .

3.5. Rendering the final image

Generating the final output image is accomplished by simply
multiplying the image without shadows by theilluminance
bufferand then adding the ambient colour.

4. Multi-layered algorithm

The single-layered algorithm is reasonably effective, but as
mentioned before, it is not sophisticated enough to handle
cases withseveraldifferent values of shadow status along
one ray of light. This will lead to errors if we only use one
layer to compute the relevant shadow. An example can be
seen later in Figure 7. The fins of the two-holed torus cast
shadows down onto the green plane, correctly. But if we only
use the weights from the two-holed torus to adjust the shad-
ows on the ground plane, we will get very obvious errors,
as the weights from the green plane should have been used
instead.

To tackle this problem, we now explain an improved ver-
sion of our algorithm, based on the use ofmultiple layers,
each parallel to the plane of the light source. This idea is sim-
ilar to that used by Soler and Sillion [SS98], although they

used a convolution method which performed computations
in light space. Instead, we use ashadow mapand construct
fins, which can be seen as performing convolution in object
space.

Unlike the single-layered algorithm, themulti-layered al-
gorithmneeds to allocate inner and outer fins into appropri-
ate layers to eliminate overlap cases. Then, we generate the
illuminance bufferfor each layer in an incremental manner,
from near to far in the light space.

Following the discussion above, we again consider three
steps of the revised algorithm in turn:layering shadow fins,
computing theilluminance buffer, and rendering the final
image.

4.1. Layering shadow fins

We create shadow fins using the same method as in the
single-layered algorithm, and a small number of extra op-
erations are used to allocate the fins to layers.

Sorting or splitting operations on shadow fins are avoided
in our approach, by use of a series of parallel clipping planes
to assign each fin to a particular layer. Our allocation method
only needs to know the distances of these successive clipping
planes from the light source plane. As the shadow fins are at-
tached to silhouette edges, we simply use the centre position
of each silhouette edge to determine the layer for each fin.

We try to ensure an approximately equal number of sil-
houette edges in each layer to minimise the number of times
fins from the same layer may overlap each other. This is
done as follows. In light space, we first build a set of equally
spaced sub-layers, for example 1024 of them, and ultimately
choose a final set of layers (for example 16 layers) from
these sub-layers in an unequally spaced way. We count the
number of silhouette edges in each sub-layer, and use these
counts to merge the sub-layers into the final layers.

In general, overlaps will become less frequent as we in-
crease the number of layers. However, increasing the num-
ber of layers also increases the workload for the rendering
pipeline. Therefore, we choose the number of layers to trade
off accuracy with performance. Typically, we use 16 layers.

4.2. Computing the illuminance buffer

In the single-layered algorithm, we only compute oneillu-
minance buffer, which is a map of shadow values from 0–1
representing how much each position is in shadow. In the
multiple-layer algorithm, we compute an illuminance buffer
for eachlayer.

A simple implementation of this idea is to compute the in-
formation for each layer directly using the method described
for the single-layered algorithm. However, because each fin
casts shadows on thepenumbra mapsof all layers which are
below this fin, for each fragment, we in fact need to consider

c© The Eurographics Association and Blackwell Publishing 2005.



Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

light source

layer i

 L4
 L3
 L2

f

Lit

block

d a

c

e

b

layer i-1

 L1

Umbra

Penumbra

 L5 
 L6 
 L7

Figure 6: Incremental computation of illuminance buffer

not only the layer in which the fragment is located, but also
the layers above it. This will result in a complex calculation
when rendering the final image.

For efficiency, we do not compute thepenumbra mapsof
each layer by considering all fins above it. Instead, we first
use the shadow fins belonging to the current layer to compute
thepenumbra maps, and then combine this with theillumi-
nance bufferof the previous layersincrementally. Thus, the
information in the illuminance buffer for each layer provides
the details of the shadows in that layer directly.

Combination of theilluminance buffersbelonging to two
layers is performed using the following rules according to
the region being considered in the current layer. The value
in the illuminance bufferis taken as follows:

• Lit region: use the previous layer’s illuminance;
• Umbra region: use this layer’s illuminance;
• Penumbra region: use the minimum illuminance of the

two layers.

