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Online Video Stream Stylization

Figure 1: Stylization example. 1: Original video frame; 2 - 4: Three frames of the stylized video with color scheme replacement.

Abstract1

This paper gives an automatic method for online video stream styl-2

ization, producing a temporally coherent output video stream. Our3

system transforms video into an abstract style with large regions of4

constant color and highlighted bold edges. Our system includes two5

novel components. Firstly, to provide coherent and simplified out-6

put, we segment frames, and use optical flow to propagate segmen-7

tation information from frame to frame; an error control strategy8

is used to help ensure that the propagated information is reliable.9

Secondly, to achieve coherent and attractive coloring of the output,10

we use a color scheme replacement algorithm specifically designed11

for an online video stream. We demonstrate real-time performance,12

allowing our approach to be used for live communication, video13

games, and related applications.14

1 Introduction15

Video stream processing has many applications to areas such as live16

broadcast and communications, video games, and entertainment.17

Stylization and abstraction of video streams are popular special ef-18

fects in such live applications [Winnemöller et al. 2006], and can19

also reduce the perceptual and cognitive effort required to under-20

stand the content.21

We give here an online, automatic stylization method which per-22

forms abstraction to generate cartoon-like animation from an input23

video stream. Little user interaction is required, other than selec-24

tion of a reference video which determines preferred output colors25

(or alternatively a hue histogram), and setting of preferences which26

control the amount of detail retained in colored regions and line27

drawing before processing.28

Various potential applications exist for such a method which can29

work in real time. In live communications, stylization may be used30

to save bandwidth. It may hide someone’s identity or location, for31

example during an investigatory interview. It may be used to apply32

artistic effects to live scenes for tourist information. It may simply33

be used for fun in games or online chatting.34

Processing live video streams requires efficient algorithms in order35

to cope with real-time data. Offline algorithms can make use of36

future as well as past information, but this is not available in live37

video streams. Furthermore, because of computational limits, such38

video has to be processed frame by frame, or at most make use of39

just a few past frames or an averaged history,.40

The particular goal of our video stylization approach is to produce41

an output style which is cartoon-like, having simplified regions42

with user-guided colors, and high contrast. In comparison, Win-43

nemöller [2006] produces a different artistic style based on simpli-44

fied but smoothly shaded contents. Our cartoon-like style means45

that temporal coherence requirements are particularly strict.46

Current stylization methods fall into three categories, each hav-47

ing limitations. Some methods focus on image processing and do48

not readily generalize to video. Others use simple image filters to49

achieve real-time performance, producing simplified and smoothly50

shaded contents, but the output may lack temporal coherence if in-51

put video streams are of low-quality. Yet others require significant52

user interaction to produce high-quality artistic results, and have a53

high computational cost.54

We present a real-time system for a particular style of video styliza-55

tion while providing good coherence. Our approach benefits from56

two novel aspects:57

• a segmentation strategy which uses optical flow to propagate58

segmentation information from frame to frame, with an error59

control strategy to help ensure that the propagated information60

is reliable,61

• a video stream color scheme replacement method that does62

not require complete knowledge of the source color distribu-63

tion (i.e. does not need to know future frames), and which64

applies the color scheme from a reference video (or image, or65

a user designed histogram of hue) to the input video, while66

keeping color consistency between frames.67

2 Related work68

A number of significant papers have addressed stylization, but most69

of them concentrate on images rather than video [DeCarlo and San-70

tella 2002; Yang and Yang 2008; Pang et al. 2008; Wen et al. 2006;71

Hertzmann 1998]. Much research has also considered the genera-72

tion of cartoon-like video from real-world captured video with the73

aim of reducing the amount of work required for cartoon produc-74

tion, and the need for skilled artists. Examples include papers on75

‘Snaketoonz’ [Agarwala 2002], keyframe based rotoscoping [Agar-76

wala et al. 2004], and videotooning [Wang et al. 2004]. Such meth-77

ods produce high quality results, but still require intensive user in-78

teraction, and generally restart video processing every few tens of79

frames to avoiding error accumulation. Such video-processing tools80

inherently work in an offline manner: to process any given frame81

they consider future as well as past information. Such methods typ-82

ically require considerable artistic skill for good results.83

DeCarlo [2002; 2004] proposed an image stylization approach re-84

lying on eye-tracking data to guide image simplification or styl-85

ization, using a hierarchical segmentation structure. We pursue an86
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Figure 2: Pipeline. Frame segmentation uses optical flow and edges as inputs, tuned by an importance map, to produce coherent regions.
The color scheme replacement step transforms region colors according to a reference video.

