
DECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 121

Extracting 3D Objects from
Photographs Using 3-Sweep
By Tao Chen, Zhe Zhu, Shi-Min Hu, Daniel Cohen-Or, and Ariel Shamir

DOI:10.1145/3007175

Abstract
We introduce an interactive technique to extract and manip-
ulate simple 3D shapes in a single photograph. Such extrac-
tion requires an understanding of the shape’s components,
their projections, and their relationships. These cognitive
tasks are simple for humans, but particularly difficult for
automatic algorithms. Thus, our approach combines the
cognitive abilities of humans with the computational accu-
racy of the machine to create a simple modeling tool. In
our interface, the human draws three strokes over the pho-
tograph to generate a 3D component that snaps to the out-
line of the shape. Each stroke defines one dimension of the
component. Such human assistance implicitly segments a
complex object into its components, and positions them
in space. The computer reshapes the component to fit the
image of the object in the photograph as well as to satisfy
various inferred geometric constraints between compo-
nents imposed by a global 3D structure. We show that this
intelligent interactive modeling tool provides the means
to create editable 3D parts quickly. Once the 3D object has
been extracted, it can be quickly edited and placed back into
photos or 3D scenes, permitting object-driven photo editing
tasks which are impossible to perform in image-space.

1. INTRODUCTION
Extracting three dimensional objects from a single photo
is still a long way from reality given the current state of
technology, since it involves numerous complex tasks: the
target object must be separated from its background, and
its 3D pose, shape, and structure should be recognized from
its projection. These tasks are difficult, even ill-posed,
since they require some degree of semantic understand-
ing of the object. To alleviate this difficulty, complex 3D
models can be partitioned into simpler parts that can be
extracted from the photo. However, assembling parts into
an object also requires further semantic understanding
and is difficult to perform automatically. Moreover, hav-
ing decomposed a 3D shape into parts, the relationships
between these parts should also be understood and main-
tained in the final composition.

In this paper, we present an interactive technique to
extract 3D man-made objects from a single photograph,
leveraging the strengths of both humans and computers.
Human perceptual abilities are used to partition, recognize,
and position shape parts, using a very simple interface based
on triplets of strokes, while the computer performs tasks
which are computationally intensive or require accuracy.
The final object model produced by our method includes
its geometry and structure, as well as some of its semantics.
This allows the extracted model to be readily available for

The original version of this paper is entitled “3-Sweep:
Extracting Editable Objects from a Single Photo” and
was published in ACM Transactions on Graphics, Volume
32, Issue 6—Proceedings of ACM SIGGRAPH Asia 2013, No-
vember 2013 Article No. 195.

intelligent editing, which maintains the shape’s semantics
(see Figure 1).

Our approach is based on the observation that many
man-made objects can be decomposed into simpler parts
that can be represented by generalized cylinders, cuboids,
or similar primitives. A generalized cylinder is a cylindrical
primitive shape where the central axis is a curve instead of
a line, the shape’s profile can be any 2D closed curve and
not just a circle, and this shape can also change along the
curve. In this work, we use just circular and cuboid pro-
files. The key contribution of our method is an interac-
tive tool that guides and assists the user in the creation
of a 3D editable object by defining its primitive parts. The
tool is based on a rather simple modeling gesture we call
3-Sweep. This gesture allows the user to explicitly define
the three dimensions of a geometric primitive using three
sweeps. The first two sweeps define the first and second
dimension of a 2D profile and the third, usually longer,
sweep is used to define the main curved axis of the primi-
tive (see Figure 2).

Figure 1. 3-Sweep Object Extraction. (a) Input image. (b) Extracted
edges. (c) 3-Sweep modeling of one component of the object. (d) The
full extracted 3D model. (e) Changing the object viewpoint. (f) Editing
the model by rotating each arm in a different direction, and pasting
onto a new background. The base of the object is transferred by
alpha matting and compositing.

(a) (b) (c)

(d) (e) (f)

http://dx.doi.org/10.1145/3007175

122 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

research highlights

As the user sweeps the primitive, the program dynamically
adjusts the progressive profile by sensing the pictorial con-
text in the photograph and automatically snapping to it.
Furthermore, relationships between the various primitive
parts are automatically recognized and preserved by the
program. Using several such 3-Sweep operations, the user
can model 3D parts consistent with the object in the photo-
graph, while the computer automatically maintains global
constraints linking them to other primitives comprising
the object. Using 3-Sweep technology, non-professionals
can extract 3D objects from photographs. These objects can
then be used to build a new 3D scene, or to alter the original
image by changing the objects or their parts in 3D and past-
ing them back into the photo.

2. BACKGROUND
Modeling from images. Images have always been an impor-
tant resource for 3D modeling. Many techniques use multiple
images or videos to model 3D shapes and scenes.20 However,
our focus is on modeling objects from a single photograph.
This task is challenging because of the inherent ambiguity of
the mapping from a 3-dimensional world to a 2-dimensional
image. To overcome this, methods use both constraints on
the type of images that can be used—such as non-oblique
views, and prior assumption on the possible geometry that
can be extracted.