Consider Figure 6. Layeri shows theilluminance buffer
for the current layer, while layeri−1 shows it for the previ-
ous layer. The white region in both planes represents the lit
area, the dark grey region represents the umbra area, and the
light grey region represents the penumbra area. Theblock is
representative of the shapes contained in the current layer.

We compute the weights for thepenumbra mapof the
block(in the current layer) first, and then combine the results
for theblockwith the previous layer’silluminance buffer. In
Figure 6, raysL1, L2, andL3 intersect the currentith layer
in the lit region, so we simply copy the illuminance value
from thei−1th layer. RaysL6 andL7 intersect theith layer
inside the umbra because of the block, so values from the
previous layer are not used. RaysL4 and L5 intersect the

Figure 7: Comparison: (left) result of single-layer algo-
rithm; (right) result of multi-layer algorithm.

current layer inside penumbra regions, so illuminance val-
ues are combined with those from the previous layer: point
a gets its illuminance from layeri, and pointb gets its il-
luminance from layeri − 1. Pointsc and d are located on
the block, in umbra, so their illuminance values are both 0.
Pointse and f contain newly cast shadow information due
to the effect of the block shadowing theith layer.

We present performance data for this incremental ap-
proach and compare it to thesmoothiesmethod in Sec-
tion 7.1.

4.3. Rendering the final image

Because the computedilluminance bufferfor a given layer
gives the shadow situation for that layer directly, it is simple
to render the final image by multiplying these buffers with
the unshadowed scene image and then adding the ambient
colour. So, we render the scene layer by layer—triangles be-
longing to each layer are rendered using appropriate infor-
mation from that layer; clipping plane techniques are used
to select these triangles.

5. Implementation

We have implemented our algorithm using OpenGL, and
have used GPU hardware to accelerate the rendering
part. Finding silhouette edges and constructing shadow
fins are mainly done by the CPU, as are the allocation
computations (recording positions of the clipping planes)
in the multi-layer approach. Other operations are per-
formed by the GPU. We useARB_VERTEX_PROGRAMand
ARB_FRAGMENT_PROGRAMas the vertex shader and pixel
shader during rendering. When generating the inner and
outer weights, we useEXT_BLEND_MINMAX. The brute
force silhouette computation takes about 1/4 of the total
computation time. Using a quicker silhouette edge detection
algorithm could make a small improvement to the time taken
by our method.

We use OpenGLextra clip planesto rapidly partition the
sub-layers into several layers rather than using algorithmic
methods to sort or and split fins or scene triangles. Assuming

c© The Eurographics Association and Blackwell Publishing 2005.



Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

Figure 8: Shadow with large light: (left) our rendering re-
sult; (right) ground truth. (Below): close-up.)

Figure 9: Shadow with non-parallel receiver: (left) our ren-
dering result; (right) ground truth. (Below): close-up.

that we have chosen to usen layers, then the number of tri-
anglest to be processed will be multipliedn times. Note that
this extra processing is only done by the vertex shader—after
this step the clip plane stage produces a single layer for later
stages of processing. Thus, the pixel shader only processes a
single layer, notn layers, so the number of triangles handled
by the pixel shader using our algorithm is stillt: this step is
rapid. it is important to note that in our approach, the vertex
shader is simple, while the pixel shader processing is com-
plex, leading to a highly efficient algorithm overall. Thus,
while our algorithm is slower than a typical (hard) shadow
map program, it still can achieve real-time performance.

Figure 10: Shadows for nearby objects: (above left) ren-
dered by our method, (above right) rendered by 1024 point
light source sampling; (below) artifacts arising in our
method due to overlap.

Figure 11: Effects of shadow fin refinement: (left) without
refinement; (right) with refinement.

6. Results

For the tests described here, we used a Pentium 2.4GHz with
256Mb main memory and an ATI RADON 9800Pro graph-
ics card with 128Mb of memory.