artistic style similar to DeCarlo [2002], and also use explicit image87

structure, but produce coherent cartoon-like animations.88

Several video stylization systems have been designed with the main89

aim of helping artists with labor-intensive procedures [Wang et al.90

2004; Collomosse et al. 2005]. Such systems use three-dimensional91

video volume segmentation, and are so computationally expensive92

that they must be used offline. Our method uses frames pairwise93

during segmentation, rather than costly multi-frame analysis, while94

being able to provide coherent online video stream stylization.95

Other online video stylization methods exist. Fischer et al. [2009]96

use an automatic stylization method for augmented reality, applying97

stylization to both virtual and real inputs to fuse virtual objects into98

a live video stream. Winnemöller [2006] and Kyprianidis [2008]99

used simple image filters in real-time to process each frame into an100

abstract style. Neither method takes any particular steps to achieve101

temporal coherence, simply relying on the implicit image structure102

itself, and stability of filter outputs. Our method uses an explicit103

image structure representation which allows for stronger, better de-104

fined stylization in terms of region shapes, and explicitly propa-105

gates information from frame to frame to help achieve coherence.106

Kang [2009] proposed a flow based image abstraction algorithm107

which also considered shape smoothing, but it cannot be readily108

applied to video.109

Paris [2008] give a coherent approach to analyzing and filtering110

video streams. Combining concepts of isotropic diffusion and111

Gaussian convolution, this method achieves temporal coherence via112

bilateral filtering and mean-shift segmentation in real time. How-113

ever, as Paris notes, using optical flow can provide better results at114

moving boundaries.115

Litwinowicz [1997], Hertzmann [2000; 2001], Kovács [2002],116

Hays [2004] and Vanderhaeghe [2007] use optical flow to direct117

brush stroke movement or point placement during frames, but they118

do not take into account errors in optical flow, so limited coherence119

is achieved in image sequences. Bousseau [2007] also uses optical120

flow in a watercolor generation pipeline, but relies on temporally bi-121

directional optical flow interpolation to reduce optical flow errors,122

an option which is not available in a live video system as future123

information is unavailable.124

Several works consider the problem of color scheme extrac-125

tion [Greenfield and House 2003] and color transfer [Chang et al.126

2003; Hertzmann et al. 2001; Reinhard et al. 2001]. These mainly127

focus on image processing, and analyze source and reference fea-128

tures to determine the color transformation. However, we cannot129

extend such a method directly to live video stream color transfer,130

again because of the lack of future information. On the other hand,131

performing image color transfer for each frame independently can-132

not guarantee color consistency in the output as source colors vary133

in each frame. Wang [2006] gives a color transfer method for134

still images forming a sequence; parameters are adjusted to present135

gradually changing effects. Image analogies have also been used136

for color transfer [Hertzmann et al. 2001]. These take into account137

local similarities in the image, and process it pixel by pixel. The138

latter is most suited to producing complex textures, but our out-139

put style uses large regions of slowly varying color. Thus, instead,140

we have devised a new efficient color replacement method which141

captures the color style from a given reference video, and applies it142

with temporal coherence to produce a stylized video stream without143

the need for source video feature analysis.144

Our method processes the video stream frame by frame, using a145

region based representation to achieve a cartoon-like style, and146

an optical flow based strategy to ensure coherence. Our method147

is designed to produce relatively highly stylized video, while still148

achieving real-time performance on a multi-core CPU. Compared149

to earlier methods such as videotooning, our method is much faster150

and needs much less user interaction.151

3 Overview152

Our goal is to replace incoming live video by stylized animation, in153

real time. We must thus avoid time consuming non-local analysis154

of the video (e.g. background reconstruction). During stylization,155

our three goals are to156

• simplify the content, without oversimplifying important areas,157

• modify the coloring in a controllable manner,158

• retain temporal coherence.159

Taking these into account, our pipeline is as shown in Figure 2,160

and includes six key elements: importance map computation, op-161
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Algorithm 1 Pseudocode for online video stylization
while (! end of video stream) do