Fully automatic methods use assumption such as symme-
try,23 smoothness,18 or the existence of a prior 3D model simi-
lar to the one in the photograph.22 Some limit the geometry to
planes or smooth surfaces, while others limit the application
range (e.g., to architectural models3, 10). There are methods
that automatically fit edges or regions in an image or sketch
using optimization.15 These are basically 2D methods, gener-
ating either 2D models or 3D models by extrusion. Our method
can directly generate complex oblique shapes in 3D space
such as the menorah in Figure 1 and the telescope in Figure 7.
Automatic methods would fail on such examples since their
prior assumptions are not met, or because they rely on region
color or clear edges, which can be missing or occluded.

Other methods use a human-in-the-loop for modeling,16
but usually require extensive manual interaction, and are
more time consuming compared to the 3-Sweep approach.
They either require a complete sketch of the object or
tedious labeling before the machine takes control of an
optimization process, while in 3-Sweep user guidance and

automatic snapping are interlaced.
Sketch-based modeling. The task of 3D modeling from a

single image is closely related to the reconstruction or defi-
nition of a 3D shape from a sketch.17 The user either directly
draws the curves of the object1 or fits parts or primitives to
a predefined sketch.12 Our work was inspired by a tool for
modeling simple 3D objects from sketches presented by
Shtof et al.19 In that work geo-semantic constraints were
used between primitive parts to define their semantic and
geometric relationships, and connect them to form the final
object. However, their approach is geared towards sketches
and uses a drag and drop interface for primitives that need
to fit the sketch contours.

Computer aided design. The use of constraints in com-
puter-aided design has been studied extensively and allows
the definition of semantic information that relates different
geometric parts in an object. Automatically inferring con-
straints from the object or its parts’ geometry has been used
for reverse engineering5 and object deformation and edit-
ing.11, 21 Similarly, sweep-based models have been defined
and used since the beginning of the field.9 While we cannot
report all computer-aided design work aiming at modeling
sweep-based primitives, to our knowledge, none of these
methods have been applied to modeling from photographs,
nor they have paired sweeping with snapping to image edges.

Object-based image editing. Apart from modeling a
3D object, 3-Sweep allows the application of object-based
image editing operations, that previously required extensive
user interaction8 or massive data collection.13, 14

3. OVERVIEW
Our interactive modeling approach takes as input a single
photo such as the one in Figure 1a. Our goal is to extract a 3D
model whose projection exactly matches the object in the
image. Using the 3-Sweep modeling technique, the user con-
structs the whole object gradually from its parts. This means
that the object is implicitly decomposed into simple parts,
which are typically semantically meaningful. We define two
types of primitives: both use a piecewise linear centerline to
sweep a cross-section which is assumed to be perpendicu-
lar to the centerline at every location. One type of primitive
uses a circular cross-section that can vary in radius along the
sweep, and the other uses a rectangle cross-section that can
change its aspect ratio along the sweep.

Such decomposition is both easy and intuitive for users,
but provides the computer significant information for recon-
structing a coherent 3D man-made object from its parts’
projections. The parts are expected to have typical geomet-
ric relationships that can be exploited to guide the composi-
tion of the whole object. Although the user interacts with the
given photo, she does not need to exactly fit the parts to the
photo or connect them to each other. 3-Sweep automatically
snaps primitive parts to object outlines created from edges,
and connects them to previously defined 3D parts.

To create a single 3D primitive part on the given photo, the
designer uses three strokes. The first two strokes define a 2D
profile of the part and the third stroke defines its main axis,
which is either straight or curved (see Figure 2). Defining the
profile and sweeping the axis are simple operations since

Figure 2. The 3-Sweep paradigm is used to define general cylinder
and cuboid parts.

 DECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 123

they do not demand accuracy. The profile dimensions are
guided by the object’s outlines. While sweeping, the 3D
extent of the part is also defined by snapping to these out-
lines. To compensate for perspective distortion, during this
process, the camera’s angle of view is estimated. Therefore,
the part need only be sketched quickly and casually by the
user. Figure 1c shows the result of sweeping along the tubes
of the menorah (more examples could be seen in an online
video at https://vimeo.com/148236679). We elaborate on the
3-Sweep operation in Section 4.

As more model parts are added, geometric relationships
between them serve (i) to assist in disambiguating and defin-
ing the depth dimension and (ii) to optimize the positioning
of the parts. These geometric relationships include parallel-
ism, orthogonality, collinearity, and coplanarity. We use opti-
mization to satisfy these geo-semantic constraints, while
taking into account the snapping of the 3D geometry to the
object’s outlines and the user’s sweeping input. A complete
model with geo-semantic relationships is shown in Figure 1d.
These geo-semantic relationships not only help define the
3D model, but become part of the 3D representation of the
model, allowing smart editing of the 3D model later, as dem-
onstrated in Figure 1f and in other figures in the paper.