As noted earlier, Figure 7 shows a problem caused by us-
ing the single layer version of the algorithm, where shadow
information goes through to the ground. It also shows the re-
sult produced by the multi-layered version, where the light
is correctly blocked by the occluder. Indeed for more com-
plex scenes, more layers are needed, and more time will be
taken for rendering. If insufficient layers are used, problems
similar to those in Figure 7(left) will occur. In practice, all

c© The Eurographics Association and Blackwell Publishing 2005.



Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

Figure 12: Complex scenes, rendered using hard shadows, our method, and 1024 point light source sampling respectively.

scenes used for testing can be rendered well using no more
than 16 layers.

Figure 8 is a scene to illustrate that our shadow algorithm
is able to handle the case when the light source is large rel-
ative to the occluder. Figure 9 shows shadows generated for
a receiver not parallel to the light source plane; again good
results are obtained.

Figure 10 shows shadows generated for two boxes in close
proximity. Note that there is no light leakage into the shadow

area where they nearly meet. However, thereare obvious
visible artifacts in the regions near the ends of the overlap
of their shadows. We discuss these cause of such artifacts in
Section 7.2.

Figure 11 shows the improvements produced by the re-
finement step of our method. After refinement (right), the
shadow falling on the green plane is more realistic.

Figure 12 provides three sets of comparative results for
complex models. In each case the three images compare

c© The Eurographics Association and Blackwell Publishing 2005.



Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

results produced using hard shadows, our method, and the
combination of hard shadows from 1024 point samples to
give a reference image. There are 24366, 8184, and 9135
triangles in the cannon scene, the helicopter scene, and the
playground scene respectively. These scenes can be dis-
played at 7, 15 and 14 frames per second respectively. All
were rendered using 16 layers.

7. Discussion

We now discuss various issues concerning our new algo-
rithm, in particular a comparison with [CD03], aliasing aris-
ing in our method, and rendering complexity.

7.1. Comparison to smoothies

Our algorithm has many similarities to thesmoothies
method [CD03]—for example our outer fins are similar to
smoothies. Both start from Park’ssoft objectidea [PSS98],
and both combine Soler and Sillion’s [SS98] convolution ap-
proach.

However, there are important differences between their
method and ours:

• They only constructoutward primitives (smoothies) on
objects, omitting the inner penumbra, so they suffer from
umbra over-estimation. We create both inner fins and
outer fins on objects, which overcomes the umbra over-
estimation problem. However, we have to introduce multi-
ple layers to tackle complex cases involving inner penum-
bras.

• They do not consider the effect of the size of the light
source when constructing smoothies, but instead use a sin-
gle global control parameter to vary the size of the shad-
ows. Poor choice of this parameter relative to the size
of the light source leads to inappropriate shadows. Their
shadows are not based on correct geometry, while ours
truly reflect the size of the light source.

Our algorithm is more complex than thesmoothiesap-
proach, and so takes more time. We construct twice as many
fins compared tosmoothies. However, this does not greatly
affect the performance, because the number of silhouette
edges is insignificant compared to the total number of edges
in the scene. During vertex shader computations, our compu-
tation time is approximatelyn times that used bysmoothies:
our method usesn layers, where each layer represents the
whole scene. During pixel shader computations, the num-
ber of triangles handled is about the same as the number in
the original scene (we have a few inner fins extra), while we
have two more operations to perform: combination and re-
finement. Because the pixel shader has a greater effect on
the efficiency of the algorithm than the vertex shader, our al-
gorithm overall takes about 3–4 times longer thansmoothies.
When rendering the scenes in Figure 12, our algorithm can
do so at 7, 15 and 14 frames per second, whilesmoothiescan
do so at 25, 61 and 55 frames per second.

7.2. Shadow overlap aliasing

Given two adjacent objects, our algorithm does not leak light
(see Figure 10). However, thereare obvious visible artifacts
in the regions near the ends of the overlap of their shadows,
caused by improper handling of the shadow overlap case.

