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Changing Perspective in Stereoscopic Images
Song-Pei Du, Shi-Min Hu, Member, IEEE, and Ralph R. Martin

Abstract—Traditional image editing techniques cannot be directly used to edit stereoscopic (‘3D’) media, as extra constraints
are needed to ensure consistent changes are made to both left and right images. Here, we consider manipulating perspective
in stereoscopic pairs. A straightforward approach based on depth recovery is unsatisfactory: instead, we use feature correspon-
dences between stereoscopic image pairs. Given a new, user-specified perspective, we determine correspondence constraints
under this perspective, and optimize a 2D warp for each image which preserves straight lines and guarantees proper stereopsis
relative to the new camera. Experiments verify that our method generates new stereoscopic views which correspond well to
expected projections, for a wide range of specified perspective. Various advanced camera effects, such as dolly zoom and wide
angle effects, can also be readily generated for stereoscopic image pairs using our method.

Index Terms—Stereoscopic images, stereopsis, perspective, warping.
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1 INTRODUCTION

THE renaissance of ‘3D’ movies has led to the
development of both hardware and software

stereoscopic techniques for both professionals and
consumers. Availability of 3D content has dramati-
cally increased, with 3D movies shown in cinemas,
launches of 3D TV channels, and 3D games on PCs.
Consumers can now take 3D photos or video as
easily as traditional 2D images, and view them on 3D
TVs. While acquisition may be simple [1], [2], editing
of stereoscopic media is challenging. Tasks such as
editing the disparity [3], changing content [4], or just
simply rotating a stereo picture to a new orientation
all require non-trivial computations. Existing image
editing techniques cannot be simply extended to stero
(as we shortly explain) and professional stereoscopic
3D production is costly.

Photographic stereoscopic 3D images comprise an
image pair taken using a binocular device. Human-
s use the disparity in such stereoscopic images to
determine depth, via the principle of stereopsis. The
two images in a stereoscopic pair are not arbitrary
images, but contain consistent image content related
by the disparity, which depends on depth. Editing
the images independently using human best efforts
is likely to break the stereoscopic consistency; even
minor discrepancies lead to a poor stereoscopic view-
ing experience or misleading depth information. For
example, an anaglyph image cannot be rotated direct-
ly, as this would introduce a vertical disparity, giv-
ing an unnatural stereoscopic experience [5]. Several
methods have already been proposed for processing
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stereoscopic images, such as stereoscopic inpainting
[6], disparity mapping [3], [7], and 3D copy & paste
[4]. However, relatively few tools are available com-
pared to the number of 2D image tools.

Perspective plays an essential role in the appearance
of images. In 2D, a simple approach to changing the
perspective of a given image is to approximate the
entire image as a single planar region and transform
it under a homography. This fundamental image pro-
cessing tool enables applications like image stitching
[8]. More sophisticated effects can be provided with
the aid of user interaction, and the combination of
images using multiple viewpoints. For example, [9]
creates images from an artistic perspective based on
user-specified line constraints and vanishing points,
while [10] creates multi-viewpoint panoramas from
several photographs of a scene. However, existing
perspective manipulation techniques for 2D images
cannot be applied independently to each image in a
stereo pair, as additional constraints are needed. A
comparable stereo method should take into account
two considerations: (i) a stereo image pair contains
depth information, and this can be used to help
determine the results under new perspective, and (ii)
proper stereoscopic consistency should be maintained
to ensure a plausible and comfortable 3D viewing
experience.

Given two images captured by a binocular device,
a direct approach to stereo perspective manipulation
would be to compute depth at each pixel from the
stereo image pair, reconstruct the scene geometry, and
then compute the projection under the new camer-
a configuration. However, this solution would not
be perfect, as occlusion would lead to gaps in the
output. Furthermore, while the human visual system
can readily understand 3D geometry from a stereo
image pair, it is much more difficult to algorithmically
reconstruct scene geometry accurately, even with the
help of user interaction, and a more robust solution
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Fig. 1. Manipulating perspective. Top: one image
from a stereoscopic image pair and corresponding
monochrome anaglyph. Middle: new view produced by
altering the camera viewpoint to increase perceived
depth. Bottom: addition of radial camera distortion.

is needed. [3] gives an alternative solution for edit-
ing stereoscopic images and videos by consistently
warping the pair of images. [11] introduces a 2D
to 3D conversion method based on warping, and
synthesizing one stereo view from the other, but does
not consider perspective change.

