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Abstract
We introduce an interactive technique to extract and manip-
ulate simple 3D shapes in a single photograph. Such extrac-
tion requires an understanding of the shape’s components, 
their projections, and their relationships. These cognitive 
tasks are simple for humans, but particularly difficult for 
automatic algorithms. Thus, our approach combines the 
cognitive abilities of humans with the computational accu-
racy of the machine to create a simple modeling tool. In 
our interface, the human draws three strokes over the pho-
tograph to generate a 3D component that snaps to the out-
line of the shape. Each stroke defines one dimension of the 
component. Such human assistance implicitly segments a 
complex object into its components, and positions them 
in space. The computer reshapes the component to fit the 
image of the object in the photograph as well as to satisfy 
various inferred geometric constraints between compo-
nents imposed by a global 3D structure. We show that this 
intelligent interactive modeling tool provides the means 
to create editable 3D parts quickly. Once the 3D object has 
been extracted, it can be quickly edited and placed back into 
photos or 3D scenes, permitting object-driven photo editing 
tasks which are impossible to perform in image-space.

1. INTRODUCTION
Extracting three dimensional objects from a single photo 
is still a long way from reality given the current state of 
technology, since it involves numerous complex tasks: the 
target object must be separated from its background, and 
its 3D pose, shape, and structure should be recognized from 
its projection. These tasks are difficult, even ill-posed, 
since they require some degree of semantic understand-
ing of the object. To alleviate this difficulty, complex 3D 
models can be partitioned into simpler parts that can be 
extracted from the photo. However, assembling parts into 
an object also requires further semantic understanding 
and is difficult to perform automatically. Moreover, hav-
ing decomposed a 3D shape into parts, the relationships 
between these parts should also be understood and main-
tained in the final composition.

In this paper, we present an interactive technique to 
extract 3D man-made objects from a single photograph, 
leveraging the strengths of both humans and computers. 
Human perceptual abilities are used to partition, recognize, 
and position shape parts, using a very simple interface based 
on triplets of strokes, while the computer performs tasks 
which are computationally intensive or require accuracy. 
The final object model produced by our method includes 
its geometry and structure, as well as some of its semantics. 
This allows the extracted model to be readily available for 

The original version of this paper is entitled “3-Sweep: 
Extracting Editable Objects from a Single Photo” and 
was published in ACM Transactions on Graphics, Volume 
32, Issue 6—Proceedings of ACM SIGGRAPH Asia 2013, No-
vember 2013 Article No. 195.

intelligent editing, which maintains the shape’s semantics 
(see Figure 1).

Our approach is based on the observation that many 
man-made objects can be decomposed into simpler parts 
that can be represented by generalized cylinders, cuboids, 
or similar primitives. A generalized cylinder is a cylindrical 
primitive shape where the central axis is a curve instead of 
a line, the shape’s profile can be any 2D closed curve and 
not just a circle, and this shape can also change along the 
curve. In this work, we use just circular and cuboid pro-
files. The key contribution of our method is an interac-
tive tool that guides and assists the user in the creation 
of a 3D editable object by defining its primitive parts. The 
tool is based on a rather simple modeling gesture we call 
3-Sweep. This gesture allows the user to explicitly define 
the three dimensions of a geometric primitive using three 
sweeps. The first two sweeps define the first and second 
dimension of a 2D profile and the third, usually longer, 
sweep is used to define the main curved axis of the primi-
tive (see Figure 2).

Figure 1. 3-Sweep Object Extraction. (a) Input image. (b) Extracted 
edges. (c) 3-Sweep modeling of one component of the object. (d) The 
full extracted 3D model. (e) Changing the object viewpoint. (f) Editing 
the model by rotating each arm in a different direction, and pasting 
onto a new background. The base of the object is transferred by 
alpha matting and compositing.

(a) (b) (c)

(d) (e) (f)
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As the user sweeps the primitive, the program dynamically 
adjusts the progressive profile by sensing the pictorial con-
text in the photograph and automatically snapping to it. 
Furthermore, relationships between the various primitive 
parts are automatically recognized and preserved by the 
program. Using several such 3-Sweep operations, the user 
can model 3D parts consistent with the object in the photo-
graph, while the computer automatically maintains global 
constraints linking them to other primitives comprising 
the object. Using 3-Sweep technology, non-professionals 
can extract 3D objects from photographs. These objects can 
then be used to build a new 3D scene, or to alter the original 
image by changing the objects or their parts in 3D and past-
ing them back into the photo.