While in most cases usingmax and min operations to
combine shadows gives essentially correct results, in more
complex cases, addition may be required, as discussed in
Sections 3.3 and 3.4. In the particular case illustrated, the
artefacts occur in the hard shadows of the boxes where three
fins overlap: two inner quads and one outer quad (for sim-
plicity we ignore the fans here). Letsa andsb indicate the
inner fins’ parameters, andsc indicate the outer fin’s param-
eter. In this case, they should be combined using

sa +sb +sc (6)

whereas our rules use

min(sa,sb)+sc. (7)

This causes the computed shadow to be darker than the cor-
rect result. This happens because we consider inner fins and
outer fins separately in two passes. We have no simple an-
swer to this issue—we cannot perform the correct computa-
tion without modifying our two pass methodology. Further-
more, correctly identifying and processing all such special
cases would be very time consuming. However, in justifica-
tion of our approach, we note that in general scenes, such
cases are uncommon, and occupy relatively little area on the
screen.

7.3. Shadow fin aliasing

Figure 4 shows shadow fin construction for silhouettes. For
most cases, it works very well. Where two silhouette edges
meet at a very sharp angle, the shadow fins constructed cause
aliasing as shown in Figure 13: there is a soft shadow dis-
tortion (see inside the blue circles). This is caused by the
structure of the shadow fins, and is a general problem for all
methods which construct additional primitives in this kind
of way. Clearly, the shadow intensity at the corner (the sharp
intersection point of two silhouettes) should be larger than
0.5, as more than half of the light can be seen from there.
The smaller the angle is, the larger the shadow illuminance
should be at the corner. However, as we place the ends of the
shadow quads (inner quads and outer quads) at the end point
of the silhouette edge, the maximum shadow illuminance in-
side the quads can be no greater than 0.5 (from Equation 1),
leading to a soft shadow discontinuity between the shadow
quads and the shadow fans; this problem will be larger with
sharper angles.

One solution to this issue is to adjust the position of the
end point of the shadow quads in a manner proportional to
the size of the light, and to add another primitive between the

c© The Eurographics Association and Blackwell Publishing 2005.



Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

Model Our algorithm Shadow map method 1024 light samples
(Polygons) (fps) (fps) (fps)

984 33.12 350.0 1/1.765
1536 31.68 300.2 1/2.094
3516 29.12 200.6 1/4.688
6620 23.84 120.3 1/6.171
7172 19.36 95.21 1/7.031
9906 14.08 54.80 1/15.47

Table 1: Rendering speed (frames per second) for various models, using different algorithms.

Figure 13: Shadow fin aliasing for sharp angles. (Left) ren-
dered by our algorithm; (right) rendered by 1024 point light
source sampling.

shadow quads and the fans. This will make shadow fins con-
struction and computation more complicated. Again, how-
ever, in many real scenes, such cases will be rare, and oc-
cupy little screen area, and the extra complexity is probably
not worthwhile.

7.4. Rendering complexity

Table 1 gives the rendering times for various dynamic
scenes, using our algorithm (16 layers), the shadow map
method, and 1024 light samples as ground truth. All shadow
maps used were of size512×512. Given a fixed number of
layers, our algorithm exhibits nearly linear complexity in the
number of polygons, with a good fit to

t = 22.69+n/238.72ms (8)

wheret is rendering time, andn is the number of polygons
in the model.

In more detail, the rendering complexity of our algorithm
depends on the following factors:

• Shadow map generationOur method is a shadow map
based method. This part is very fast and its computation
time is independent of scene complexity.

• Silhouette edge detection and shadow fin construction
Like shadow volume methods, we have to detect silhou-
ette edges and construct fins as the scene dynamically
changes. For each silhouette edge, we only have to con-
struct two fins, and the number of silhouette edges is rela-
tive small compared to the total number of polygons. This
part is also fast, taking about 10% of the total rendering
time.

• Multiple layersThe more layers used, the longer the time
taken to render the scene. However, as explained in Sec-
tion 5, the main work of the shadow computation is exe-
cuted by the pixel shader, and this does not increase much
as the number of layers increases. Overall, for example,
when rendering a scene using 16 layers, the complexity
will be 3-4 times higher than when using a single layer,
which can still gives real-time performance.