Motivated by the above observations, we give a
technique for performing stereoscopic image perspective
manipulation, in which the user specifies stereoscop-
ic camera parameters for the new view. Our key
technical contributions are as follows. Firstly, instead
of using homographies, we compute a 2D warp for
each image using an optimization framework. Instead
of dense point correspondences, which are difficult
to obtain, we use selected reliably matched feature
points. Secondly, the human visual system is sen-
sitive to straight lines, so we are careful to detect
straight lines in the stereo image pair, and retain them.
Warping is controlled by these robust point and line
segment correspondences, avoiding the inaccuracies
arising from a dense depth map. Constraints are used
to ensure proper stereopsis, as well as to preserve the
straight lines. The problem is posed as a quadratic
energy minimization problem (as in [3]), and can be
efficiently solved via a sparse linear system.

Manipulating perspective of stereoscopic images is
a useful tool in its own right, but also has applications
as a preprocessing stage for other tasks such as image
blending and composition. We later demonstrate the

versatility of our approach in applications such as
image stitching and advanced camera effects.

2 RELATED WORK

We next summarize prior work on stereoscopic image
processing, and warping techniques.

2.1 Stereoscopic Image Processing
The human visual system perceives depth from stere-
o and other cues; quality of stereoscopic viewing
experience is affected by several factors. Numerous
works have analyzed shear distortion, keystoning,
and lens distortion in stereoscopy, and their effect
on visual realism and comfort [5], [12], [13]. A user
study [5] showed that large vertical disparity leads
to eye strain, suggesting it should be minimised for
viewer comfort. Editing the disparity of stereoscopic
images is an important tool in stereoscopic content
postproduction, and various rules have been devised
for use in 3D movie making [14]. Methods have
been developed for analyzing disparity as well as for
reducing visual distortion to create a more pleasing
3D effect [15], [16]. [17] proposed a general framework
to adapt disparities of stereo images and video based
on dense depth maps. [3] introduced more general
nonlinear disparity mapping operators, and described
an effective technique for stereoscopic disparity edit-
ing based on image warping. Complementary to the
above postproduction editing techniques, [1] gave a
method for adjusting stereoscopic live-action video,
controlling camera convergence and interaxial separa-
tion during real-time stereoscopic rendering, to ensure
visual comfort. None of these editing techniques,
however, aim to provide a new view of the scene,
but rather aim to make the existing image or video
more comfortable to watch, by carefully controlling
the horizontal disparity.

As well as disparity editing, several 2D image
editing operations have been extended to stereoscopic
content, such as image inpainting [6], and image copy-
and-paste [4]. To change the orientation of copied
objects, [4] uses a plane proxy to compute a pair of
consistent homographies applied to each image. This
works well for scene elements which are almost pla-
nar, but hardly applies to whole scenes with varying
depths: in such cases it leads to vertical disparity. [18]
showed how to resize stereoscopic images to a target
resolution in a content-aware manner, adapting depth
to the comfort zone of the display. [7] proposed a
viewer-centric editor for stereoscopic video allowing
the user to edit stereo parameters, such as interocular
distance, field of view, and viewer location. In con-
trast, our method is scene-centric, and considers the
camera setup. [19] surveys techniques for 3D video
processing; no current method can manipulate the
perspective of a stereoscopic image pair while control-
ling the disparity for viewer comfort. We solve this
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problem by computing a pair of warping functions
which approximate the projection according to the
new perspective, as well as ensuring that the disparity
is horizontal in the output transformed stereo images.

2.2 Image and Video Warping
Our framework simultaneously warps both images
in a stereoscopic pair, using energy constraints to
provide the desired perspective and stereopsis. We
build on earlier warping methods used to solve other
problems in image and video processing, e.g. image
resizing [20], video resizing [21], [22], [23], correction
of wide-angle lens distortion [24], [25], production of
projections for artistic perspective [9], and 3D video
stabilization [23]. [23] proposes a content-preserving
warp based on sparse correspondences in monocular
image sequences. While sharing a similar feature-
point-driven warping framework, we solve a differ-
ent problem and use specifically designed energy
terms. Warping techniques have also been used to
manipulate disparities of stereoscopic images [3]. [11]
uses a discontinuous warping technique for 2D to
3D conversion, computing a projection from a new
viewpoint. Their main goal is synthesis of a proper
stereo image pair from an input 2D image and user
input sketches, while our input is a stereo image
pair, and we handle the problem of changing the
stereo perspective in a general sense. [26] introduces
StereoPasting for interactively compositing multiple
stereo images. Active appearance models [27] match
statistical models of appearance to images, again
based on warping, but using a simple linear model.
Our warping method has different goals: preserving
proper stereopsis and line segments.