2. BACKGROUND
Modeling from images. Images have always been an impor-
tant resource for 3D modeling. Many techniques use multiple 
images or videos to model 3D shapes and scenes.20 However, 
our focus is on modeling objects from a single photograph. 
This task is challenging because of the inherent ambiguity of 
the mapping from a 3-dimensional world to a 2-dimensional 
image. To overcome this, methods use both constraints on 
the type of images that can be used—such as non-oblique 
views, and prior assumption on the possible geometry that 
can be extracted.

Fully automatic methods use assumption such as symme-
try,23 smoothness,18 or the existence of a prior 3D model simi-
lar to the one in the photograph.22 Some limit the geometry to 
planes or smooth surfaces, while others limit the application 
range (e.g., to architectural models3, 10). There are methods 
that automatically fit edges or regions in an image or sketch 
using optimization.15 These are basically 2D methods, gener-
ating either 2D models or 3D models by extrusion. Our method 
can directly generate complex oblique shapes in 3D space 
such as the menorah in Figure 1 and the telescope in Figure 7. 
Automatic methods would fail on such examples since their 
prior assumptions are not met, or because they rely on region 
color or clear edges, which can be missing or occluded.

Other methods use a human-in-the-loop for modeling,16 
but usually require extensive manual interaction, and are 
more time consuming compared to the 3-Sweep approach. 
They either require a complete sketch of the object or 
tedious labeling before the machine takes control of an 
optimization process, while in 3-Sweep user guidance and 

automatic snapping are interlaced.
Sketch-based modeling. The task of 3D modeling from a 

single image is closely related to the reconstruction or defi-
nition of a 3D shape from a sketch.17 The user either directly 
draws the curves of the object1 or fits parts or primitives to 
a predefined sketch.12 Our work was inspired by a tool for 
modeling simple 3D objects from sketches presented by 
Shtof et al.19 In that work geo-semantic constraints were 
used between primitive parts to define their semantic and 
geometric relationships, and connect them to form the final 
object. However, their approach is geared towards sketches 
and uses a drag and drop interface for primitives that need 
to fit the sketch contours.

Computer aided design. The use of constraints in com-
puter-aided design has been studied extensively and allows 
the definition of semantic information that relates different 
geometric parts in an object. Automatically inferring con-
straints from the object or its parts’ geometry has been used 
for reverse engineering5 and object deformation and edit-
ing.11, 21 Similarly, sweep-based models have been defined 
and used since the beginning of the field.9 While we cannot 
report all computer-aided design work aiming at modeling 
sweep-based primitives, to our knowledge, none of these 
methods have been applied to modeling from photographs, 
nor they have paired sweeping with snapping to image edges.

Object-based image editing. Apart from modeling a 
3D object, 3-Sweep allows the application of object-based 
image editing operations, that previously required extensive 
user interaction8 or massive data collection.13, 14

3. OVERVIEW
Our interactive modeling approach takes as input a single 
photo such as the one in Figure 1a. Our goal is to extract a 3D 
model whose projection exactly matches the object in the 
image. Using the 3-Sweep modeling technique, the user con-
structs the whole object gradually from its parts. This means 
that the object is implicitly decomposed into simple parts, 
which are typically semantically meaningful. We define two 
types of primitives: both use a piecewise linear centerline to 
sweep a cross-section which is assumed to be perpendicu-
lar to the centerline at every location. One type of primitive 
uses a circular cross-section that can vary in radius along the 
sweep, and the other uses a rectangle cross-section that can 
change its aspect ratio along the sweep.

Such decomposition is both easy and intuitive for users, 
but provides the computer significant information for recon-
structing a coherent 3D man-made object from its parts’ 
projections. The parts are expected to have typical geomet-
ric relationships that can be exploited to guide the composi-
tion of the whole object. Although the user interacts with the 
given photo, she does not need to exactly fit the parts to the 
photo or connect them to each other. 3-Sweep automatically 
snaps primitive parts to object outlines created from edges, 
and connects them to previously defined 3D parts.