Our interface also supports several operations for more
effective modeling. For example, the user can copy and paste
similar parts to other positions on the image. Although
many geo-semantic constraints are automatically inferred,
the user can also manually specify constraints between
selected parts, constrain the parts to have uniform or lin-
early changing radii etc.

4. SINGLE PRIMITIVE FITTING
In this section, we first describe the 3-Sweep technique for
creating one generalized cylinder. Simpler primitives such
as spheroids or simple cubes are also supported by direct
modeling in our system.

Preprocessing. In a preprocessing stage, we extract
image edges and build candidate object outlines. We adopt
a method for hierarchical edge feature extraction based on
spectral clustering.2 We then apply a technique to link the
detected edge pixels into continuous point sequences,7 each
shown in a different color in Figure 1b. An edge orientation
computed over a 5 × 5 neighborhood is associated with each

edge pixel.
Profile definition. In the first stage, the user draws the 2D

profile of the generalized cylinder, usually at one end of the
shape. This is illustrated in Figure 3, where black curves are
outlines detected in the input image. The task is to draw a
2D profile correctly oriented in 3D. This can be regarded as
positioning a disk in 3D by drawing its projection in 2D. To
simplify this task, we assume that the disk is a circle, thus
reducing the number of unknown parameters. Later, the cir-
cular disk can be warped into an elliptical disk based on the
3D reconstruction. The drawing of a circular disk is accom-
plished by drawing two straight lines S1S2 and S2S3 over the
image, as shown in Figure 3a (red and green arrows). The first
line defines the major diameter of the disk, and the second
line is then dragged to the end of the minor diameter. This
forms an ellipse in image space that matches the projection
of a circular disk: see the dark blue circle in Figure 3a. The
depth of the disk is set to 0. The normal direction and radius
of the disk are assigned according to the length and orienta-
tion of the two diameters of the elliptical projection.

Generalized cuboids are modeled in a similar way. The
two strokes that define the profile of a cuboid follow the two
edges of the base of the cuboid instead of the diameters of
the disk, as shown by the red and green lines in the bottom
row of Figure 2.

Sweeping. After completing the base profile, the user
sweeps it along a curve that approximates the main axis of
the 3D part. In general, this curve should be perpendicular
to the profile of the 3D primitive (see blue arrow in Figure
3a). As the curve is drawn, copies of the profile are placed
along the curve, and each of them is snapped to the object’s
outline.

While sweeping, the axis curve is sampled in 2D image
space at a uniform spacing of five pixels to produce 3D sam-
ple points A0, . . . , AN, that lie on one plane. At each sampled
point Ai, a copy of the profile is created, centered around the
curve. Its normal is aligned with the orientation of the curve
at Ai, and its diameter is adjusted so that it’s projection on
the image will fit the object’s outline. Together, the adjusted
copies of the profile in 3D form a discrete set of slices along
the generalized cylinder, as shown in Figure 3c.

At each point Ai, we first copy the profile from Ai−1 and
translate it to Ai. We then rotate it to take into account the
bending of the curve. We then consider the two ends of
the major axis (yellow points in Figure 3b) of the profile,
denoted by pi

0, pi
1. For each contour point pi

j, j ∈ [0, 1] we
cast a 2D ray from point Ai along the major axis, seeking
an intersection with the object outline. Finding the correct
intersection is somewhat challenging as the image may
contain many edges in the vicinity of the new profile. The
closest edge is not necessarily the correct one, for exam-
ple, when hitting occluding edges. In other cases, the cor-
rect outline may be missing altogether. To deal with these
cases, we first limit the search for an intersection to a fixed
range, which limits the major axis of adjacent profiles not
to vary by more than 20% in length. Secondly, we search
for an intersecting edge that is not collinear to the ray (cre-
ates an angle larger than p/4). Although this method can-
not guarantee that it will find the correct intersections, the

Figure 3. Modeling a primitive by defining a 2D profile and sweeping
it along the main axis of the object (a). The profile is copied along the
centerline (b), and the copies are snapped to the image edges (c).

S1 S2 A0 A0

A1 A1

A3 A3

A2 A2

S3

(a) (b) (c)

124 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

research highlights

The key idea is that if the projection of a part is fixed, its
position and orientation can be determined by only one or
two depth values. We first describe the method for simple
parts that can be modeled by a single parameter, namely
parts which were modeled using a straight axis. General
cylinders and cuboids with curved axes will be later approx-
imated using two arbitrarily connected straight axis primi-
tives at the start and end of the whole part.

Determining straight shapes. The position and orienta-
tion of a generalized cylinder i with a straight-axis can be
determined by two points we call anchors, Ci,1 and Ci,2, on its
main axis (see Figure 4). Similarly, a cuboid part can be rep-
resented by six anchors Ci, j j ∈ [1, 6] positioned at the center
of each face. Every opposite pair of anchors defines one main
axis of the cuboid. Even though four anchors are enough to
fix the position and orientation of a cuboid, we use six to
simplify attaching various geo-semantic constraints from
other parts to each side of the cuboid.