Our method shares a similar framework with pre-
vious work on image and video warping: each image
warp is described by a quad mesh, and energy min-
imization is used to determine the warp which best
meets a set of conflicting requirements. Constraints
are used to compute a warped image which attempts
to match a desired projection of automatically detect-
ed feature points and lines, to produce the desired
stereopsis. Unlike [3] which focused on using dis-
parity mapping operators to provide a comfortable
viewing experience, we change the image projection
as well as the disparity.

3 STEREOSCOPIC CORRESPONDENCE

The human visual system can fuse a stereoscopic
image pair to generate a 3D viewing experience.
This is hard to emulate algorithmically; it is difficult
to compute a dense, accurate disparity map from a
stereoscopic image pair [28], [29]. Instead, we employ
sparse correspondences between the images in a stereo
pair (Il, Ir), as these can be detected more robustly.
We use two kinds of correspondences: feature points
and straight line segments. These can generally be

determined with relatively high confidence in a stereo
pair. We note that straight lines have high visual
significance, and thus should be preserved as such
during image editing. We assume that the intrinsic
parameters of the stereo camera pair used to capture
the input are known.

3.1 Feature Point Correspondences

We first establish sparse point correspondences be-
tween the images in the source stereoscopic pair.
Finding sparse point correspondences in stereo is
discussed in [3], [11]. We use a simple, similar tech-
nique: SIFT provides initial feature correspondences,
and we follow [30] to remove outliers. An adaptive
non-maximal suppression procedure [31] is used to
improve the spatial distribution of feature points; we
set the minimum suppression radius equal to half of
the quad mesh length (see Section 4).

This set of sparse feature points with robust cor-
respondences is then used to compute for later use
separate approximate disparity maps Dl and Dr for
each image in the stereoscopic pair. [11] computed
a dense disparity map based on propagation of s-
parse scribbles. We just employ a direct interpolation
scheme which works well, using a set of Gaussian
radial basis functions centered at each feature point.
The approximate disparity value Dl(x) at any point
x ∈ Il is computed as

Dl(x) =
∑
i

ωie
−σ2|x−xi|2 ,

where {xi} is the set of all feature points in Il. At the
feature points, xi, Dl(xi) is set to the exact disparity
value di computed from the feature correspondence.
The weights ωi are determined by solving the fol-
lowing quadratic energy minimization problem using
linear least squares,

E =
∑
i

‖Dl(xi)−di‖2 =
∑
i

‖
∑
j

ωje
−σ2|xi−xj |2−di‖2

The variance σ is set to the inverse of the length of
the image diagonal. Dr is computed similarly.

3.2 Straight Line Correspondences

Human perception is sensitive to straight lines. Find-
ing straight line correspondences allows us explicitly
preserve them under change of perspective. Instead of
finding straight line segments in the two images sepa-
rately and matching them (as in [32]), we combine the
problems of line extraction and line correspondence in
a single voting procedure with vote pruning.

In Hough transform space, an infinite line is repre-
sented by (ρ, θ), where ρ ≥ 0 and θ ∈ [0, 2π). A pair of
corresponding lines (θl, ρl, θr, ρr) can be determined
by 4 points, 2 in each image. We employ a voting
procedure to find potential line correspondences in a
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Fig. 2. Left: Votes (projected into R2), clustered using
mean-shift, shown in different colors. Middle, right:
Corresponding line segments, indicated by color.

stereoscopic image pair. In practice, to reduce false
matches, we choose 3 points per line instead of 2.

