
A sweepline algorithm for Euclidean Voronoi diagram of circles

Li Jin a, Donguk Kim b, Lisen Mu a, Deok-Soo Kim c, Shi-Min Hu a,*

a Department of Computer Science and Technology, Tsinghua University, Beijing 100084, People’s Republic of China
b Voronoi Diagram Research Center, Hanyang University, Seoul 133-791, South Korea

c Department of Industrial Engineering, Hanyang University, Seoul 133-791, South Korea

Received 3 April 2005; received in revised form 2 October 2005; accepted 13 November 2005

Abstract

Presented in this paper is a sweepline algorithm to compute the Voronoi diagram of a set of circles in a two-dimensional Euclidean space. The

radii of the circles are non-negative and not necessarily equal. It is allowed that circles intersect each other, and a circle contains others.

The proposed algorithm constructs the correct Voronoi diagram as a sweepline moves on the plane from top to bottom. While moving on the

plane, the sweepline stops only at certain event points where the topology changes occur for the Voronoi diagram being constructed.

The worst-case time complexity of the proposed algorithm is O((nCm)log n), where n is the number of input circles, and m is the number of

intersection points among circles. As m can be O(n2), the presented algorithm is optimal with O(n2 log n) worst-case time complexity.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Euclidean Voronoi diagram; Circle; Sweepline; Event; Beach line.
1. Introduction

Suppose that a set of circles with non-negative different

radii is given in a two-dimensional Euclidean space. Circles are

allowed to be placed in arbitrary positions so that they may

intersect each other and a circle may even contain others.

Given a circle set, we assign every location in the plane to the

closest member in the circle set. Then, the set of locations

assigned to each circle forms a region called a Voronoi region,

and the set of these regions forms a tessellation of the plane

called the Voronoi diagram of the circle set. The distance

measure employed in this paper is the ordinary Euclidean

distance from the point on the circumference of a circle.

The Voronoi diagram of circles in the plane has various

applications for important geometric problems. The compu-

tation of minimum cable packing many electricity wires, which

is an NP-complete problem, is important for the design and

simulation of automobiles, especially at the early phase of the

design. The Voronoi diagram of circles has been used for the

design of a very efficient heuristic algorithm [18]. Finding

the geodesic, or the shortest path, among obstacles has been

also an important problem and a recent study extends the usual
0010-4485//$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cad.2005.11.001

* Corresponding author. Tel.: C86 10 62782052; fax: C86 10 62771138.

E-mail address: shimin@tsinghua.edu.cn (S.-M. Hu).
facetted obstacles to circular obstacles by taking advantage of

the proximity information provided by the Voronoi diagram of

disk obstacles [7]. The Voronoi diagram has been even used for

the simulation and mathematical modelling of the conductivity

of a composite material consisting of copper and tungsten [11].

We also want to mention here that the algorithm for the

Voronoi diagram of circles is the basis for one to compute the

Voronoi diagram of spheres in higher dimensions [4,8]. In 3D,

for example, the problem has various important applications in

Nano-Technology and Bio-Technology. For example, effi-

ciently analyzing the structural characteristics of proteins and

identifying docking sites for the design of new drugs require an

efficient representation of topology among atoms in the protein

and the Voronoi diagram has been accepted as the best

representation for these purposes [9,15].

There have been a few researches on this or related

problems. Lee and Drysdale [10] considered the problem of the

Voronoi diagram for a set of non-intersecting circles and

proposed an algorithm running in O(n log2 n) worst-case time,

where n is the number of circles. Sharir [16] reported an

algorithm with O(n log2 n) worst-case time complexity for the

Voronoi diagram of a circle set, where circles are allowed to

intersect. Fotrune [2] reported a sweepline algorithm for a more

generalized additively weighted Voronoi diagram in O(n log n)

worst-case time. Yap [19] reported another O(n log2 n)

algorithm which is based on the divide-and-conquer scheme.

Note that the Voronoi diagram of circles in a plane is a special

case of an additively weighted Voronoi diagram where the
Computer-Aided Design 38 (2006) 260–272
www.elsevier.com/locate/cad

http://www.elsevier.com/locate/cad


L. Jin et al. / Computer-Aided Design 38 (2006) 260–272 261
weights of points correspond to the radii of circles. Sugihara

[17] reported an approximation algorithm and its implemen-

tation by approximating each circle with a set of points on the

circle. After computing the Voronoi diagram of all points, the

superfluous Voronoi edges and vertices are removed to produce

an approximation for the desired Voronoi diagram. Recently,

Kim et al. [5,6] reported an edge-flipping algorithm, which

transforms the topological structure of point set Voronoi

diagram for the centers of circles to the correct Voronoi

diagram of circles. Even though the edge-flipping algorithm

runs in O(n2) in the worst-case, it is simple, yet powerful, to

implement for the correct Voronoi diagram.

In the previous researches, however, there is a one-to-one

correspondence between a complete circle and a Voronoi

region. In other words, a circle has a uniquely defined

corresponding Voronoi region. When two circles intersect,

therefore, the Voronoi edges are only defined exterior to both

circles or interior to both circles. The locations exterior to one

circle while interior to another are not considered in the

previous works.

In this paper, we discuss the problem in a more general

setting. We want to construct the correct Voronoi diagram

regardless how the circles intersect each other so that every

point in the plane is assigned to the closest point on all circles.

Hence, the relation between a circle and the related Voronoi

regions is one-to-many.

The basic idea used in the proposed algorithm in this paper

is the sweepline approach suggested by Fortune [2]. The

original sweepline algorithm for the point set Voronoi diagram

defines two types of events (a site event and a circle event) and

two types of curves in the plane (a sweepline and a beach line).

Events facilitate modifying the topology of Voronoi diagram

appropriately when a sweepline visits the event locations. In

our algorithm for the circle set, we consider two more types of

events: a cross event and a merge event. Similar to the original

algorithm by Fortune for a point set, our algorithm modifies the

topology of the Voronoi diagram of circles when a sweepline

visits each event locations. After all the events are processed

according to the specified rules to be discussed later, the

desired Voronoi diagram is correctly and efficiently obtained in

the plane.