To create a single 3D primitive part on the given photo, the 
designer uses three strokes. The first two strokes define a 2D 
profile of the part and the third stroke defines its main axis, 
which is either straight or curved (see Figure 2). Defining the 
profile and sweeping the axis are simple operations since 

Figure 2. The 3-Sweep paradigm is used to define general cylinder 
and cuboid parts.
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they do not demand accuracy. The profile dimensions are 
guided by the object’s outlines. While sweeping, the 3D 
extent of the part is also defined by snapping to these out-
lines. To compensate for perspective distortion, during this 
process, the camera’s angle of view is estimated. Therefore, 
the part need only be sketched quickly and casually by the 
user. Figure 1c shows the result of sweeping along the tubes 
of the menorah (more examples could be seen in an online 
video at https://vimeo.com/148236679). We elaborate on the 
3-Sweep operation in Section 4.

As more model parts are added, geometric relationships 
between them serve (i) to assist in disambiguating and defin-
ing the depth dimension and (ii) to optimize the positioning 
of the parts. These geometric relationships include parallel-
ism, orthogonality, collinearity, and coplanarity. We use opti-
mization to satisfy these geo-semantic constraints, while 
taking into account the snapping of the 3D geometry to the 
object’s outlines and the user’s sweeping input. A complete 
model with geo-semantic relationships is shown in Figure 1d. 
These geo-semantic relationships not only help define the 
3D model, but become part of the 3D representation of the 
model, allowing smart editing of the 3D model later, as dem-
onstrated in Figure 1f and in other figures in the paper.

Our interface also supports several operations for more 
effective modeling. For example, the user can copy and paste 
similar parts to other positions on the image. Although 
many geo-semantic constraints are automatically inferred, 
the user can also manually specify constraints between 
selected parts, constrain the parts to have uniform or lin-
early changing radii etc.

4. SINGLE PRIMITIVE FITTING
In this section, we first describe the 3-Sweep technique for 
creating one generalized cylinder. Simpler primitives such 
as spheroids or simple cubes are also supported by direct 
modeling in our system.

Preprocessing. In a preprocessing stage, we extract 
image edges and build candidate object outlines. We adopt 
a method for hierarchical edge feature extraction based on 
spectral clustering.2 We then apply a technique to link the 
detected edge pixels into continuous point sequences,7 each 
shown in a different color in Figure 1b. An edge orientation 
computed over a 5 × 5 neighborhood is associated with each 

edge pixel.
Profile definition. In the first stage, the user draws the 2D 

profile of the generalized cylinder, usually at one end of the 
shape. This is illustrated in Figure 3, where black curves are 
outlines detected in the input image. The task is to draw a 
2D profile correctly oriented in 3D. This can be regarded as 
positioning a disk in 3D by drawing its projection in 2D. To 
simplify this task, we assume that the disk is a circle, thus 
reducing the number of unknown parameters. Later, the cir-
cular disk can be warped into an elliptical disk based on the 
3D reconstruction. The drawing of a circular disk is accom-
plished by drawing two straight lines S1S2 and S2S3 over the 
image, as shown in Figure 3a (red and green arrows). The first 
line defines the major diameter of the disk, and the second 
line is then dragged to the end of the minor diameter. This 
forms an ellipse in image space that matches the projection 
of a circular disk: see the dark blue circle in Figure 3a. The 
depth of the disk is set to 0. The normal direction and radius 
of the disk are assigned according to the length and orienta-
tion of the two diameters of the elliptical projection.

Generalized cuboids are modeled in a similar way. The 
two strokes that define the profile of a cuboid follow the two 
edges of the base of the cuboid instead of the diameters of 
the disk, as shown by the red and green lines in the bottom 
row of Figure 2.

Sweeping. After completing the base profile, the user 
sweeps it along a curve that approximates the main axis of 
the 3D part. In general, this curve should be perpendicular 
to the profile of the 3D primitive (see blue arrow in Figure 
3a). As the curve is drawn, copies of the profile are placed 
along the curve, and each of them is snapped to the object’s 
outline.