We define a local 3D orthogonal coordinate system for
each part using the three strokes defined by the user for the
three dimensions of the part. First, we define the origin of
the coordinate system of part i at a reference point Ri on the
part’s projection. For a cuboid part, we pick the point con-
necting the first and second user strokes, and for a cylinder
we pick the point connecting the second and third strokes.
Due to the internal orthogonality of the straight part, the pro-
file of the part is perpendicular to the main axis. Therefore,
we can use the endpoints of the user’s strokes (after snap-
ping them to the image edges) to define three points that
together with Ri create an orthogonal system (red points and
lines in Figure 5). Note that this coordinate system is defined

subsequent profile propagation step can tolerate a limited
number of missing intersections.

When an intersection point is found, we snap the con-
tour point pi

j to it. If both contour points of the profile are
snapped, we adjust the location of Ai to lie at their mid-
point. If only one side is successfully snapped, we mirror
the length of this side to the other side and move the other
contour point respectively. Lastly, if neither contour points
is snapped, the size of the previous profile is retained.

Post-processing. The above modeling steps closely fol-
low user gestures, especially when modeling the profile.
This provides more intelligent understanding of the shape
but it is less accurate. Therefore, after modeling each prim-
itive, we apply a post-snapping stage to better fit the primi-
tive to the image as well as to correct the view. We search for
small transformations (±10% of primitive size) and changes
of vertical angle of view (±10°) that create a better fit of the
primitive’s projection to the edge curves it was snapped to
in the editing process.

In many cases, the modeled object type has special
properties that can be used as priors to constrain the
modeling. For example, if we know that a given part has
a straight spine, we can constrain the sweep to progress
along a straight line. Similarly, we can constrain the sweep
to preserve a constant or linearly changing profile radius.
In this case, the detected radii are averaged or fitted to a
line along the sweep. We can also constrain the profile to
be a square or a circle. In fact, a single primitive can con-
tain segments with different constraints: it can start with
a straight axis and then bend, or use a constant radius only
in a specific part. Such constraints are extremely helpful
when the edge detection provides poor results.

To further assist in modeling interaction, we also provide
a copy and paste tool. The user can drag a selected part that
is already snapped over to a new location in the image and
snap it again in the new position. While copying, the user
can rotate, scale, or flip the part.

5. COMPOSITE OBJECT CONSTRUCTION
The technique described above generates parts that fit the
object outlines. The positions of these parts in 3D are still
ambiguous and inaccurate. However, the assumption is that
these parts are components of a coherent man-made object,
and semantic geometric relationships exist among them.
Constraining the shape to satisfy such relationships allows
creation of meaningful models.

Since each component has many degrees of freedom,
direct global optimization of the positions of parts while
considering their geo-semantic relationships is compu-
tationally intensive and vulnerable to trapping in local
minima. In our setting, the modeled components are
also constrained to agree with the outlines of the object
in the image. These constraints can significantly reduce
the degrees of freedom for each part, reducing the
dimensionality of the optimization space and avoiding
local minima. In the following discussion, we describe
how we simplify the general positioning problem and
ensure that geo-semantic constraints are satisfied among
the 3-swept parts.

Figure 4. Three examples where we infer geo-semantic constraints
from primitives where such relationships “almost” hold: Collinear axes
(left), Parallel axes (top right), and Perpendicular axes (bottom right).

Cn,2

Cn,1

Cm,2

Cm,1

Cn,2

Cn,1 Cm,1

Cm,2

Cm,1

Cm,2

Cn,2

Cn,1

Ci,1 Ci,2

Ci,4

Ci,3

Ci,5

Ci,6

Ri Ri Ri

Figure 5. Determining coordinates Ci,j for axis endpoints of a cuboid
from the depth value zi of the reference point Ri.

 DECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 125

in camera coordinates. The x and y values of the end points
are determined by the projection and their depth values can
be found as a function of zi, the z value of Ri, by using three
orthogonality constraint equations.

Next, the positions of the anchor points Ci, j in world coor-
dinates are defined using the local orthogonal axes, giving
the structure of part i. Since the local axes depend only on
the depth value zi of the point Ri, we can parameterize the
positions of Ci, j as a function of zi: Ci, j = Fi, j(zi): the position
and orientation of the whole part become a function of a
single unknown zi. Fi, j has the form Fi, j(zi) = b/(a(zi + v)) for
each coordinate component, where a depends only on the x
and y coordinates of the endpoints of the local axes, and b,
v are decided by perspective parameters. They are different
for each axis endpoint and for each coordinate component
(see Ref.6 for the full definition).