//———Perform coherent image segmentation———
Compute importance map;
Compute Canny edges;
if (not first frame) then

//———Update segmentation using optical flow———
Compute optical flow;
Propagate labels from previous frame;
Apply morphological filtering to propagated labels;
Grow regions;

end if
for (r = initial radius; r ≥ 1; r /= 2) do

Do trapped ball filling with ball radius r;
Grow regions;

end for
//———End of image segmentation———
Apply color scheme replacement
Smooth regions
Compute DoG edges and overlay them

end while

tical flow computation, edge detection, coherent image segmenta-162

tion, color scheme replacement, and boundary smoothing with edge163

overlay.164

Of these six steps, importance map computation, optical flow com-165

putation and edge detection provide inputs for coherent image seg-166

mentation. The importance map is used to ensure greater detail in167

key areas. As optical flow information is inherently unreliable, we168

must be careful to avoid propagating and accumulating optical flow169

errors during segmentation. We use a careful error control strategy170

when propagating segmentation labels from frame to frame, to en-171

sure temporal coherence of region representations between frames.172

For simple output, we could simply replace each region by its mean173

color. Better results are obtained by using a color scheme replace-174

ment process based on a desired ‘color style’ learnt offline from a175

reference video (or image, or provided by the user as a histogram).176

We use a mean-shift based color transformation to move input col-177

ors closer to a reference color distribution. We are careful to pre-178

serve color consistency between frames, while still not needing to179

know the potential colors in future frames.180

Finally, we smooth boundary curves using a low pass filter to pro-181

duce more artistic effects, and then use a difference-of-Gaussians182

(DoG) operator on the input frames to detect and overlay edges, as183

in [Winnemöller et al. 2006].184

Algorithm 1 gives pseudocode for the whole algorithm, and details185

of image segmentation are described in the following section.186

4 Coherent image segmentation187

As in [DeCarlo and Santella 2002], we perform segmentation in188

order to simplify image content. Several approaches exist for tem-189

porally coherent video segmentation [Zitnick et al. 2005; Kumar190

et al. 2005; Xiao and Shah 2005]. Most solve the problem via op-191

timization or a mean-shift approach, and thus perform a non-local192

analysis of the video. To process a live video stream, we need a193

method which only uses past frames, and to keep processing re-194

quirements low, only a few previous frames can be considered. We195

perform segmentation by propagating information from one frame196

to the next.197

Our approach uses optical flow but in a way which avoids accu-198

Figure 3: Edge detection controlled by importance map. From Left
to right: input, importance map, Canny edge detection, detected
edges controlled by importance map.