The resulting Voronoi diagram in this paper forms a

tessellation of the plane into a set of exclusive regions where

each region corresponds to a circular arc or a circle. A region

contains an arc when the arc is obtained by dividing a circle at

intersecting points of the circle with others. Since n circles may

result into O(n2) arc segments in the worst-case, the problem

size of our algorithm is O(n2). It turns out that our sweepline

algorithm takes O(n2 log n) time in the worst-case to compute

the correct Voronoi diagram for all arcs. Considering the

quadratic problem size, our algorithm is optimal for n circles in

the plane.

This paper is organized as follows. In Section 2, the basic

concept of Fortune’s sweepline algorithm for the Voronoi

diagram of points in the plane is reviewed for the convenience

of presentation for our algorithm for circles. After providing

some terminologies in Section 3, we introduce four types of
events, which are the most fundamental building blocks in

Section 4. Then, we present the details of the main algorithm in

Section 5. Section 6 presents the analysis of the worst-case time

complexity and then the paper concludes.
2. Brief on Fortune’s algorithm for Voronoi diagram

of points

Fortune presented a sweepline algorithm, with O(n) space

and O(n log n) time complexity in the worst-case, for

computing the Voronoi diagram of points in the plane [1,2].

In his algorithm, the sweepline, the beach line, and events are

the most fundamental concepts. The sweepline is a horizontal

straight line moving from top to bottom of the plane. The beach

line, which is a set of consecutive parabola segments, splits the

plane into two regions: a safe region and an unsafe region. A

safe region contains a partial Voronoi diagram with a correctly

computed topological structure, and an unsafe region corre-

sponds to an undetermined part of the Voronoi diagram that has

to be computed later. At a certain point in the plane, there is a

well-defined set of actions that causes changes in the

topological structure of the Voronoi diagram. Note that the

point corresponds to a unique event and is called an event

location in this paper. Hence, a topology change occurs when

the sweepline visits an event location. Note that the beach line

is monotone with respect to the sweepline.

In Fortune’s algorithm, there are two types of events: a site

event which corresponds to a point site, and a circle event

which corresponds to the bottom-most point of the circle

passing through three point sites. When the sweepline visits the

location of a site event, the algorithm splits a parabola segment,

which corresponds to the site event, in the beach line into two

parts. Then, the algorithm inserts a new parabola segment

between the two splitted segments, and adds a new Voronoi

edge in the Voronoi diagram being constructed. When the

sweepline visits the location of a circle event, the algorithm

removes the corresponding parabola segment in the beach line,

adds a Voronoi vertex, and creates a new Voronoi edge in the

Voronoi diagram. At the location of each event, the algorithm

calculates new potential circle events and inserts them into an

event queue. After the sweepline visits the locations of all the

events in the event queue, the construction of the Voronoi

diagram is completed.

In Fortune’s paper, he also discussed the sweepline

algorithm to compute the Voronoi diagram of line segments

and weighted points. We find that the sweepline idea can be

applied to the construction of Voronoi diagram for circles in

the plane, because a beach line can be constructed and correctly

maintained while the sweepline moves in the plane.
3. Preliminaries

Let GZ{g1, g2, ., gn} be a set of generator circles giZ(ci,

ri) for the Voronoi diagram where ciZ(xi, yi) and ri are the

center and the radius of circle gi, respectively. It is allowed that

two circles intersect each other, and a circle contains others.



L. Jin et al. / Computer-Aided Design 38 (2006) 260–272262
Suppose that there are l non-intersecting circles among n

generator circles.

Let m be the number of intersection points among nKl

circles. If nKl intersecting circles in G are divided at m

intersection points, 2m circular arcs are obtained. For the

simplicity of discussion, we assume that no three-generator

circles intersect at the same point, and no four generator circles

have a common tangent circle. Note that mZ2
n

2

 !
in the

worst-case of lZ0.

Let SZ{s1, s2, ., slC2m} be the set of all sites defined from

G, where a site sj refers to either a complete circle which does

not intersect any others or an arc on a circle divided at

intersection points. Therefore, there are lC2m elements in the

set S. For a site s and an arbitrary point z in the plane, let ds(z)

be the shortest Euclidean distance between z and a point p2s.

Let ds(z) be the shortest Euclidean distance from z to the

nearest site s2S. Then, we assign a point z to the Voronoi

region of a site s if, and only if, ds(z)Zd(z). In other words, a

site s defines an exclusive Voronoi region VD(s). Then, the

Voronoi diagram of S, VD(S), is the collection of all such

Voronoi regions. In other words, VD(S)Z{VR(s1), VR(s2), .,

VR(slC2m)}. In this paper, we say that a point q majorizes a

point p when yp!yq or ypZyq and xp!xq, and denoted as p!q.

The topology of a Voronoi diagram in our problem can be

represented in a standard data structure such as a doubly

connected edge list [14], or equivalently in a winged-edge data

structure [12], as a graph of Voronoi vertices, edges, and

regions. While the equation of a Voronoi edge in the Voronoi

diagram for point set is linear, its counterpart in the Voronoi

diagram for circles is conic [6].

Shown in Fig. 1 are the entities (vertices, edges and regions

in the Voronoi diagram) involved in the proposed algorithm.