Defining geo-semantic constraints. We use the anchor
points to define the geo-semantic relationships between
parts. Specifically, we support six types of constraints: par-
allelism, orthogonality, and collinearity of primitive axes,
overlapping endpoints of axes, coplanar axis endpoints,
and coplanar axes. During modeling, for each type, we test
whether a pair of components is close to satisfying one of
the above geo-semantic constraints. If so, we add this con-
straint to the definition of the object (see Figure 4). For
example, for two cylinders with indices m and n, if the angle
between vector (Cm,1 − Cm,2) and (Cn,1 − Cn,2) is less than 15°,
we add a parallelism constraint (Cm,1 − Cm,2) × (Cn,1 − Cn,2) = 0
to the system of constraints. Similarly if any three of the four
anchors of two cylinders form a triangle containing an angle
larger than 170°, we add a collinear axes constraint: (C1 − C2)
× (C1 − C3) = 0. Internal constraints such as orthogonality and
concentricity of a cuboid’s axes are also added to the defini-
tion, and some editing operations such as copying and past-
ing parts (see Section 6) can impose same-size constraints.
Finally, we also allow the user to manually enforce or revoke
any constraint for selected primitive parts.

Establishing an objective function. Suppose we have
found p geo-semantic constraints Gk for a set of n compo-
nents. Together with the objective function for fitting the
image outline, we define the following optimization system:

 (1)

subject to Gk (C1,1, . . ., Cn,mn
), k =1, . . ., p, (2)

where mi is the number of axes of the ith primitive part. We
add weights wi proportional to the radius of the base profile
of each part and the length of its axis. Larger parts have more
impact on the solution since typically larger parts are mod-
eled more accurately. Intuitively, the first equation tries to fit
projection of the part’s geometry (Ci, j) to the image outline
and the user’s gestures, while the second set of equations
imposes the geo-semantic constraints.

Two-step solution. Solving for Ci, j and zi together is a non-
linear non-convex optimization problem with nonlinear con-
straints. Directly solving such a system without becoming
trapped in a local minimum is very difficult. Hence, we decom-
pose the solution into a two step procedure. The first step tries

to find a good initial position for all parts at once, by chang-
ing only their depths (governed by zi) to meet the geo-semantic
constraints. In the second step, the full system is solved, allow-
ing the shapes of the parts (Ci, j) to change as well.

In the first step, we modify the soft constraint in Equation
(1) to a hard one, and replace Ci, j by Fi, j(zi) in all equations. This
means that Equation (1) is trivially true and we are left with just
the constraints in Equation (2). In effect, this means we fix the
projection and find the optimal zi meeting the geo-semantic
constraints. This reduces the number of variables to n (zi, 1 ≤
i ≤ n) and changes Equation (2) into a potentially over-deter-
mined system, where each equation only contains two differ-
ent variables. We find the least squares solution by using the
conjugate gradient method, with all zi values initialized to 0.

This first step provides a good initialization to find the
optimal solution for Ci, j, which should be close to Fi, j(),
requiring only small inconsistencies to be fixed with the geo-
semantic constraints. Hence, in the second step, we carry out
full optimization of Equation (1) with the set of constraints
in Equation (2) by an augmented Lagrangian method. Both
steps are fast, and we are able to avoid local minima by the
initialization of the first step. This also permits optimiza-
tion to be carried out at interactive speed (see examples at
https://vimeo.com/148236679). Note that the nonlinearity of
Fi, j() arises due to the assumption of a perspective projec-
tion. However, we can linearly approximate this projec-
tion since we assume the change in zi is small. This further
increases the speed and stability of our solution.

Curved shapes. To handle parts with a non-straight axis,
we first simplify the problem by assuming that the general
axis lies in a plane. We define a non-straight part as a blend
of two straight-axis sub-parts, placed at the two ends of the
part. The position of each of these sub-parts is determined
by a single depth value in the optimization above. The blend
between these parts for the whole part is defined by connect-
ing the two subparts with a piecewise linear curve where the
axis points are determined when constraining the profile
while snapping it during the user’s sweep. More details can
be found in Ref.6

Texturing. Once the object has been modeled, we can map
the texture from the image onto the object, as shown in Figure 6.
By projecting a vertex of the mesh to the image plane, we can
get the 2D coordinates of the vertex in the image, which are
then used as texture coordinates to map the corresponding
part of the image onto the model. Since there is no informa-
tion regarding the back of the object, we simply use a sym-
metry assumption and mirror the front texture to the back.
In each half of the model (front and back), we assign the same
texture coordinate for the two vertices that are mirrored
symmetrically about the central plane. On the two sides of the
object (left and right), there are vertices whose normal is
perpendicular, or almost perpendicular, to the image plane.
To deal with such vertices, we treat the texture associated
with them as holes, and use the image completion technique4
to fill them.

6. EXPERIMENTAL RESULTS
We implemented the 3-Sweep interactive technique in C++
inside a simple modeling system. The system provides an

126 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

research highlights

sizes appear different in the photo. During modeling, we
modeled one candle holder and copied it to fit all other hold-
ers in the image, while requiring that they all lie on the same
plane and that their 3D sizes be the same. This efficiently
recovered the true 3D position and shape of each part.