While sweeping, the axis curve is sampled in 2D image 
space at a uniform spacing of five pixels to produce 3D sam-
ple points A0, . . . , AN, that lie on one plane. At each sampled 
point Ai, a copy of the profile is created, centered around the 
curve. Its normal is aligned with the orientation of the curve 
at Ai, and its diameter is adjusted so that it’s projection on 
the image will fit the object’s outline. Together, the adjusted 
copies of the profile in 3D form a discrete set of slices along 
the generalized cylinder, as shown in Figure 3c.

At each point Ai, we first copy the profile from Ai−1 and 
translate it to Ai. We then rotate it to take into account the 
bending of the curve. We then consider the two ends of 
the major axis (yellow points in Figure 3b) of the profile, 
denoted by pi

0, pi
1. For each contour point pi

j, j ∈ [0, 1] we 
cast a 2D ray from point Ai along the major axis, seeking 
an intersection with the object outline. Finding the correct 
intersection is somewhat challenging as the image may 
contain many edges in the vicinity of the new profile. The 
closest edge is not necessarily the correct one, for exam-
ple, when hitting occluding edges. In other cases, the cor-
rect outline may be missing altogether. To deal with these 
cases, we first limit the search for an intersection to a fixed 
range, which limits the major axis of adjacent profiles not 
to vary by more than 20% in length. Secondly, we search 
for an intersecting edge that is not collinear to the ray (cre-
ates an angle larger than p/4). Although this method can-
not guarantee that it will find the correct intersections, the 

Figure 3. Modeling a primitive by defining a 2D profile and sweeping 
it along the main axis of the object (a). The profile is copied along the 
centerline (b), and the copies are snapped to the image edges (c).
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The key idea is that if the projection of a part is fixed, its 
position and orientation can be determined by only one or 
two depth values. We first describe the method for simple 
parts that can be modeled by a single parameter, namely 
parts which were modeled using a straight axis. General 
cylinders and cuboids with curved axes will be later approx-
imated using two arbitrarily connected straight axis primi-
tives at the start and end of the whole part.

Determining straight shapes. The position and orienta-
tion of a generalized cylinder i with a straight-axis can be 
determined by two points we call anchors, Ci,1 and Ci,2, on its 
main axis (see Figure 4). Similarly, a cuboid part can be rep-
resented by six anchors Ci, j  j ∈ [1, 6] positioned at the center 
of each face. Every opposite pair of anchors defines one main 
axis of the cuboid. Even though four anchors are enough to 
fix the position and orientation of a cuboid, we use six to 
simplify attaching various geo-semantic constraints from 
other parts to each side of the cuboid.

We define a local 3D orthogonal coordinate system for 
each part using the three strokes defined by the user for the 
three dimensions of the part. First, we define the origin of 
the coordinate system of part i at a reference point Ri on the 
part’s projection. For a cuboid part, we pick the point con-
necting the first and second user strokes, and for a cylinder 
we pick the point connecting the second and third strokes. 
Due to the internal orthogonality of the straight part, the pro-
file of the part is perpendicular to the main axis. Therefore, 
we can use the endpoints of the user’s strokes (after snap-
ping them to the image edges) to define three points that 
together with Ri create an orthogonal system (red points and 
lines in Figure 5). Note that this coordinate system is defined 

subsequent profile propagation step can tolerate a limited 
number of missing intersections.

When an intersection point is found, we snap the con-
tour point pi

j to it. If both contour points of the profile are 
snapped, we adjust the location of Ai to lie at their mid-
point. If only one side is successfully snapped, we mirror 
the length of this side to the other side and move the other 
contour point respectively. Lastly, if neither contour points 
is snapped, the size of the previous profile is retained.

Post-processing. The above modeling steps closely fol-
low user gestures, especially when modeling the profile. 
This provides more intelligent understanding of the shape 
but it is less accurate. Therefore, after modeling each prim-
itive, we apply a post-snapping stage to better fit the primi-
tive to the image as well as to correct the view. We search for 
small transformations (±10% of primitive size) and changes 
of vertical angle of view (±10°) that create a better fit of the 
primitive’s projection to the edge curves it was snapped to 
in the editing process.