Let e be a Voronoi edge separating two Voronoi regions

VR(s1), and VR(s2), where {s1, s2}3S and si4gj2G. Note that

si is an arc on a circle gjZ(cj, rj). Then a point p on e satisfies

one of the following equations:
dðp; c1ÞKr1 Z dðp; c2ÞKr2O0; (1)
Fig. 1. Voronoi site, cell, vertex, and edge. g1 and g2 are circles, s11–s22 are arc

sites, and e1–e5 are Voronoi edges.
r1Kdðp; c1Þ Z r2 Kdðp; c2ÞO0; (2)

r1Kdðp; c1Þ Z dðp; c2ÞKr2O0; (3)

dðp; c1ÞKr1 Z r2 Kdðp; c2ÞO0; (4)

In Fig. 1, Eq. (1) applies to e1 and e3, and Eq. (2) applies to

e2. The Voronoi edges, or equivalently the bisectors, e4 and e5

are from Eqs. (3) and (4), respectively. Rearranging the above

system produces the follows: Eqs. (1) and (2) merge into an

equation as

dðp; c1ÞKdðp; c2Þ Z r1 Kr2 (5)

which corresponds to the case that the edge e is either interior

to both g1 and g2, or exterior to both circles. In this case, Eq. (5)

defines a hyperbola. Similarly, Eqs. (3) and (4) produce

dðp; c1ÞCdðp; c2Þ Z r1 Cr2 (6)

when e is exterior to one circle while interior to the other. Note

that Eq. (6) defines an ellipse.

Note that the definition of the distance between points

p2R2 and q2g(c, r) in this paper differ from that in the

previous works such as Fortune [2] and Kim et al. [5]. While

the distance is defined as d(p, c)Kr in the previous works, the

distance in this paper is defined as jd(p, c)Krj. The difference

is well-described in [13] in detail. Due to this difference in

definitions, they have different Voronoi regions and therefore

result in different Voronoi diagrams.

As suggested in Fortune’s sweepline algorithm for the

Voronoi diagram of points, we also define a beach line to

separate the safe region and unsafe region. The safe region

corresponds to the subset of plane that the sweepline has

passed. Note that the partially computed Voronoi diagram in

this region is correct. The other part of Voronoi diagram to be

computed is in the unsafe region. The monotonicity of the

beach line with respect to the sweepline is also preserved in our

problem for circles.

In Fig. 2, the horizontal line S denotes a sweepline, and the

beach line B is shown as a piecewise conic segments b’s right

above the sweepline. Note that B separates a safe region from

an unsafe region. The thick solid curve connected to B is a

correctly constructed Voronoi edge at the current instance of

time. Then, a point p2B, which lies above the sweepline S,
Fig. 2. Sweepline and beach line.



L. Jin et al. / Computer-Aided Design 38 (2006) 260–272 263
should satisfy the following constraint.

dðp; SÞ Z minðdsðpÞÞ (7)

where s is an arbitrary site. Since s4g, the above constraint can

be divided into the following equations:

dðp; SÞ Z dðp; cÞKr; if p is exterior to g; (8)

dðp; SÞ Z rKdðp; cÞ; if p is interior to g: (9)

The above equations, therefore, denote that p is on a

parabola by a directrix D and a focus c. Note that the directrix

D for Eq. (8) is determined by translating the sweepline S

downward by the distance r, while D for Eq. (9) is determined

by translating the sweepline upward by the distance r. Hence,

the beach line B consists of a set of parabola segments b’s. Note

that the intersection point p0 of two neighboring parabola

segments on B lies on a Voronoi edge since p0 is equi-distant

from two nearby circles. We also want to mention that a

beach line edge b is associated with a unique corresponding

generator g.
4. Events for line sweeping in Voronoi diagram of circles

Events are the most important elements in a sweepline

algorithm. An event is associated with a type and a location.

While Fortune’s algorithm has two types of events, there are

four types of events in the presented sweepline algorithm of the

Voronoi diagram for circles.

4.1. Types of events

In the proposed algorithm, there are four types of events: a

site event, a circle event, a cross event, and a merge event.

† Site event: This event occurs when the sweepline S first

visits a generator circle. Hence, the top-most extreme point

of a circle is the location of a site event since the sweepline

always moves from top to bottom in the plane.

† Cross event: This event occurs when the sweepline S visits

an intersection point between two generator circles. Hence,

the location of this event is the position of an intersection

point. Note that intersection points define the boundaries of

sites.

† Merge event: This event occurs when the sweepline S leaves

a generator circle. Hence, the bottom-most extreme point of

a circle is the location of this event.

† Circle event: This event occurs when the sweepline S leaves

a common tangent circle of three generator circles. Hence,

the location of this event is the bottom-most extreme point

of the common tangent circle.

It can be shown that the above four types of events fully

cover all events in the construction of Voronoi diagram of

circles. In Fortune’s algorithm, there are two events: site events

and circle events. A site event in Fortune is further refined into

a site event and a merge event in the proposed algorithm since a

point generator is now generalized to a circle. Since two circles
may intersect, unlike point generators in Fortune’s algorithm,

the case for the intersection between two circle generators

should be also considered for the correct maintenance of

topology. The circle event remains in both Fortune’s algorithm

and the proposed algorithm even though the way to compute

the Apollonius circle may be more complicated in this paper.

Hence, four types of events suffice the enumeration of all

events in the Voronoi diagram of circles in a plane.
4.2. Circle events

While the former three events (the site, the cross, and the

merge events) are relatively straightforward to compute, it is

not the case with the circle events.

To compute a circle event appropriately, it is necessary to

compute circles tangent to three generator circles. To calculate

the tangent circles, called Apollonius circles, we have adapted

and extended the method proposed by Kim et al. [6], which is

based on Möbius transformation and a point location problem.

While Fortune [2] and Kim et al. [5] considered the

Apollonius circles tangent to three circles from outside only,

we consider in this paper more configurations of possible

tangent circles for three generator circles. Hence, we compute

the Apollonius circles tangent to three circles not only from

outside but also inside of some or all of the input circles. Since

there are three generator circles, there can be eight different

cases of Apollonius circles.

Shown in Fig. 3 are the cases that an Apollonius circle

defined from outside generators (Fig. 3(a)), defined from

outside two generators but inside one generator (Fig. 3(b)), and

so on. Hence, an appropriate Apollonius circle can be

computed by simply looking at its relationship with respect

to the generators.

Given a set of three generator circles, there are at most eight

Apollonius circles. However, it is not necessary to compute all

eight Apollonius circles to choose a correct one since the

orientations of beach line edges provide the information for the

configuration of a desired Apollonius circle.