mulation of errors. Many optical flow computation methods ex-199

ist [Baker et al. 2007]; we use Zach’s [Zach et al. 2007] as it pro-200

vides good results in real time. The first frame is segmented using201

the trapped ball algorithm [Zhang et al. 2009]; this algorithm is ex-202

plained later. In each successive frame, optical flow is used to prop-203

agate segmentation labels for each pixel. In the result, some pixels204

may have no segmentation label (e.g. because they have been newly205

exposed from an occluded area), or may have multiple labels (e.g.206

because of optical flow errors). Labeling such pixels is the key to207

coherent image segmentation. Those which are sufficiently close in208

distance and color to an existing region are given the label of that209

region, while the remainder are segmented into new regions again210

using the trapped ball algorithm. Algorithm 1 gives pseudocode for211

image segmentation; we now consider these steps in detail.212

4.1 Importance map and edge detection213

Edges provide strong hints as to where region boundaries should ex-214

ist. In image and video stylization, important areas, such as faces,215

should be depicted in more detail than other areas, which requires216

segmenting them into more, smaller regions. Eye tracking [DeCarlo217

and Santella 2002] can find important areas, but is of limited appli-218

cability. We detect and track faces [Lienhart and Maydt 2002]: an219

ellipse is found inside which pixels are assigned high importance,220

and outside, low importance; a smoothed real-valued map is used,221

as the face position is not entirely robust. Alternative strategies222

could also be used to compute the importance map, e.g. taking into223

account saliency and motion information [Zhai and Shah 2006], but224

at a higher computational cost.225

Importance map I values lie between 0 and 1, with 1 being the most226

important. The important map is used to control the number of227

edges found during edge detection: the hysteresis thresholds of a228

Canny edge detector [Canny 1986] are set inversely proportional to229

importance map values. In areas of greater importance, more edges230

are detected, as shown in Figure 3.231

4.2 Region label propagation by optical flow232

The first frame is segmented by the trapped ball method based on233

the detected edges. For subsequent frames, the previous frame has234

been segmented, and optical flow has been computed; these are235

used to provide an initial segmentation for the current frame. The236

segmentation is represented by labeling pixels with positive inte-237

gers corresponding to regions.238

We start by labeling all pixels of the current frame as 0, i.e. unas-239

signed to any region. The optical flow is rounded to determine a240

spatial mapping of each source pixel from the previous frame to a241

target pixel in the current frame. This target pixel is given the same242

label as the source in the previous frame, except as below, when it243

retains its 0 label:244

• the optical flow error is larger than a threshold,245

• more than one source pixel ends up at this target pixel, and246

the labels of these source pixels are different,247
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Figure 4: Left: top, bottom: input frames 1, 2; Middle: top, bot-
tom: segmentation results for frames 1, 2; Right: top: residual map
before morphological filter; Right: bottom: region label propaga-
tion result after morphological filter.

• this target pixel has no corresponding source pixel.248

To determine if an optical flow error has occurred, we compute the249

color difference in CIELAB color space between the source and a250

linear interpolation of the values of the 4-neighboring pixels of the251

target position. If this exceeds a threshold Tf , the target is labeled252

0. Tf is chosen according to the video quality; values in the range253

5–20 are typically appropriate. This prevents obvious optical flow254

failures. Fig. 4(top, right) shows the residual unlabeled pixels (red)255

after label propagation. Note that we do not explicitly need to detect256

scene changes in the incoming video: in such cases, the optical flow257

will have large errors, causing many pixels to be labeled 0, and will258

hence be resegmented.259

After pixel label propagation, region boundaries are typically rather260

interlaced. These are smoothed, and other mislabelings due to er-261

rors in the optical flow corrected, using a morphological filter: if262

5 or more of the 8-connected neighbors of the target pixel are the263

same, but differ from the target pixel, and if its label is 0, then it is264

changed to the most frequent label in the neighborhood, otherwise265

it is changed to 0. Fig. 4(bottom, right) shows the propagated labels266

after morphological filtering, where red pixels are unlabeled.267

We must now complete the segmentation by labeling the unlabeled268

pixels. This is a problem of minimizing label errors for those un-269

labeled pixels which should be allocated to existing regions, and270

giving new labels to those pixels which are insufficiently similar271

to existing regions. At the same time, the labels assigned must re-272

spect the edge information, so that the regions are in agreement with273

any superimposed edges drawn later. These requirements, taken to-274

gether with efficiency considerations, make it difficult to solve the275

problem by traditional optimization or graph cut methods. Instead,276

we improve the region growing and trapped ball filling [Zhang et al.277

2009] to finish the segmentation.278

4.3 Region growing279

For each labeled region, a single, simple, color model is assumed280

to be an adequate fit. For speed, we use a constant color model, and281

assume pixels belonging to a region are near to its mean color.282

We assign labels while respecting edges taking into account that283

(i) edge pixels may not be added to a region and (ii) pixels added284

to a region should agree with its color to within perceptual limits.285

Let the reconstruction error of a labeled pixel be the difference286

between its actual color and that predicted by the corresponding287

color model. All unlabeled pixels adjacent to the boundary of any288

labeled region are put into a priority queue, sorted by reconstruction289

error with respect to the adjacent region. We then pop the pixel with290

Figure 5: Color scheme replacement. Top, left: a frame of the ref-
erence video, right: histogram of its H channel; bottom, left: seg-
mented frame before replacement, right: frame after replacement.