Figure 6 shows several modeling results. In the top row
we show the input photos, in the middle row we show the
extracted and repositioned 3D models, and in the third row,
they are inserted with their textures into the same or a new
environment. The rightmost column shows the modeling
and repositioning of three objects in one complex photo.
Note that the menorah has been rotated, and translated on
the ground plane.

Figure 7 shows three examples of modeling and edit-
ing at the part-level, where some parts of the objects
(highlighted in gold) are replicated, copied, and option-
ally rotated to enhance and enrich the shape. At top left
is a tap, whose handle is augmented to be four-sided, and
also rotated. The whole tap is also copied and attached
to the other side of the wall. The top right shows a street
lamp with duplicated lamps moved to a lower position and
rotated. The whole lamp pole is also copied to other posi-
tions on the street. The bottom row shows different edit-
ing operations carried out on a telescope after modeling it.
Note that different scaling factors have been applied to the
different telescope parts.

outline view for 3-Sweep interaction, a solid model view,
and a texture view for checking the model and for image
editing. The user can choose between cuboid, cylinder,
and sphere primitives using a button or key shortcut. The
system also provides conventional menu selection, view
control and deformation tools. The 3-Sweep technique
has been tested and evaluated on a large number of pho-
tos as we demonstrate in this section and in the online
video (see https://vimeo.com/148236679). As shown in the
video, most of the examples were modeled in a few minutes
or less. The modeling process is intuitive and fluent, and
can be used by unskilled people following very little train-
ing. Editing and repositioning an object after modeling
requires an effort similar to using other parametric editing
techniques.

6.1. Modeling from single image and editing
In the following examples, we show how the acquired 3D
 textured-model allows semantic image editing. Before edit-
ing, the image of the 3D model is cut out from the photo,
leaving a black hole which is filled using a standard image
completion technique.4

Figure 1e demonstrates the modeling of a menorah, and
then rotating its arms to a different angles preserving the
inter-part relationships of the object. Note that all candle
holders have the same size, but due to the oblique view, their

Figure 6. Modeling different objects: a table (a), a lamp (b), a monument (c), a samovar (d) and a menorah (e). Top: input photos. Middle: extracted
3D models (blue) are rotated and repositioned. Bottom: modified objects inserted into the same or a new environment, with their textures.

(a) (c) (e)(d)(b)

 DECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 127

In Figure 8, we show a case where two input photos are
used to create one model of an object: the Obelisk in Paris.
Firstly, the base of the Obelisk is modeled from a close up
view in (a), allowing more detail to be captured. The partial
3D model is then moved to another photo where the entire
Obelisk is visible, but the base is occluded. Similar to a copy
and paste procedure, the user positions the extracted base
inside the image, and it snaps to the image contours in (b).
The user then continues the modeling process with other
parts. The texture of the transported part is blended to match

the shading of the region in the new image, to maintain con-
sistency: see the rotated view (c). Details of the base can be
seen in the close up view (d) of the final model of the Obelisk.

In Figure 9, we show a photograph with a collection of
objects that were modeled and copied from other photos.
The online video (https://vimeo.com/148236679) shows the
process of modeling and editing these objects. The model-
ing and editing time for each example is shown in Table 1,
as well as the number of manually provided geo-semantic
constraints. Objects in oblique views typically need more
manual constraints, most of which designate coplanar axes,
which are difficult to infer automatically.

6.2. Comparison to sketch based modeling
As discussed in Section 2, our method shares some simi-
larities with the one in Shtof et al.,19 which models objects
from sketches. We previously discussed the main differences
between the methods. Their system is based on sketches
rather than photographs, which makes it easier to assume that
parts have sufficient bounding curves around them. It relies
on labeling, using a drag and drop metaphor for choosing and
positioning the primitives before snapping with the sketches.
We make a comparison based on their sketch inputs (see Figure
10), since their method cannot handle the examples presented
in this paper. Comparing the modeling time shows that sketch
labeling and drag and drop snapping steps are significantly less
efficient and less intuitive compared to our 3-Sweep method.
Our modeling time (60s on average) is significantly lower than
the time they report for their technique (180s on average).

6.3. Limitations
Our work has several limitations. First, many shapes cannot
be decomposed into generalized cylinders and cuboids, and
cannot be modeled using our framework (e.g., the base of
the menorah in Figure 1). It would be desirable to extend the
types of primitives which can be modeled using similar prin-
ciples. 3-Sweep also relies on the fact that the object modeled

Figure 7. Top: modeling and replicating parts for image editing. Orange parts are replicated or deformed. Bottom: editing a telescope.
The leftmost images are the original photos. Note that different parts have been scaled differently.

Figure 8. Modeling the Obelisk in Paris from two photos. Top: the
base of the Obelisk is modeled from a closer view which captures
more details. Bottom: (a) The partial 3D model is transported to
a more distant view (in which part of the base is occluded). (b) A
rotated textured Obelisk; the texture of the transported part is
blended into the region it occupied. (c) Details of the base are visible
in the close-up of the new view.