If the parabola for a beach line edge b is open to positive

y-direction, the Apollonius circle to be computed is located

outside the generator circle g corresponding to b. If the

parabola for b is open to negative y-direction, the Apollonius

circle is located inside the circle g corresponding to b. Hence,

the desired configuration from which the Apollonius circle has

to be computed can be found by simply looking at the

geometries of three consecutive beach line segments [3].

However, it should be noted that there could be zero, one, or

two Apollonius circles for a given configuration of three

generator circles depending on the conditions [3]. When there

are two instances of tangent circles for a given configuration

(for example, a small generator between two large generators),

the situation can be complicated and has to be handled

carefully. In such a case, the correct solution can be identified

easily if we consider the relative orientations of the tangent

points between generator circles and the Apollonius circle.



Fig. 3. Four different configurations of an Apollonius circle, where the circle is tangent to three generators. (a) All from outside, (b) one generator from inside while

two generators from outside, (c) two from inside while one from inside, and (d) all from inside.

L. Jin et al. / Computer-Aided Design 38 (2006) 260–272264
5. Line sweeping for Voronoi diagram of circles

The proposed sweepline algorithm runs event-by-event

starting from top to bottom in the plane. The algorithm consists

of three major steps: initialization, event processing, and post

processing.

5.1. Initialization

In the initialization step, we first find both the top and

bottom extreme points for all input circle generators and

enqueue them into an event queue Q. We also compute all

intersection points between the generators and enqueue them

into Q as well. Then, we sort all the events in Q in a descending

order with respect to the location of points. In other words,

place higher priority to p than q if pOq. Finally, we create an

initial sweepline S and a beach line B.

5.2. Event processing

Once the event queue Q is ready, the sweepline processes all

events by passing through event locations from the first to the

last in Q. This is done by iterating the actions discussed in the

below after dequeuing an event at a time from Q. Each event is

associated with its own unique actions to be done which

consists of three major elements as follows:

† modifying the topology of the beach line B by splitting,

removing, or adding some beach line edges appropriately

† modifying the current event queue Q by removing mean-

ingless circle events and adding new circle events

appropriately
† modifying the topology of the Voronoi diagram in the safe

area by adding or merging some Voronoi edges

appropriately
5.2.1. Site event

Fig. 4 shows the topology structures of the Voronoi diagram

and the beach line before and after the processing of a site

event. In this figure, the generator circle g4 has a corresponding

site event E.

As shown in Fig. 4(a), the position of site event E is at the

top extreme point of g4. We first locate a beach line edge b2,

which corresponds to the location of event E. Then, b1 and b3

which are immediately left and right to b2 on the beach line B

can be easily located if B is properly maintained. Furthermore,

the generator circles g1, g2, and g3, which correspond to b1, b2,

and b3 are also immediately identified.

When we process the site event E, we modify the beach line

B, the Voronoi diagram, and the event queue Q. For the beach

line B, we split b2 into two beach line edges b2

0

and b2

00

as shown

in Fig. 4(b), and insert three new beach line edges b4, b5, and

b6. Note that these new beach line edges correspond to g4 in-

between b2

0

and b2

00

. Note also that b4 and b6 are convex

downward since they are at the outside of g4, and b5 is convex

upward since it is inside g4. While the foci of b2

0

and b2

00

remain

identical to the focus of b2, the foci of b4, b5 and b6

0

are the

center of the circle g4. The directrixes of all the five beach line

edges are the sweepline after appropriate translations.

The Voronoi diagram itself can be correctly updated by

creating a new Voronoi edge e3 defined by generator circles g2

and g4 and connecting with B appropriately. For the proper

maintenance of the event queue Q, we use (b1, b
0

2, b4) to



Fig. 4. Processing a site event when the sweepline S touches a site event E. (a) before the touch, (b) after the touch.

L. Jin et al. / Computer-Aided Design 38 (2006) 260–272 265
compute an Apollonius circle, and therefore a corresponding

circle event E1 if the Apollonius circle exists. Then, we also

compute the second circle event E2 from (b6, b2, b3) in a

similar way of E1. Both E1 and E2 are enqueued into Q in the

sorted order.

At any time instance, a valid circle event is defined by a

triplet of three neighboring beach line edges. Whenever the

local topology among these beach line edges is changed by

removal or insertion of one or more edges, the corresponding

circle event becomes invalid. Then, such an invalid circle event

should be removed from the event queue Q.

Since the processing of a site event E changes the topology

connections among b1, b2 and b3 due to the split of b2, the

circle event corresponding to (b1, b2 and b3) should be removed

from the event queue Q. Hence, processing a site event deletes

one circle event while creating two new circle events.
5.2.2. Merge event

Let E be a merge event corresponding to the bottom point of

a circle g2 in Fig. 5. A merge event falls into two cases: a case

with one and only one beach line edge in the circle g2 (Case 1),

and a case with more than one beach line edges in g2 (Case 2).

Fig. 5(a) and (b) illustrate Case 1, and Fig. 5(c) and (d)

illustrate Case 2. The left and the right columns of Fig. 5 depict

the topological structure before and after the merge event is

processed, respectively.

When a merge event occurs, beach line edges interior to the

corresponding circle generator are removed. In Case 1, as

shown in Fig. 5(a) and (b), the beach line edge b3 is removed.

In Case 2, as shown in Fig. 5(c) and (d), on the other hand, the

beach line edges b3, b3, and b3 are removed. After removing

the beach line edges, two immediately neighboring beach line

edges b2 and b4, which are incident to the removed edges and

exterior to the circle generator g2, are merged together to form

one single beach line edge, b24 in the figure. The focus of b24 is

the center of g2 and the directrix is the sweepline after an

appropriate translation.

Since the removed beach line edges modify some local

topological structure among beach line edges, there can be

some circle events that are not valid any more. Hence, the

circle events related to the removed beach line edges have to be

removed from the event queue Q regardless the type of event

being processed except a merge event. In the case of merge
event, however, there is no circle event to be removed from Q

since both consecutive beach lines b2 and b3, for both Case 1

and Case 2, in Fig. 5 are associated with the same generator

circle g2.