8. Conclusions and future work

In this paper, we have provided a new algorithm to approxi-
mate soft shadows. Our method is based on creating shadow
fins, and uses an incremental multi-layer approach to shadow
computation. Our contribution has the following attributes:

• It is a fast soft-shadow method based on shadow maps; its
performance varies nearly linearly with scene complexity.

• It generates approximate shadows based on accurate geo-
metric relations, leading to shadows of generally accurate
size and intensity in both umbra and penumbra areas.

• It uses an incremental method for penumbra map calcula-
tions, to keep rendering overheads low.

Various future work remains to be done:

• Adaptive partitioningOur current implementation uses a
fixed number of partitioning layers, and uses the mid-
points of silhouette edges to assign them to layers. Layers
are selected to give layers of equal complexity. However,
adaptively determining the required number of layers, and
using a more sophisticated layer assignment algorithm,
should give better results.

c© The Eurographics Association and Blackwell Publishing 2005.



Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

• Shadow overlap artefactsOvercoming shadow overlap
artefacts, or minimising their visual effects, requires fur-
ther study.

• Construction of finsPresently, we use a simple method
to construct shadow fins, and we ignore overlaps of adja-
cent fins. More sophisticated geometric offsetting meth-
ods should be considered.

Acknowledgements

This work was supported by the Natural Science Founda-
tion of China (Project Number 60225016, 60321002), and
the National Basic Research Project of China (Project Num-
ber 2002CB312101). This work was done in Key Lab of Per-
vasive Computing, Ministry of Education, China.

References

[AAM03] ASSARSSONU., AKENINE-MÖLLER T.: A
geometry-based soft shadow volume algo-
rithm using graphics hardware.ACM Com-
puter Graphics (Proc. of SIGGRAPH ’03) 26,
2 (2003), 511–520.

[AL04] A ILA T., LAINE S.: Alias-free shadow maps.
In Proceedings of Eurographics Symposium
on Rendering 2004(2004), Eurographics As-
sociation, pp. 161–166.

[AMA02] AKENINE-MÖLLER T., ASSARSSONU.: Ap-
proximate soft shadows on arbitrary surfaces
using penumbra wedges.Proceedings of the
2002 Eurographics Symposium on Rendering
(2002), 309–318.

[ARHM00] AGRAWALA M., RAMAMOORTHI R.,
HEIRICH A., MOLL L.: Efficient image-
based methods for rendering soft shadows.
ACM Computer Graphics (Proc. of SIG-
GRAPH ’00)(2000), 375–384.

[BS02] BRABEC S., SEIDEL H.-P.: Single sample
soft shadows using depth maps.In Proceed-
ings of Graphics Interface(2002), 219–228.

[CD03] CHAN E., DURAND F.: Rendering fake soft
shadows with smoothies.Proceedings of the
2003 Eurographics Symposium on Rendering
(2003), 208–218.

[CPC84] COOK R. L., PORTER T., CARPENTER L.:
Distributed ray tracing.Computer Graphics
18, 3 (1984), 137–145.

[Cro77] CROW F. C.: Shadow algorithms for com-
puter graphics. ACM Computer Graphics
(Proc. of SIGGRAPH ’77) 11, 2 (1977), 242–
248.

[DF94] DRETTAKIS G., FIUME E.: A fast shadow al-
gorithm for area light sources using backpro-
jection. ACM Computer Graphics (Proc. of
SIGGRAPH ’94)(1994), 223–230.

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K.,
GREENBERGD. P.: Adaptive shadow maps.
ACM Computer Graphics (Proc. of SIG-
GRAPH ’01)(2001), 387–390.

[Hai01] HAINES E.: Soft planar shadows using
plateaus. Journal of Graphics Tools 6, 1
(November 2001), 19–27.