In detail, gradient methods [33] allow us to find
edge sets El and Er in each image. Each edge el ∈ El
is sampled in equal-sized steps. We choose all approx-
imately collinear triples of sample points (v0l, v1l, v2l),
by measuring the total distance from the three points
to their best matching line. For each of v0l, v1l, v2l,
we find its best match with some edge point in Er
with the same horizontal height; the horizontal search
range can be limited using the approximate disparity
Dl. If the best matching triple (v0r, v1r, v2r) is al-
so approximately collinear, (v0l, v1l, v2l), (v0r, v1r, v2r)
provide a vote for (θl, ρl, θr, ρr) in 4-dimensional pa-
rameter space. Figure 2 illustrates such a vote distri-
bution, projected into R2 by (θl, ρl). We use mean-
shift clustering to find cluster centers in this param-
eter space, following [34]. To improve robustness, we
reject any vote for which the angle |θl − θr| > 20◦,
as a probable mismatch. We only seek point pairs
(l0, l1) with a distance between them in the range:
dmin < ‖l0 − l1‖ < dmax for dmin = 10 and dmax = 100.

Suppose (θl, ρl, θr, ρr) is the center of one cluster
in parameter space. A straight line is fitted to that
cluster using least-squares fitting; its line segments
are identified by the votes. Finding corresponding
parts of related non-horizontal line segments is trivial:
we keep those parts of each segment which agree in
vertical height. Alternatively, we may keep the entire
line segments in both views, as the mismatch may
be due to occlusion or imperfect edge detection or
clustering. This approach fails for horizontal lines, as
each point on the line no longer has a unique height.
To resolve this issue, we assume that depth changes
linearly along the line segment. To match two horizon-
tal line segments sl ∈ Il and sr ∈ Ir, for each pixel in
sl, its best match in sr is computed and we fit a linear
function to depths along sl using least squares. These
new depths give the final correspondence between sl
and sr. In practice, we use this method for all line
segments whose angle with the horizontal axis < 20◦.

4 PERSPECTIVE MANIPULATION

When editing a stereoscopic image pair, depth-based
methods as in [4], [6] can produce results with physi-

cally accurate depth information. However, in prac-
tice it is challenging to reconstruct a dense depth
map from a stereoscopic image pair [28]. Instead, we
use warping to deform the stereoscopic image pair
[3], building on 2D image warping techniques [22].
Such methods allow the use of sparse correspondences
across the stereoscopic image pair; these can be more
readily and reliably found than a dense depth map.
Although the results may introduce distortion, unlike
depth-based methods, the results are typically suffi-
ciently visually plausible [19]. To perform warping,
each image in the input stereoscopic pair is covered
by a quad mesh whose nodes are manipulated to edit
the image content.

Staring from a stereoscopic image pair (Il, Ir), the
user first specifies the new perspective in terms of
stereoscopic camera parameters: lens parameters and
distortions, stereo camera separation and convergence
angle, and position and orientation of the stereo
camera. We wish to find two warping functions wl

and wr which map the input image pair into an
output pair corresponding to the new perspective
view determined by these parameters. Each warp w =
(wx, wy) maps input image coordinates x = (x, y) to
output coordinates (wx(x), wy(x)). The warp is based
on a discrete uniform grid, the overall warp being
computed by bilinear interpolation of discrete warps
at grid nodes. The new positions of the grid nodes are
set to minimize a quadratic energy E = E(G) where
G is the set of all grid nodes. E takes into account
perspective point and homography constraints for
plausible stereopsis, and piecewise smoothness and
straight line constraints for visual quality.

4.1 Perspective Point Constraints
The feature correspondences established in Section
3.1 provide robust geometric information about the
3D scene. When changing perspective, we use these
constraints to determine a suitable warp. Correspond-
ing feature points in the input stereoscopic pair come
from Pl and Pr. The 3D position of the underlying
3D point can be computed using the given camera
parameters. It may then be projected using the target
cameras in accordance with the new perspective to
find its new position. Doing so for all such corre-
spondences gives P̃l and P̃r. An energy term Ep is
used whose effect is to help ensure these feature
points appear in the positions required by the new
projection:

Ep =
∑

(xi,x̃i)∈(Pl,P̃l)

‖wl(xi)− x̃i‖2

+
∑

(xi,x̃i)∈(Pr,P̃r)

‖wr(xi)− x̃i‖2

where x̃i is the location of xi under the new per-
spective. As we have reliable disparity and depth
value at feature points, we force the warpi to place
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each feature point xi at the location x̃i ([3] con-
strains disparity). This constraint at feature points is
equivalent to the depth-image-based rendering and
point constraints for a single image in [23], which
helps to guarantee proper transformation for the new
perspective. Feature points are only accidentally at
grid nodes; to convert the constraints to grid nodes,
we use bilinear interpolation based on the four grid
nodes surrounding each feature point. We achieve
camera convergence by image-shift instead of toe-
in, as it produces less distortion. The image shift is
computed from the convergence angle as in [5]. This
model leads to a new perspective with horizontal
disparity, which our constraints attempt to enforce at
feature points. Due to the piecewise smoothness of
the warp, the disparity of the output stereo image is
almost horizontal everywhere.