In many cases, the modeled object type has special 
properties that can be used as priors to constrain the 
modeling. For example, if we know that a given part has 
a straight spine, we can constrain the sweep to progress 
along a straight line. Similarly, we can constrain the sweep 
to preserve a constant or linearly changing profile radius. 
In this case, the detected radii are averaged or fitted to a 
line along the sweep. We can also constrain the profile to 
be a square or a circle. In fact, a single primitive can con-
tain segments with different constraints: it can start with 
a straight axis and then bend, or use a constant radius only 
in a specific part. Such constraints are extremely helpful 
when the edge detection provides poor results.

To further assist in modeling interaction, we also provide 
a copy and paste tool. The user can drag a selected part that 
is already snapped over to a new location in the image and 
snap it again in the new position. While copying, the user 
can rotate, scale, or flip the part.

5. COMPOSITE OBJECT CONSTRUCTION
The technique described above generates parts that fit the 
object outlines. The positions of these parts in 3D are still 
ambiguous and inaccurate. However, the assumption is that 
these parts are components of a coherent man-made object, 
and semantic geometric relationships exist among them. 
Constraining the shape to satisfy such relationships allows 
creation of meaningful models.

Since each component has many degrees of freedom, 
direct global optimization of the positions of parts while 
considering their geo-semantic relationships is compu-
tationally intensive and vulnerable to trapping in local 
minima. In our setting, the modeled components are 
also constrained to agree with the outlines of the object 
in the image. These constraints can significantly reduce 
the degrees of freedom for each part, reducing the 
dimensionality of the optimization space and avoiding 
local minima. In the following discussion, we describe 
how we simplify the general positioning problem and 
ensure that geo-semantic constraints are satisfied among 
the 3-swept parts.

Figure 4. Three examples where we infer geo-semantic constraints 
from primitives where such relationships “almost” hold: Collinear axes 
(left), Parallel axes (top right), and Perpendicular axes (bottom right).
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Figure 5. Determining coordinates Ci,j for axis endpoints of a cuboid 
from the depth value zi of the reference point Ri.
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in camera coordinates. The x and y values of the end points 
are determined by the projection and their depth values can 
be found as a function of zi, the z value of Ri, by using three 
orthogonality constraint equations.

Next, the positions of the anchor points Ci, j in world coor-
dinates are defined using the local orthogonal axes, giving 
the structure of part i. Since the local axes depend only on 
the depth value zi of the point Ri, we can parameterize the 
positions of Ci, j as a function of zi: Ci, j = Fi, j(zi): the position 
and orientation of the whole part become a function of a 
single unknown zi. Fi, j has the form Fi, j(zi) = b/(a(zi + v) ) for 
each coordinate component, where a depends only on the x 
and y coordinates of the endpoints of the local axes, and b, 
v are decided by perspective parameters. They are different 
for each axis endpoint and for each coordinate component 
(see Ref.6 for the full definition).

Defining geo-semantic constraints. We use the anchor 
points to define the geo-semantic relationships between 
parts. Specifically, we support six types of constraints: par-
allelism, orthogonality, and collinearity of primitive axes, 
overlapping endpoints of axes, coplanar axis endpoints, 
and coplanar axes. During modeling, for each type, we test 
whether a pair of components is close to satisfying one of 
the above geo-semantic constraints. If so, we add this con-
straint to the definition of the object (see Figure 4). For 
example, for two cylinders with indices m and n, if the angle 
between vector (Cm,1 − Cm,2) and (Cn,1 − Cn,2) is less than 15°, 
we add a parallelism constraint (Cm,1 − Cm,2) × (Cn,1 − Cn,2) = 0 
to the system of constraints. Similarly if any three of the four 
anchors of two cylinders form a triangle containing an angle 
larger than 170°, we add a collinear axes constraint: (C1 − C2) 
× (C1 − C3) = 0. Internal constraints such as orthogonality and 
concentricity of a cuboid’s axes are also added to the defini-
tion, and some editing operations such as copying and past-
ing parts (see Section 6) can impose same-size constraints. 
Finally, we also allow the user to manually enforce or revoke 
any constraint for selected primitive parts.