In the case of a merge event, new circle event corresponding

to the merged new beach line edge, b24 in Fig. 5, should be

computed and enqueued into Q. Note that there can be one

possible new circle event to be created.

Then, it is necessary to appropriately update the topology

structure of the Voronoi diagram. In Case 1, it is not necessary

to do any action for the topology of the Voronoi diagram since

there is no removed or created Voronoi vertex or edge.

Whether the center of the circle g2 corresponding to the event E

is handled as an isolated Voronoi structure or not is immaterial

for the discussion and we simply ignore it from the complete

Voronoi structure.

In Case 2, on the other hand, the existing Voronoi vertices

interior to the circle g2 are connected to the removed beach line

edges at the corresponding Voronoi vertices. Since the beach

line edges are removed, the incident Voronoi edges, e2 and e4

shown in Fig. 5(c) has to be merged to form one single new

Voronoi edge e34. This is why this event is called a merge

event. We want to mention here that the seemingly special case

that the circle g4 is completely contained inside the circle g2

can be also handled in the same treatment. In such a case, the

edges e3 and e4 are from an identical edge and therefore a

completely isolated loop, without even a vertex, results when

they are merged. Note that the centers of both g2 and g4 in the

figure play the role of foci for the new Voronoi edge of an

ellipse.

In both cases, there are at most three beach line edges inside

the generator circle g2 just before processing the merge event.

However, in a special case as shown in Fig. 5(e), a circle event

can coincide a merge event. Even though there are four beach

line edges inside g2 in such a case, it can be handled by

processing the circle event before the merge event. After the

proper processing of the circle event, the situation is simplified

to the case of either Fig. 5(a) or (c).
5.2.3. Cross event

Suppose that a cross event E is defined by two circle

generators g2Z(c2, r2) and g3Z(c3, r3), as shown in Fig. 6(a).

Immediately before the cross event E is processed in the figure,



Fig. 5. Processing of a merge event. (a) Before the processing for the case of a single generator, (b) after the processing, (c) before the processing for the case of more

than one generator involved in the processing, (d) after the processing, (e) special case: circle events and a merge event are at the same position.

L. Jin et al. / Computer-Aided Design 38 (2006) 260–272266
there are two beach line edges, b3 and b4, approaching to the

location of the event E.

As shown in Fig. 6(b), the beach line edges b3 and b4 are

removed and four new beach line edges b7, b8, b9, and b10 are

created between the beach line edges b2 and b5. Note that the

intersection point corresponding to the cross event E now

becomes a new Voronoi vertex for the existing Voronoi edge

e1. The foci for b7, b8, b9 and b10 are c3, c3, c2, and c2,

respectively. Similarly, the directrices are also defined as the

sweepline translated accordingly by the amount of r3 for b7 and

b8, and by the amount of r2 for b9 and b10.

In the case of a cross event, there is no circle event

corresponding to the removed beach line edges. In other words,

two possible triplet of consecutive beach line edges (b1, b2, b3),

(b2, b3, b4), (b3, b4, b5), and (b4, b5, b6) do not define any circle

event. However, there can be two possible new circle events

defined by two triplets (b1, b2, b7) and (b10, b5, b6). They

should be computed and inserted in Q.
Since the safe region is increased, the corresponding

topology structure of the Voronoi diagram should also be

updated. The intersection point which define the cross event E

now becomes a new Voronoi vertex v and becomes the end

vertex of the existing Voronoi edge e1. Then, three new Voronoi

edges, e2, e3 and e4 are created with v as the starting vertices

while their end vertices are not defined yet. Note that the degree

of the Voronoi vertex v is four, not three. Therefore, a special

treatment is necessary to cope with this vertex to handle the

spatial queries regarding on the spatial structure correctly.

Even though the cross event is discussed for the case that the

safe region expands into the intersection region, the other case

of leaving an intersection region, as shown in Fig. 6(c) and (d),

can be easily described similarly.
5.2.4. Circle event

Let A be the common tangent Apollonius circle correspond-

ing to a circle event E. Then, there are three generator circles



Fig. 6. Processing a cross event. (a) Before the processing for the case of entering an intersection region, (b) after the processing, (c) before the processing for the case

of leaving the intersection region, and (d) after the processing.

L. Jin et al. / Computer-Aided Design 38 (2006) 260–272 267
corresponding to the event E and A is simultaneously tangent to

these three circles.

Shown in Fig. 7(a) is the simplest case of a circle event. Let

A be the Apollonius circle simultaneously tangent to three-

generator circles g2, g3, and g4 in the figure. Among the three

beach line edges b2, b3, and b4 corresponding to g2, g3, and g4,

respectively, the middle beach line edge b3 has to be removed.

Then, a new Voronoi vertex v is created at the center of the

Apollonius circle A and is connected to the two existing

Voronoi edges e1 and e2 as their end vertices. Then, a new

Voronoi edge e3 is also created having v as its starting vertex.

Note that e3 is connected with two beach line edges b2 and b4

and its equation is defined by two corresponding circle

generators g2 and g4.

While a circle event removes one circle event from the event

queue Q, it creates two more new circle events and enqueues

them into Q. New circle events are defined as follows. Let

another beach line edge left to b2 be b1 and the other edge right

to b4 be b5 as shown in Fig. 7(b). Let E1 be the circle event

corresponding to a triplet of beach line edges (b1, b2, b4).

Another event E2 can be also defined similarly for a triplet of

(b2, b4, b5). Then, these new circle events are enqueued into Q.

On the other hand, two circle events, (b1, b2, b3) and (b3, b4,

b5), associated with b3 has to be removed since b3 has been

removed. Note that, in the circle event, no new beach line edge

is created.

Shown in Fig. 8 are different cases of circle events. In

Fig. 8(a), the Apollonius circle A is interior to one generator
while exterior to two other generators. The other cases can be

similarly interpreted. In all of these cases, the above-explained

algorithm can be identically applied without any problem.
5.3. Postprocessing

The last event in the whole process is either a merge event or

a circle event. After processing the last event in the event queue

Q, the Voronoi diagram is about to be completed for the whole

plane. However, in the half-space below the sweepline at the

last event, an unsafe region is still remained in the plane. The

region above the still-existing beach line is only safe.