minimum reconstruction error from the queue. If the reconstruction291

error is sufficiently small (in practice, below 20(1.2− I(p)) units292

in CIELab space), the pixel’s label is updated, and it is removed293

from the priority queue; at the same time, its unlabeled 4-connected294

neighbors are added to the queue. We repeatedly pop pixels until295

the queue is empty, or the least reconstruction error is too large.296

4.4 Trapped-ball filling297

Any pixels still remaining unlabeled belong to some new region. In298

general, multiple new regions may exist, so these unlabeled pixels299

still need to be segmented.300

The basic idea of trapped-ball filling is to move a ball around, lim-301

ited by a mask, formed here by the already labeled pixels and the302

detected edges. Each separate area in which the ball may move303

determines a new region of the image. The trapped ball has the ad-304

vantage over floodfilling that it cannot leak out between short gaps305

in the detected edges. Initially, a large ball is used to find each re-306

gion’s core, and then balls of successively smaller radii are used307

down to a radius of 1 to add more detailed parts of each region. In308

practice, the trapped ball approach is implemented using morpho-309

logical erosion and dilation operations with a circular structuring310

element having the current ball radius.311

The initial ball radius is chosen according to the number of unla-312

beled pixels N0. We set it to max(2,
√

N0/30), which is typically313

in the range 2–32. In the first frame, all pixels are unlabeled, and314

an original segmentation for the whole frame is obtained using the315

trapped ball method with a large initial ball size. In subsequent316

frames, unlabeled regions are typically small, and a smaller initial317

ball radius is used. If a scene change occurs, many pixels are now318

unlabeled, so a larger initial ball size is again used. The extra pro-319

cessing entailed at a scene change can cause a slight lag, but as long320

as frames are processed faster than in real time, this lag can soon be321

overcome.322

5 Color scheme replacement323

Color selection is an important aspect of stylization, and different324

palettes can produce different emotional responses. Much work has325

been done on color transfer for images—applying the color scheme326
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from a reference image to a source image. Clearly, in this case,327

the color distribution for the entire source and reference are known.328

However, when processing live video, we do not have complete329

information: future video content is unknown. Thus our recoloring330

problem has two specific requirements: the transformation should331

cover the entire color space to allow for any possible future colors,332

and as we have video rather than images, we must also ensure inter-333

frame color stability for each region in the video.334

Our color scheme replacement method uses the concept of mean335

shift [Comaniciu and Meer 2002]. Given a reference image or car-336

toon video clip, we count the number of pixels of each color to337

determine the color distribution. We must also choose the desired338

number of iterations and kernel radius for the mean shift procedure.339

Then, to determine the mapping of each input color to an output340

color, we determine a mean shift vector towards a local maximum341

in the color distribution, which shifts each input pixel’s color to-342

wards the nearest peak in the reference distribution. Overall, given343

an input color distribution, the mapping transforms it towards the344

reference color distribution.345

It would be costly to compute the reference distribution and map-346

ping directly in CIELab color space. Instead, we simply consider347

the hue value in HSV space, and compute the reference distribu-348

tion and mean shift vector using H alone. In an analogous manner,349

[Cohen-Or et al. 2006] and [Sawant and Mitra 2008] also use hue350

as the most important feature of color when performing color har-351

monization, i.e. mapping a source color distribution to a template352

distribution.353

As these authors note, there is discontinuity in new color when two354

nearby colors are transformed to different local maxima, which may355

causing flickering between frames. Thus, we also use an interframe356

blending method which takes into account correspondence between357

regions in successive frames; this information is provided by the358

image segmentation results. Thus, after first computing an ideal359

target color by the mean shift procedure, we modify it to give the360

actual output color by interframe blending.361

To find the color mapping, first, we compute the color distribution362

of the reference video in HSV color space (which is more useful363

than RGB from a perceptual point of view), considering the three364

channels separately. In each frame, for the H channel, we compute a365

color histogram for all pixels having S > 0.125 and V > 0.125. Also366

we compute the mean µS and standard deviation σS for S channel367

pixels having V > 0.125, and the mean pixel value µV of the V368

channel. (Alternatively, instead of providing a reference video, the369

user could provide a reference image, or even manually design a370

color histogram represented in this way).371

For each frame of the incoming video, all pixels in each segmented
region are given the same target color. The source color (h,s,v) for
a region is computed as the average color of all pixels in that region.
This is mapped to a target color (h′,s′,v′). First, we compute µs,
σs and µv for this frame in an analogous manner to how they were
computed for the reference video. We then compute (h′,s′,v′) as
follows. h′ is set to the mean shift of h in the H channel histogram,
by iterating the formula below k times; typically k = 3:

hi+1 =
∑c∈N(hi) cD(c)

∑c∈N(hi) D(c)
.