Establishing an objective function. Suppose we have 
found p geo-semantic constraints Gk for a set of n compo-
nents. Together with the objective function for fitting the 
image outline, we define the following optimization system:

 (1)

subject to Gk (C1,1, . . ., Cn,mn
), k =1, . . ., p, (2)

where mi is the number of axes of the ith primitive part. We 
add weights wi proportional to the radius of the base profile 
of each part and the length of its axis. Larger parts have more 
impact on the solution since typically larger parts are mod-
eled more accurately. Intuitively, the first equation tries to fit 
projection of the part’s geometry (Ci, j) to the image outline 
and the user’s gestures, while the second set of equations 
imposes the geo-semantic constraints.

Two-step solution. Solving for Ci, j and zi together is a non-
linear non-convex optimization problem with nonlinear con-
straints. Directly solving such a system without becoming 
trapped in a local minimum is very difficult. Hence, we decom-
pose the solution into a two step procedure. The first step tries 

to find a good initial position for all parts at once, by chang-
ing only their depths (governed by zi) to meet the geo-semantic 
constraints. In the second step, the full system is solved, allow-
ing the shapes of the parts (Ci, j) to change as well.

In the first step, we modify the soft constraint in Equation 
(1) to a hard one, and replace Ci, j by Fi, j(zi) in all equations. This 
means that Equation (1) is trivially true and we are left with just 
the constraints in Equation (2). In effect, this means we fix the 
projection and find the optimal zi meeting the geo-semantic 
constraints. This reduces the number of variables to n (zi, 1 ≤ 
i ≤ n) and changes Equation (2) into a potentially over-deter-
mined system, where each equation only contains two differ-
ent variables. We find the least squares solution  by using the 
conjugate gradient method, with all zi values initialized to 0.

This first step provides a good initialization to find the 
optimal solution for Ci, j, which should be close to Fi, j( ), 
requiring only small inconsistencies to be fixed with the geo-
semantic constraints. Hence, in the second step, we carry out 
full optimization of Equation (1) with the set of constraints 
in Equation (2) by an augmented Lagrangian method. Both 
steps are fast, and we are able to avoid local minima by the 
initialization of the first step. This also permits optimiza-
tion to be carried out at interactive speed (see examples at 
https://vimeo.com/148236679). Note that the nonlinearity of  
Fi, j( ) arises due to the assumption of a perspective projec-
tion. However, we can linearly approximate this projec-
tion since we assume the change in zi is small. This further 
increases the speed and stability of our solution.

Curved shapes. To handle parts with a non-straight axis, 
we first simplify the problem by assuming that the general 
axis lies in a plane. We define a non-straight part as a blend 
of two straight-axis sub-parts, placed at the two ends of the 
part. The position of each of these sub-parts is determined 
by a single depth value in the optimization above. The blend 
between these parts for the whole part is defined by connect-
ing the two subparts with a piecewise linear curve where the 
axis points are determined when constraining the profile 
while snapping it during the user’s sweep. More details can 
be found in Ref.6

Texturing. Once the object has been modeled, we can map 
the texture from the image onto the object, as shown in Figure 6. 
By projecting a vertex of the mesh to the image plane, we can 
get the 2D coordinates of the vertex in the image, which are 
then used as texture coordinates to map the corresponding 
part of the image onto the model. Since there is no informa-
tion regarding the back of the object, we simply use a sym-
metry assumption and mirror the front texture to the back. 
In each half of the model (front and back), we assign the same 
texture coordinate for the two vertices that are mirrored 
symmetrically about the central plane. On the two sides of the 
object (left and right), there are vertices whose normal is 
perpendicular, or almost perpendicular, to the image plane. 
To deal with such vertices, we treat the texture associated 
with them as holes, and use the image completion technique4 
to fill them.

6. EXPERIMENTAL RESULTS
We implemented the 3-Sweep interactive technique in C++ 
inside a simple modeling system. The system provides an 
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sizes appear different in the photo. During modeling, we 
modeled one candle holder and copied it to fit all other hold-
ers in the image, while requiring that they all lie on the same 
plane and that their 3D sizes be the same. This efficiently 
recovered the true 3D position and shape of each part.