The beach line after the last event still consists of some

beach line edges, where each beach line edge is defined by a

corresponding generator circle and the sweepline. Each pair of

two consecutive beach line edges is connected with an already

constructed Voronoi edge in the safe region where the end

Voronoi vertex of the Voronoi edge is not yet determined. Note

that the Voronoi region for the generator circle contributing the

boundary of the convex hull of the whole input circles is

unbounded. This means that two edges on the boundary of such

a Voronoi region are also unbounded. Since the beach line at

this moment plays the role of infinity, the Voronoi edges

intersecting, and therefore connected to, the beach line should

emanate to infinity. Hence, the not yet determined Voronoi

vertices can now be declared to be the infinite vertices. Then

the correct Voronoi diagram for the whole input data can be

completed by removing the beach line and the sweepline.



Fig. 7. Processing of a circle event for the case when a Apollonius circle is tangent to generators from outside. (a) before the processing, and (b) after the processing.

Fig. 8. Processing of a circle event, where the circle is tangent to three generators (a) one generator from inside while two generators from outside, (b) two from

inside while one from inside, and (c) all from inside.

L. Jin et al. / Computer-Aided Design 38 (2006) 260–272268
5.4. Algorithm

The above described can be summarized as an algorithm in

a pseudocode as follows:

Algorithm (Sweepline for the Voronoi Diagram of Circles)

Input: A set of circles G

Output: Voronoi diagram for G

1. Initialization:

(1) create an initial beach line edge corresponding to the

circle at infinity and a sweepline S.

(2) insert site, merge, and cross events into a event queue Q.

2. Event processing:

(1) pop an event E from Q

(2) switch(E)

† CASE: Site Event

(a) find corresponding beach line edge b

(b) split b into two beach line edges bl and br, and

insert three new beach line edges between bl

and br.
(c) create a Voronoi edge e

(d) connect e with beach line B

(e) create two circle events and push them into Q

† CASE: Merge Event

(a) find corresponding beach line edge b and two

beach line edges bl and br connected to b

(b) check if bl and br are exterior to the

corresponding circle

(i) if yes:

(A) remove b

(B) merge bl and br to make one beach

line edge blr

(ii) if no:

(A) merge two Voronoi edges to create

one Voronoi edge

(B) merge left(bl) and right(br) to make

one beach line edge blr (NOTE:

left(b) and right(b) denotes left and

right adjacent beach line edge to b,

respectively.)



L. Jin et al. / Computer-Aided Design 38 (2006) 260–272 269
(C) remove three beach line edges bl, b,

and br

(c) create one circle event defined by a triplet

(left(blr), blr, right(blr)) and push it into Q

† CASE: Cross Event

(a) find corresponding two beach line edges bl and

br

(b) create four beach line edges and connect them

appropriately

(c) create three Voronoi edges and connect them

appropriately.

(d) create two circle events and enqueue into Q

(e) remove the two beach line edges bl and br

† CASE: Circle Event

(a) retrieve corresponding beach line triplet (bl, b,

br)

(b) check if the current beach line triplet is valid

(i.e., if the circle event corresponding to this

beach line triplet is realized) or not

(i) if valid:

(A) find two Voronoi edges e1 and e2

connected to b

(B) create a Voronoi vertex v

(C) connect e1 and e2 at v

(D) create new Voronoi edge having v

as an end vertex

(E) connect two beach line edges bl and

br neighboring b

(F) create two circle events defined by

two triplets (left(bl), bl, br) and (bl,

br, right(br)) and push them into Q

(G) remove b

(ii) if not valid, do nothing

3. Postprocessing:

(1) handle Voronoi vertices connected to B as infinity

(2) delete the beach line B
6. Analyses for time and space complexity

In this section, we will provide the analyses of the time and

space complexity of the presented algorithm in the worst-case.

Let n be the number of generator circles provided as input, l be

the number of non-intersecting generator circles, and m be the

number of intersections between generator circles. Hence, the

total number of sites, and therefore the total number of

the corresponding Voronoi regions as well, to be considered in

the computation of the Voronoi diagram are lC2m. Note that

mZ2
n

2

 !
ZnðnK1ÞZOðn2Þ in the worst-case since a pair

of circles can intersect at two points. Therefore, n%lC
2m%n(nK1).

6.1. Initialization and postprocessing steps

In the initialization step, there are n events for each of site

events and merge events since there are one site event and one
merge event for each generator circle. Since there are m

intersections, there is the same number of cross events. Hence,

these three events can be stored in O(2nCm) space. Since there

is a sorting operation, the initialization step takes Oðð2nC
mÞlogð2nCmÞÞZOðð2nCmÞlog nÞZOðn2log nÞ time in the

worst-case.

In the postprocessing step, there are some Voronoi edges

left to be declared to go infinity and the existing beach line

edges should be destroyed. In the worst-case, there can be lC
2mK1 Voronoi edges connected to the beach line B. Note that

the number of beach line edges in B after the final event is

processed can be 2ðlC2mK1ÞC1Z2lC4mK1 in the worst-

case. This number is indeed the upper bound of beach line

edges in general, and can be interpreted as follows: a site can

only create one more new beach line edge in the middle of an

existing beach line edge. Hence, both the time and space

complexity for the post-processing are Oð2lC4mK1ÞZOðlC
2mÞ in the worst-case.

6.2. Event processing step

During the processing of an event, the beach line changes its

topology. Note that each pair of two consecutive beach line

edges is connected to a Voronoi edge. Therefore, the space

complexity of the beach line is linear to the complexity of the

number of Voronoi edges. Therefore, the beach line can be

maintained in O(lC2m) space in the worst-case. The time

complexity to handle each event is as follows.