Here h0 is h, and h4 is the desired h′. N(hi) represents a 30◦ neigh-372

borhood in the histogram and D(c) represents the histogram value373

for c. (This function is precomputed for all possible h values and374

stored in a look-up table for speed). Simple formulae are used for375

s′ and v′ with the aim of adjusting the brightness and contrast to be376

Figure 6: Boundary smoothing and edge overlaying. Top, left:
segmentation result, right: after boundary smoothing; bottom, left:
detected lines, right: smoothed result after edge overlay.

closer to those of the reference video:377

s′ = µS +(s−µs)σS/σs,

v′ = v(2+ µV /µv)/3.

This approach ensures that a given hue is always mapped to the378

same new hue in different frames. Such a mapping is not appropri-379

ate for s and v if the input video varies in brightness.380

After obtaining the target color, we now compute the actual output
color. Suppose some region Ri has a target color ci, and the corre-
sponding region Ri−1 in the previous frame had actual output color
oi−1. We compute its actual output color oi by color blending to
improve color coherence:

oi = (1−α(Ri,Ri−1))oi−1 +α(Ri,Ri−1)ci

Here α(Ri,Ri−1) measures the correlation of the two correspond-381

ing regions: α(Ri,Ri−1) is the ratio of: the number of pixels in Ri−1382

whose destination lies in Ri after optical flow, to the geometric av-383

erage of the areas of Ri−1 and Ri. If region Ri is a new region in this384

frame, we simply set oi = ci.385

An H channel color histogram extracted from a reference video and386

an example of color scheme replacement are shown in Fig. 5 (final387

results after boundary smoothing and edge overlaying are shown in388

Fig. 6).389

6 Results and discussion390

We have implemented our framework using a combination of CPU391

and GPU, on an Intel Core2 Quad Q9300 CPU at 2.5GHz, with392

4GB memory, and a GeForce 8600GT, using CUDA, OpenCV and393

Visual C++ 2008’s parallelizing compiler. Performance depends on394

image size and framework parameters. For a CIF (352×288) video395

stream, commonly used for live communication, face detection and396

edge detection is done on one CPU core, taking 40ms per frame,397

while simultaneously, optical flow computation takes 20ms on the398

GPU. Image segmentation takes from 20–30ms, depending on the399

number of residual unlabeled pixels. Color scheme replacement400

and edge overlay take under 10ms. Boundary smoothing takes 20–401

50ms, depending on the number of boundary pixels. Typically we402

can process a CIF video stream with default parameter settings at403
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Figure 7: Video stylization results. Columns 1, 3: original video frames; columns 2, 4: corresponding stylization results.

Figure 8: Effect of importance map. Left: segmentation with im-
portance map, right: segmentation without importance map.