Figure 6 shows several modeling results. In the top row 
we show the input photos, in the middle row we show the 
extracted and repositioned 3D models, and in the third row, 
they are inserted with their textures into the same or a new 
environment. The rightmost column shows the modeling 
and repositioning of three objects in one complex photo. 
Note that the menorah has been rotated, and translated on 
the ground plane.

Figure 7 shows three examples of modeling and edit-
ing at the part-level, where some parts of the objects 
(highlighted in gold) are replicated, copied, and option-
ally rotated to enhance and enrich the shape. At top left 
is a tap, whose handle is augmented to be four-sided, and 
also rotated. The whole tap is also copied and attached 
to the other side of the wall. The top right shows a street 
lamp with duplicated lamps moved to a lower position and 
rotated. The whole lamp pole is also copied to other posi-
tions on the street. The bottom row shows different edit-
ing operations carried out on a telescope after modeling it. 
Note that different scaling factors have been applied to the 
different telescope parts.

outline view for 3-Sweep interaction, a solid model view, 
and a texture view for checking the model and for image 
editing. The user can choose between cuboid, cylinder, 
and sphere primitives using a button or key shortcut. The 
system also provides conventional menu selection, view 
control and deformation tools. The 3-Sweep technique 
has been tested and evaluated on a large number of pho-
tos as we demonstrate in this section and in the online 
video (see https://vimeo.com/148236679). As shown in the 
video, most of the examples were modeled in a few minutes 
or less. The modeling process is intuitive and fluent, and 
can be used by unskilled people following very little train-
ing. Editing and repositioning an object after modeling 
requires an effort similar to using other parametric editing 
techniques.

6.1. Modeling from single image and editing
In the following examples, we show how the acquired 3D 
 textured-model allows semantic image editing. Before edit-
ing, the image of the 3D model is cut out from the photo, 
leaving a black hole which is filled using a standard image 
completion technique.4

Figure 1e demonstrates the modeling of a menorah, and 
then rotating its arms to a different angles preserving the 
inter-part relationships of the object. Note that all candle 
holders have the same size, but due to the oblique view, their 

Figure 6. Modeling different objects: a table (a), a lamp (b), a monument (c), a samovar (d) and a menorah (e). Top: input photos. Middle: extracted 
3D models (blue) are rotated and repositioned. Bottom: modified objects inserted into the same or a new environment, with their textures.

(a) (c) (e)(d)(b)
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In Figure 8, we show a case where two input photos are 
used to create one model of an object: the Obelisk in Paris. 
Firstly, the base of the Obelisk is modeled from a close up 
view in (a), allowing more detail to be captured. The partial 
3D model is then moved to another photo where the entire 
Obelisk is visible, but the base is occluded. Similar to a copy 
and paste procedure, the user positions the extracted base 
inside the image, and it snaps to the image contours in (b). 
The user then continues the modeling process with other 
parts. The texture of the transported part is blended to match 

the shading of the region in the new image, to maintain con-
sistency: see the rotated view (c). Details of the base can be 
seen in the close up view (d) of the final model of the Obelisk.

In Figure 9, we show a photograph with a collection of 
objects that were modeled and copied from other photos. 
The online video (https://vimeo.com/148236679) shows the 
process of modeling and editing these objects. The model-
ing and editing time for each example is shown in Table 1, 
as well as the number of manually provided geo-semantic 
constraints. Objects in oblique views typically need more 
manual constraints, most of which designate coplanar axes, 
which are difficult to infer automatically.

6.2. Comparison to sketch based modeling
As discussed in Section 2, our method shares some simi-
larities with the one in Shtof et al.,19 which models objects 
from sketches. We previously discussed the main differences 
between the methods. Their system is based on sketches 
rather than photographs, which makes it easier to assume that 
parts have sufficient bounding curves around them. It relies 
on labeling, using a drag and drop metaphor for choosing and 
positioning the primitives before snapping with the sketches. 
We make a comparison based on their sketch inputs (see Figure 
10), since their method cannot handle the examples presented 
in this paper. Comparing the modeling time shows that sketch 
labeling and drag and drop snapping steps are significantly less 
efficient and less intuitive compared to our 3-Sweep method. 
Our modeling time (60s on average) is significantly lower than 
the time they report for their technique (180s on average).