(a)

Modeling Blending Close-up

(b) (c)

128 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

research highlights

Figure 10. Modeling from sketches. Input sketches are taken
from Ref.19

(a) (b) (c)

Figure 11. Failures. (a) Due to perspective projection, the table legs
cannot be snapped to the image under a parallelism constraint. (b)
Due to the assumption of uniformly scaling profiles, the bottom of
the toothpaste tube is not flattened. (c) Snapping fails due to an ill-
defined edge caused by the shadow cast by the bottle.

Figure 1 6 8 7 9

Example Menorah (a) (b) (c) (d/e) (f) Obelisk Tap Lamp Telescope Trumpet Handle Horn
Time (s) 80 + 25 75 + 15 20 35 30 65 + 35 20 30 + 25 40 + 50 100 + 30 80 30 60
Constraints 2 4 2 1 1 1 0 2 1 2 1 1 1

Table 1. Modeling + Editing times (in seconds), and the number of manually provided geo-semantic constraints (added or removed) for each
example.

7. CONCLUSION
We have presented an interactive technique which can model
3D man-made objects from a single photograph by combin-
ing the cognitive ability of humans with the computational
accuracy of computers. The 3-Sweep technique is designed to
allow extracting an editable model from a single image. The
range of objects that our technique can support are objects
that consist of simple parts, without much occlusion. As we
demonstrated, this range is surprising large to be useful for
interactive modeling—our tests show that our method can
model a large variety of man-made objects in photographs, as
well as objects in sketches. The modeled objects can be edited
in a semantically meaningful way, both in the original image,
or for use in composing new images. In the future, we hope to
extend the range of primitives, and to allow modeling of the

Figure 9. A rendered scene using source images from the top image strip.

includes typical relationships among parts such as symmetry,
parallelism, and collinearity. More free-form objects, or parts,
that differ from this would need to be positioned by hand.

Even for a generalized cylinder there is sometimes ambigu-
ity. We assume that the profiles of the cylinder are uniformly
scaled and do not rotate around the main axis. This assump-
tion is not always satisfied, as demonstrated in Figure 11b. We
further assume that the main axis is mostly visible and parallel
to the viewing plane. Using a perspective assumption, we can
handle a small amount of skew, but not a large one.

The snapping algorithm relies on good detection of object
edges and assumes the main part of the object is not occluded.
Objects that are too small, such as the cross in Figure 6e, or
objects that have fuzzy edges such as the example in Figure
11c are hard to model accurately. The photographs them-
selves often have some distortions from an ideal perspec-
tive projection (see Figure 11a), where corrections should be
applied before modeling. Lastly, our editing assumes a simple
illumination model without shadows. Relighting and shadow
computations are not currently supported by our system.

 DECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 129

Tao Chen and Daniel Cohen-Or
(taochen@ee.columbia.edu)
Tel Aviv & Tsinghua University,
Israel & Tsinghua University,
Beijing, China.

Zhe Zhu and Shi-Min Hu (ajex1988@
gmail.com, shimin@tsinghua.edu.cn)
Tsinghua University, Beijing, China.

Ariel Shamir (arik@idc.ac.il) The
Interdisciplinary Center, Herzliya, Israel.

References
 1. Andre, A., Saito, S. Single-view sketch

based modeling. In Proceedings of
the Eighth Eurographics Symposium
on Sketch-Based Interfaces and
Modeling (SBIM ’11) (2011). ACM,
New York, NY, USA, 133–140.

 2. Arbelaez, P., Maire, M., Fowlkes, C.,
Malik, J. Contour detection and
hierarchical image segmentation.
IEEE Trans. Patt. Anal. Mach. Intell.
33, 5 (2011), 898–916.

 3. Arikan, M., Schwärzler, M., Flöry, S.,
Wimmer, M., Maierhofer, S. O-snap:
Optimization-based snapping for
modeling architecture. ACM Trans.
Graph. (TOG) 32, 1 (2013), 6.

 4. Barnes, C., Shechtman, E., Finkelstein, A.,
Goldman, D. Patchmatch: A
randomized correspondence algorithm
for structural image editing. ACM
Trans. Graph.-TOG 28, 3 (2009), 24.

 5. Benko, P., Kós, G., Várady, T., Andor, L.,
Martin, R. Constrained fitting in
reverse engineering. Comput. Aided
Geom. Des. 19, 3 (2002), 173–205.

 6. Chen, T., Zhu, Z., Shamir, A., Hu, S.-M.,
Cohen-Or, D. 3sweep: Extracting
editable objects from a single photo.
ACM Trans. Graph. 32, 6 (Nov. 2013),
1–195.

 7. Cheng, M. Curve structure extraction
for cartoon images. In Proceedings
of the 5th Joint Conference on
Harmonious Human Machine
Environment (2009), 13–25.