6.2.1. Site event

Since the beach line can consist of 2(lC2m)K1 parabolic

arcs, locating an appropriate beach line edge from the beach

line requires Oðlogð2lC4mK1ÞÞZOðlog nÞ time in the worst-

case if the topology of the beach line B is stored in an efficient

data structure such as a balanced binary search tree. Recall that

B is monotone w.r.t. the sweepline.

Once an appropriate beach line edge is located, two new

circle events are created and inserted into the event queue Q at

an appropriate place. Hence, this insertion takes O(logjQj) time

in the worst-case where jQj denotes maximum number of

events in Q. Since the other actions take only O(1) time and jQj

can be O(n), which will be explained later, handling the whole

site event takes O(n log n) time in the worst-case since there are

n generator circles where each circle creates a site event.

6.2.2. Merge event

Since there are n generator circles, so are n merge events.

Processing of a merge event requires to remove some beach

line edges from the binary tree and create one circle event to

insert into the event queue Q. Hence, these operations

altogether take O(log n) time in the worst-case. The other

operations take only O(1) time. Therefore, processing all

merge events takes O(n log n) time in the worst-case.

6.2.3. Cross event

The maximum possible number of cross events is mZn(nK
1)ZO(n2). Processing a cross event consists of removing two



L. Jin et al. / Computer-Aided Design 38 (2006) 260–272270
beach line edges and creating four beach line edges, and

creating three new Voronoi edges. Note that each of removing

and inserting a beach line edge from and to the binary tree takes

O(log n) time. However, creating a Voronoi edge and

connecting it appropriately take only O(1) time. In addition,

two new circle events are generated and inserted into the event

queue Q, which takes also O(log n) time. Therefore, processing

all cross events takes O(m log n)ZO(n2 log n) time in the

worst-case.

6.2.4. Circle event

For each circle event, one beach line edge is removed from

B, two circle events are removed from Q, and two new circle

events are created to be inserted into Q. Hence, this process

takes O(log jQj) time where jQj denotes the maximum size of

the event queue Q.

Although there are many circle events generated in the

processing, the total number of possible circle events to be

processed is under a certain level, which is shown below.

Note that the number of non-intersecting circles is l and the

number of intersections from the other (nKl) circles is m.

Then, the number of sites, and therefore the number of Voronoi

regions, is (lC2m). Suppose that no circle is completely

contained by another circle. Then, the number of vertices of the

Voronoi diagram will not be larger than 2(lC2m)K5,

including m intersection points, since the Voronoi diagram is

a planar graph. (It is known that a Voronoi diagram of N points

has at most 2NK5 vertices and 3NK6 edges. Equality holds

when the vertex degree is exactly 3.) If circles are allowed to be
Fig. 9. Statistics of computation time for various sets of randomly generated circles.

in the parenthesis are the number of intersections among the circles. The vertical ax

(b) Circles are allowed to intersect each other.
contained by others, the cardinality becomes even smaller. In

addition, the Voronoi vertices at the intersection points have

degree four and this fact may reduce the cardinality even

smaller.

A vertex is created only from the center of an Apollonius

circle corresponding to a circle event, except the vertices

corresponding to m intersection points. Hence, the number of

vertex creations, and therefore the related topology updates,

never exceeds 2(lC2m)K5Km. Hence, both the space and

time complexity of circle event processing are O(lCm).

Note that a site event creates two circle events. Since there

are n circles, 2n circle events are created from site events. One

merge event creates one circle event. Therefore, n circle events

are created from merge events. Similarly, 2m circle events are

created from m cross events. Note that some circle events will

be removed in the middle of the process. When a circle event is

processed, two new circle events are also created. In addition,

the number of the process of the circle events is the same as the

number of vertices, which is bounded by 2(lC2m)K5Km as

explained earlier. Hence, the total number of circle events

created in the plane sweepping can be obtained by summing up

the number of circle events enqueued in the process

circle events and the one enqueued by the other events,

and is 2ð2ðlC2mÞK5KmÞC ð2nCnC2mÞZ3nC4lC8mK
10!7nC8m.

Therefore, the total space and time complexities can

be obtained by summing up all the time complexities in the

above to result in O(nCm) and O((nCm)log n) where

0%m%n(nK1).
The numbers in the horizontal axis denote number of circles where the numbers

is denotes the computation time. (a) No intersection is allowed between circles.



Fig. 10. Examples of Voronoi diagram of circles computed by the proposed sweepline algorithm.

L. Jin et al. / Computer-Aided Design 38 (2006) 260–272 271
7. Discussions and conclusions

We have presented a sweepline algorithm for computing the

Voronoi diagram for circle in the plane. Circles are allowed to

be placed in arbitrary locations, and therefore they may

intersect each other and a circle may even contain some others.

The radius of a circle is allowed to be non-negative meaning

that it can degenerate to a point.

In this paper, we discussed the construction of the Voronoi

diagram for circles in a more general setting. We want to

construct the correct Voronoi diagram regardless how the

circles intersect each other. In the previous researches, the

Voronoi edges are only defined exterior to both circles or

interior to both circles. The locations exterior to one circle

while interior to another are not considered in their works. In

this paper, every point in the plane is assigned to the closest

point on all circles. Hence, the relation between a circle and the

corresponding Voronoi regions is one-to-many.

The time complexity of the proposed algorithm is O((nC
m)log n), which is input sensitive but will not exceed O(n2 log

n) in the worst-case. The algorithm uses a sweepline to sweep

through the plane and makes the Voronoi diagram grow. The

sweepline only stops at the event points, where the topology of

the growing Voronoi diagram will be changed.

The proposed algorithm has been fully implemented in

Microsoft CCC environment and tested against various data

sets. Fig. 9 shows some statistics of the run-time behavior from

our experiments. We want to note that our current implemen-

tation is not fully optimized yet. Since the beach line, in our

current implementation, is arranged not as a binary tree but as a

linked list, the time behavior shows O((nCm)2 log n) instead of

O((nCm)log n). Fig. 10 shows two examples of the computed

Voronoi diagram from the implementation.