6.3. Limitations
Our work has several limitations. First, many shapes cannot 
be decomposed into generalized cylinders and cuboids, and 
cannot be modeled using our framework (e.g., the base of 
the menorah in Figure 1). It would be desirable to extend the 
types of primitives which can be modeled using similar prin-
ciples. 3-Sweep also relies on the fact that the object modeled 

Figure 7. Top: modeling and replicating parts for image editing. Orange parts are replicated or deformed. Bottom: editing a telescope. 
The leftmost images are the original photos. Note that different parts have been scaled differently.

Figure 8. Modeling the Obelisk in Paris from two photos. Top: the 
base of the Obelisk is modeled from a closer view which captures 
more details. Bottom: (a) The partial 3D model is transported to 
a more distant view (in which part of the base is occluded). (b) A 
rotated textured Obelisk; the texture of the transported part is 
blended into the region it occupied. (c) Details of the base are visible 
in the close-up of the new view.

(a)

Modeling Blending Close-up

(b) (c)
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Figure 10. Modeling from sketches. Input sketches are taken  
from Ref.19

(a) (b) (c)

Figure 11. Failures. (a) Due to perspective projection, the table legs 
cannot be snapped to the image under a parallelism constraint. (b) 
Due to the assumption of uniformly scaling profiles, the bottom of 
the toothpaste tube is not flattened. (c) Snapping fails due to an ill-
defined edge caused by the shadow cast by the bottle.

Figure 1 6 8 7 9

Example Menorah (a) (b) (c) (d/e) (f) Obelisk Tap Lamp Telescope Trumpet Handle Horn
Time (s) 80 + 25 75 + 15 20 35 30 65 + 35 20 30 + 25 40 + 50 100 + 30 80 30 60
Constraints 2 4 2 1 1 1 0 2 1 2 1 1 1

Table 1. Modeling + Editing times (in seconds), and the number of manually provided geo-semantic constraints (added or removed) for each 
example.

7. CONCLUSION
We have presented an interactive technique which can model 
3D man-made objects from a single photograph by combin-
ing the cognitive ability of humans with the computational 
accuracy of computers. The 3-Sweep technique is designed to 
allow extracting an editable model from a single image. The 
range of objects that our technique can support are objects 
that consist of simple parts, without much occlusion. As we 
demonstrated, this range is surprising large to be useful for 
interactive modeling—our tests show that our method can 
model a large variety of man-made objects in photographs, as 
well as objects in sketches. The modeled objects can be edited 
in a semantically meaningful way, both in the original image, 
or for use in composing new images. In the future, we hope to 
extend the range of primitives, and to allow modeling of the 

Figure 9. A rendered scene using source images from the top image strip.

includes typical relationships among parts such as symmetry, 
parallelism, and collinearity. More free-form objects, or parts, 
that differ from this would need to be positioned by hand.

Even for a generalized cylinder there is sometimes ambigu-
ity. We assume that the profiles of the cylinder are uniformly 
scaled and do not rotate around the main axis. This assump-
tion is not always satisfied, as demonstrated in Figure 11b. We 
further assume that the main axis is mostly visible and parallel 
to the viewing plane. Using a perspective assumption, we can 
handle a small amount of skew, but not a large one.

The snapping algorithm relies on good detection of object 
edges and assumes the main part of the object is not occluded. 
Objects that are too small, such as the cross in Figure 6e, or 
objects that have fuzzy edges such as the example in Figure 
11c are hard to model accurately. The photographs them-
selves often have some distortions from an ideal perspec-
tive projection (see Figure 11a), where corrections should be 
applied before modeling. Lastly, our editing assumes a simple 
illumination model without shadows. Relighting and shadow 
computations are not currently supported by our system.
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freer shapes of natural objects. We also wish to add symme-
try and smoothness constraints on the shapes. 3-Sweep could 
also be extended to allow modeling from multi-view images 
or video, without the help of depth data. The applications 
demonstrated mainly show editing and manipulation of 
geometry, but the recovered 3D models and surface normals 
can be used for re-lighting and material editing. 
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