about 9–12 frames per second using the CPU for everything but404

optical flow (we directly use Zach’s GPU optical flow code [Zach405

et al. 2007]). We note that edge detection, morphological operations406

and the DoG filter could also benefit from GPU implementation,407

permitting faster frame rates or higher video resolution. The current408

Nvidia GTX295 graphics card offers perhaps 10× the performance409

of the older GeForce 8600GT card.410

Figs. 1 and 7 show various stylization results. The goals of styl-411

ization are subjective. Ours are to achieve cartoon-like effects412

with simplified content comprising well-defined regions with bold413

boundaries, while using a chosen color style, and retaining tempo-414

ral coherence. This definition is consistent with that in [DeCarlo415

and Santella 2002]. In comparison, Winnemöller aims to produce416

soft, simplified content, achieved by smoothing, as shown in Fig. 9.417

Our method has the ability to perform object shape simplification.418

The side-by-side comparison is provided in the supplemental ma-419

terial. Different styles can be produced by the user, but objective420

evaluation of the level of success is difficult. Our results have been421

independently evaluated by a company who randomly chose 20 em-422

ployees to subjectively evaluate 5 video clips each. The average423

score awarded was 85/100, with 60/100 being considered accept-424

able; 97% of evaluations were at a level of 60/100 or higher.425

Fig. 8 shows the effect of importance map in the segmentation.426

With importance map, the segmentation produces more regions but427

well maintains the detail of the faces, while other areas are sim-428

plified. The incoherence of importance map will also decrease the429

coherence of final stylized video. So if using importance map, bet-430

ter and faster temporal coherent saliency map is important to our431

method.432

Optical flow is the sole information used to guide interframe corre-433

spondence, so its accuracy is very important. Zach’s method works434

well in most cases, as demonstrated by the number of residual pix-435

els (Figs. 4 and 10). When the scene changes slowly, few resid-436

ual pixels remain (Fig. 10, above), and most are labeled, accord-437

ing to color, during the region growing step. When the video con-438

tent changes rapidly, the number of residual pixels increases. In-439

deed, essentially the whole image is composed of residual pixels at440

scene changes (Fig. 10, below), as useful optical flow information441

no longer exists. Thus, we do not need to explicitly detect scene442

changes: in cases with large numbers of residual pixels, trapped-443

ball filling provides resegmentation of the scene. While newly gen-444

erated regions may cause certain inconsistencies, viewers find lack445

of coherence much more noticeable in slowly changing scenes than446

in fast moving scenes. Currently we use the rounded optical flow447

for label propagation, which may cause flickering in long and thin448

regions. And image noise and motion blur may also decrease the449

quality of optical flow, any ultimately decrease the coherence of450

final results.451

Fig. 11 illustrates the results of color scheme replacement using dif-452

ferent reference images (these have been chosen to exaggerate the453

effects, and are atypical). The resulting hue distributions have been454

transformed towards the reference distribution so that peaks of hue455

agree with the reference image’s hue peaks: output pixels exhibit456

colors which tend to follow the reference distribution. To test color457

scheme replacement, we randomly choose 20 pictures as input, and458

applied our method using the 3 reference images in Figs. 5 and 11,459

giving 60 output pictures. These were evaluated by 10 participants,460

who were each shown 10 pictures randomly chosen from the above461

60 results, and asked which of the three reference images had the462

most similar color style. A correct correspondence was suggested463

in 93/100 cases. The others contained many green pixels whose hue464

was almost unchanged in color scheme replacement, as they were465

far from peaks in the hue histogram.466

Our method has other limitations. Like Winnemöller’s bilateral fil-467

tering method, our method needs to estimate visual salience. Cer-468

tain high-contrast features such as specular highlights that may be469

emphasized by our framework are actually deemphasized in human470

vision, and repeated texture causes unwanted edge responses. An-471

other limitation lies in our handling of occluded regions. When472

such regions are gradually uncovered by an overlying object, they473

typically initially merge with the overlying object, then suddenly474

separate from it when they have grown to a sufficient size. This475

may cause jumps in color, although our approach in Section 5 alle-476

viates such effects to some extent.477
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Figure 9: Comparison of stylization effects. From left to right: source image, results using Winnemöller’s method, results of color quantiza-
tion, results using our method.

Figure 10: Label propagation by optical flow: two examples. From left to right: previous frame, current frame, residual map before
morphological filtering, propagation map after morphological filtering.

7 Conclusions478

Our real-time video stream stylization method uses a segmentation479

strategy guided by optical flow, with care taken to appropriately al-480

low for optical flow errors, so that we can consistently segment each481

frame while preserving temporal coherence. To achieve attractive482

stylization, we use a color scheme replacement method which ap-483

plies colors learnt from a video clip or an image.484

Various areas exist for future work. Firstly, we intend to investi-485

gate more general ways of computing the importance map while486

providing temporal coherence, yet with sufficient performance for487

a real-time system. One obvious consideration is that moving ob-488

jects are typically more important than the static background. Sec-489

ondly, we also intend to consider vectorization of the stylized video.490

Currently our methods directly produce vectorized output on a per-491

frame basis in the form of a boundary representation of each region492

together with its color. However, determining inter-frame corre-493

spondences in terms of affine transformation of coherent regions,494

and region overlap, would allow more semantically useful vector-495

ization, as well as enabling greater compression. Thirdly, we would496

like to extend this work to other styles of rendering, such as oil497

paintings. Our experiments so far have shown that the more struc-498

tured the appearance produced by the rendering method, the more499

objectionable any distortions due to optical flow errors appear. Fi-500

nally, we only use constant color models during the segmentation,501

and higher order color models (e.g. quadratic models) would pro-502

vide greater scope for stylization.503
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