[HBS00] HEIDRICH W., BRABEC S., SEIDEL H.-P.:
Soft shadow maps for linear lights.Proceed-
ings of the 2000 Eurographics Symposium on
Rendering(2000), 269–280.

[HDG99] HART D., DUTRÉ P., GREENBERGD. P.: Di-
rect illumination with lazy visibility evalua-
tion. ACM Computer Graphics (Proc. of SIG-
GRAPH ’99)(August 1999), 157–154.

[Hei91] HEIDMANN T.: Real shadows, real time.Iris
Universe(November 1991), 18:23–31. Sili-
con Graphics Inc.

[HH97] HECKBERT P. S., HERF M.: Simulating soft
shadows with graphics hardware.Carnegie
Mellon University Tech. Rep, CMU-CS-97-
104 (January 1997).

[HLHS03] HASENFRATZ J.-M., LAPIERRE M.,
HOLZSCHUCH N., SILLION F. X.: A survey
of real-time soft shadows algorithms.Comput.
Graph. Forum 22, 4 (2003), 753–774.

[PSS98] PARKER S., SHIRLEY P., SMITS B.: Single
sample soft shadows.University of Utah Tech.
Rep., TR UUCS-98-019 (October 1998).

[RSC87] REEVES W. T., SALESIN D. H., COOK

R. L.: Rendering antialiased shadows with
depth maps.ACM Computer Graphics (Proc.
of SIGGRAPH ’87) 21, 3 (July 1987), 283–
291.

[SCH03] SEN P., CAMMARANO M., HANRAHAN P.:
Shadow silhouette maps.ACM Computer
Graphics (Proc. of SIGGRAPH ’03) 22, 3
(July 2003), 521–525.

[SD02] STAMMINGER M., DRETTAKIS G.: Perspec-
tive shadow maps.ACM Computer Graphics
(Proc. of SIGGRAPH ’02) 21, 3 (2002), 557–
562.

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Pre-
computed radiance transfer for real-time ren-
dering in dynamic, low-frequency lighting en-
vironments.ACM Computer Graphics (Proc.
of SIGGRAPH ’02) 31, 3 (2002), 527–536.

c© The Eurographics Association and Blackwell Publishing 2005.



Cai, Jia, Wang, Hu, and Martin / Rendering Soft Shadows using Multi-layered Shadow Fins

[SKvW∗92] SEGAL M., KOROBKIN C., VAN WIDENFELT

R., FORAN J., HAEBERLI P.: Fast shad-
ows and lighting effects using texture map-
ping. ACM Computer Graphics (Proc. of SIG-
GRAPH ’92)(1992), 249–252.

[SR00] STARK M. M., RIESENFELD R. F.: Exact
illumination in polygonal environments using
vertex tracing. Proceedings of the 2000 Eu-
rographics Symposium on Rendering(2000),
149–160.

[SS98] SOLER C., SILLION F. X.: Fast calcula-
tion of soft shadow texture using convolu-
tion. ACM Computer Graphics (Proc. of SIG-
GRAPH ’98)(1998), 321–332.

[SUC95] SLATER M., USOH M., CHRYSANTHOU Y.:
The influence of dynamic shadows on pres-
ence in immersive virtual environments. 8–21.

[Wan00] WANGER L.: The effect of shadow qual-
ity on the perception of spatial relationships
in computer generated imagery.In Proceed-
ings of Symposium on Interactive 3D Graph-
ics (2000), 39–42.

[WH03] WYMAN C., HANSEN C.: Penumbra maps:
Approximate soft shadows in real-time.Pro-
ceedings of the 2003 Eurographics Sympo-
sium on Rendering(2003), 202–207.

[Wil78] WILLIAMS L.: Casting curved shadows on
curved surfaces. ACM Computer Graphics
(Proc. of SIGGRAPH ’78) 12, 3 (1978), 270–
274.

[WPF90] WOO A., POULIN P., FOURNIER A.: A sur-
vey of shadow algorithms.IEEE Computer
Graphics and Applications 10, 6 (November
1990), 13–32.

c© The Eurographics Association and Blackwell Publishing 2005.