We expect that the approach in this article can be applied to

more complex cases of Voronoi diagram such as the Voronoi

diagram for polygons consisting of line segments as well as

circular arcs.

Acknowledgements

This work was supported by the Natural Science Foundation

of China (Project number 60225016, 60321002). D. Kim and

D.-S. Kim were supported by Creative Research Initiatives

from the Ministry of Science and Technology in Korea. We
thank Chang Huang from Department of Computer Science and

Technology, Tsinghua University, for the discussions and the

development of the user interface during the implementation.
References

[1] de Berg M, van Kreveld M, Overmars M, Schwarzkopf O. Computational

geometry: algorithms and applications. 2nd ed. Berlin: Springer; 2000.

[2] Fortune S. A sweepline algorithm for Voronoi diagrams. Algorithmica

1987;2:153–74.

[3] Kim D, Kim D-S, Sugihara K. Apollonius tenth problem via raidus

adjustment and Möbius transformations. Comput Aided Des; 2006;38(1):

14–21.

[4] Kim D, Kim D-S. Region-expansion for the Voronoi diagram of 3D

spheres, Comput Aided Des; in press, DOI: 10.1016/.jcad.2005.11.007.

[5] Kim D-S, Kim D, Sugihara K. Voronoi diagram of a circle set from

Voronoi diagram of a point set: I. Topology. Comput Aided Geom Des

2001;18(6):541–62.

[6] Kim D-S, Kim D, Sugihara K. Voronoi diagram of a circle set from

Voronoi diagram of a point set: II. Geometry. Comput Aided Geom Des

2001;18(6):563–85.

[7] Kim D-S, Yu K, Cho Y, Kim D, Yap C. Shortest paths for disc obstacles.

Lect Notes Comput Sci 2004;3045:62–70.

[8] Kim D-S, Cho Y, Kim D. Euclidean Voronoi diagram of 3D balls and its

computation via tracing edges. Comput Aided Des 2005;37:1412–24.

[9] Kim D-S, Cho C-H, Cho Y, Kim D. Pocket recognition on a protein using

Euclidean Voronoi diagram of atoms, J Mol Graph Model. Submitted for

publication.

[10] Lee DT, Drysdale RL. Generalization of Voronoi diagrams in the plane.

SIAM J Comput 1981;10(1):73–87.

[11] Lee YJ, Kim D-G, Kim G-S, Kim D-S, Kim YD. Effect of the W–W

contiguity on conductivity of W-Cu composite using the Voronoi

diagram. Z fuer Metallkund 2005;3:255–8.

[12] Mäntylä M. An introduction to solid modeling. Rockville, MD: Computer

Science Press; 1988.

[13] Okabe A, Boots B, Sugihara K, Chiu SN. Spatial tessellations concepts

and applications of voronoi diagrams. 2nd ed. London: Wiley; 1999.

[14] Preparata FP, Shamos MI. Computational geometry: an introduction. New

York: Springer; 1985.

[15] Ryu J, Park R, Kim D-S. Molecular surfaces on proteins via beta shapes,

Comput Aided Des. Submitted for publication.

[16] Sharir M. Intersection and closest-pair problems for a set of planar discs.

SIAM J Comput 1985;14(2):448–68.

[17] Sugihara K. Approximation of generalized Voronoi diagrams by

ordinary Voronoi diagrams. Graph Models Image Process 1993;55(6):

522–31.

[18] Sugihara K, Sawai M, Sano H, Kim D-S, Kim D. Disk packing for the

estimation of the size of a wire bundle. Jpn J Ind Appl Math 2004;21(3):

259–78.

[19] Yap CK. An O(n log n) algorithm for the Voronoi diagram of a set of

simple curve segments. Discrete Comput Geom 1987;2:365–93.



ed
Li Jin is a PhD student in Department of

Computer Science and Technology at Tsinghua

University. He got bachelor’s degree in Com-

puter Science at Tsinghua University in 2003.

His research interests are Computer Graphics,

CAGD and Computational Geometry.

L. Jin et al. / Computer-Aid272
Donguk Kim is a senior researcher in Voronoi

Diagram Research Center at Hanyang Univer-

sity, Korea. He received his B.S., M.S. and

Ph.D. degrees from Hanyang University in

1999, 2001 and 2004, respectively. His research

interests include computational geometry, geo-
metric modeling and their applications in the

molecular biology.
Lisen MU is a PhD student in Department of

Computer Science and Technology at Tsinghua

University. He got bachelor’s degree in Compu-

ter Science at Tsinghua University in 2003. His

research interests are Grid Computing and

Computational Geometry.
Deok-Soo Kim is a professor in Department of

Industrial Engineering, Hanyang University,

Korea. Before he joined the university in

1995, he worked at Applicon, USA, and

Samsung Advanced Institute of Technology,

Korea. He received a B.S. from Hanyang

Design 38 (2006) 260–272
University, Korea, an M.S. from the New Jersey

Institute of Technology, USA, and a Ph.D. from

the University of Michigan, USA, in 1982, 1985

and 1990, respectively. His current research

interests mainly lie in the theory and appli-

cations of Voronoi diagram while he has been interested in various

geometric problems. He is current the director of Voronoi Diagram

Research Center supported by the Ministry of Science and Technology,

Korea.
Shi-min Hu is currently a professor of computer

science at Tsinghua University. His research

interests include digital geometry processing,

video-based rendering, rendering, computer ani-

mation, and computer-aided geometric design.

He obtained his Ph.D. in 1996 from Zhejiang
University. He is on the editorial boards of

Computer Aided Design.


	A sweepline algorithm for Euclidean Voronoi diagram of circles
	Introduction
	Brief on Fortunes algorithm for Voronoi diagram of points
	Preliminaries
	Events for line sweeping in Voronoi diagram of circles
	Types of events
	Circle events

	Line sweeping for Voronoi diagram of circles
	Initialization
	Event processing
	Postprocessing
	Algorithm

	Analyses for time and space complexity
	Initialization and postprocessing steps
	Event processing step

	Discussions and conclusions
	Acknowledgements
	References