 8. Cheng, M., Zhang, F., Mitra, N.,
Huang, X., Hu, S. Repfinder: Finding
approximately repeated scene
elements for image editing. ACM
Trans. Graph. (TOG) 29, 4 (2010), 83.

 9. Choi, B., Lee, C. Sweep surfaces
modelling via coordinate
transformation and blending. Comput.-
Aided Des. 22, 2 (1990), 87–96.

 10. Debevec, P.E., Taylor, C.J., Malik,
J. Modeling and rendering
architecture from photographs: A
hybrid geometry-and image-based
approach. In Proceedings of the 23rd
Annual Conference on Computer
Graphics and Interactive Techniques
(SIGGRAPH ’96) (1996). ACM, New
York, NY, USA, 11–20.

 11. Gal, R., Sorkine, O., Mitra, N., Cohen-
Or, D. iwires: An analyze-and-edit
approach to shape manipulation. ACM
Trans. Graph. (TOG) 28 (2009) 33.

 12. Gingold, Y., Igarashi, T., Zorin, D.
Structured annotations for 2d-to-3d
modeling. ACM Trans. Graph. (TOG)
28 (2009) 148.

 13. Goldberg, C., Chen, T., Zhang, F.,
Shamir, A., Hu, S. Data-driven object
manipulation in images. Comput.
Graph. Forum 31 (2012) 265–274.

 14. Lalonde, J., Hoiem, D., Efros, A.,
Rother, C., Winn, J., Criminisi, A. Photo
clip art. ACM Trans. Graph. (TOG) 26
(2007) 3.

 15. Mille, J., Boné, R., Cohen, L.D. Region-
based 2d deformable generalized
cylinder for narrow structures
segmentation. In Proceedings of
Computer Vision–ECCV 2008: 10th
European Conference on Computer
Vision, Forsyth, D., Torr, P. and
Zisserman, A. (eds) (Marseille,
France, October 12-18, Part II, 2008).
Springer, Berlin, Heidelberg, 392–404.

 16. Oh, B., Chen, M., Dorsey, J., Durand, F.
Image-based modeling and photo
editing. In Proceedings of the 28th
Annual Conference on Computer
Graphics and Interactive Techniques
(SIGGRAPH ’01) (2001). ACM, New
York, NY, USA, 433–442.

 17. Olsen, L., Samavati, F., Sousa, M., Jorge, J.
Sketch-based modeling: A survey.
Comput. Graph. 33, 1 (2009), 85–103.

 18. Oswald, M.R., Toppe, E., Cremers, D.
Fast and globally optimal single view

reconstruction of curved objects. In
2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)
(2012). IEEE, 534–541.

 19. Shtof, A., Agathos, A., Gingold, Y.,
Shamir, A., Cohen-Or, D. Geosemantic
snapping for sketch-based modeling.
Volume 32. In Eurographics (2013),
245–253.

 20. Snavely, N. Scene reconstruction
and visualization from internet
photo collections: A survey. IPSJ
Trans. Comput. Vision Appl. 3
(2011), 44–66.

 21. Xu, K., Zhang, H., Cohen-Or, D.,
Chen, B. Fit and diverse: Set
evolution for inspiring 3d shape
galleries. ACM Trans. Graph. (TOG)
31, 4 (2012), 57.

 22. Xu, K., Zheng, H., Zhang, H., Cohen-Or, D.,
Liu, L., Xiong, Y. Photo-inspired model-
driven 3d object modeling. ACM
Trans. Graph. (TOG) 30 (2011) 80.

 23. Xue, T., Liu, J., Tang, X. Symmetric
piecewise planar object
reconstruction from a single
image. In 2011 IEEE Conference
on Computer Vision and Pattern
Recognition (CVPR) (2011). IEEE,
2577–2584.

freer shapes of natural objects. We also wish to add symme-
try and smoothness constraints on the shapes. 3-Sweep could
also be extended to allow modeling from multi-view images
or video, without the help of depth data. The applications
demonstrated mainly show editing and manipulation of
geometry, but the recovered 3D models and surface normals
can be used for re-lighting and material editing.

© 2016 ACM 0001-0782/16/12 $15.00

ACM Transactions on Parallel Computing
Solutions to Complex Issues in Parallelism
Editor-in-Chief: Phillip B. Gibbons, Intel Labs, Pittsburgh, USA

For further information or to submit your manuscript, visit topc.acm.org

Subscribe at www.acm.org/subscribe

ACM Transactions on Parallel Computing (TOPC) is a forum for novel
and innovative work on all aspects of parallel computing, including
foundational and theoretical aspects, systems, languages, architectures,
tools, and applications. It will address all classes of parallel-processing
platforms including concurrent, multithreaded, multicore, accelerated,
multiprocessor, clusters, and supercomputers.

Subject Areas

• Parallel Programming Languages and Models
• Parallel System Software
• Parallel Architectures
• Parallel Algorithms and Theory
• Parallel Applications
• Tools for Parallel Computing

For further information or to submit your manuscript, visit topc.acm.org

Subscribe at www.acm.org/subscribe