4.2 Homography Constraints
Homography constraints are used to constrain the
local behaviour of the warping function; the perspec-
tive constraint energy Ep only controls the projection
at feature points. At other points in the left image,
the local neighborhood of x in Il can be regarded
as the projection of a 3D planar proxy (a first order
approximation of depth at the corresponding 3D point
of x), so the warping function wl should locally be
a homography Hl(x) at x. (We consider the issue of
depth steps at occlusions later.)

We only have an approximate disparity value Dl(x)
at x to determine Hl(x). It would not be appropriate
to constrain the warped position wl(x) to appear
exactly at the position predicted by Hl(x) locally, as an
inaccurate strong constraint might break the epipolar
geometry. Instead we employ a first order constraint
to guarantee a local homography in a weak sense.
As wl(x +4x) ≈ wl(x) + J(wl(x))4x, we constrain
the Jacobian of wl to be equal to that of Hl. Thus,
at feature points, we have accurate new projection
positions, so the warped points are forced to these
positions. At other points, the trend of the warping
function should locally agree with the homography
computed by the approximate depth map. Doing the
same for both images gives an overall energy term:

Eh =
∑
x

‖J(wl(x))− J(Hl(x))‖2

+
∑
x

‖J(wr(x))− J(Hr(x))‖2.

In practice, we use the discrete version of the Jacobian
at grid nodes. For a grid node xi,j = (ui,j , vi,j) ∈ Il,
let the warped point be wl(xi,j) = (u′i,j , v

′
i,j). Then the

Jacobian of the warping function is

J(wl(xi,j)) =

[
u′i+1,j − u′i,j u′i,j+1 − u′i,j
v′i+1,j − v′i,j v′i,j+1 − v′i,j

]
.

To compute the local Jacobian of Hl(xi,j), the local
neighborhood of xi,j is treated as a planar region

with disparity Dl(xi,j) at xi,j , Dl(xi+1,j) at xi+1,j

and Dl(xi,j+1) at xi,j+1. We directly compute Hl

for xi,j and its two neighbors xi,j+1, xi+1,j , by cal-
culating their 3D corresponding positions using Dl

and the projections from the new perspective. Then
J(Hl(xi,j)) can be computed in a similar way to
J(wl(xi,j)).

At occluding edges, depth and disparity are dis-
continuous, and the warping function is not locally
a homography. The sums in Eh should thus include
all grid nodes except for cells containing occluding
edges. Approximate depths can be estimated from the
disparity maps Dl and Dr and occluding edges can
be detected as in [11].

4.3 Piecewise Smooth Warping
Where depth and disparity are continuous, the warp-
ing function should be smooth, and in such cases we
encourage the Hessian of the warping function to be
zero, with the constraints Es =

∑∥∥∂J
∂x

∥∥2. The local
Hessian matrix is approximated by finite differences
on grid nodes [9].

4.4 Line Constraints
Humans are sensitive to straight lines, and to retain
plausibility, straight lines should remain straight after
reprojection and warping. Given the line segment
correspondences established earlier, and the camera
parameters, we can determine each line in 3D space,
and hence its projections in the two new perspective
images. The following energy term Els is used to
constrain the orientation of the line segments:

Els =
∑

s∈Ll∪Lr

∫
s

‖[sin θ̃s, cos θ̃s]·
[

cos θ(w(s))
− sin θ(w(s))

]
‖2ds,

where θ(w(s)) is the orientation of the warped line
segment along w(s), w is wl or wr as appropriate to
s, and θ̃s is the target orientation of the segment s in
the new perspective. To discretize this calculation, we
parameterize w(s) and sample it in steps of the same
size as the mesh grid length, θ(w(s)) at a sample point
is calculated based on this point and one endpoint
of w(s), and Els is computed by summing at these
sample points.

Els =
∑

s∈Ll∪Lr

∑
i

‖[sin θ̃s, cos θ̃s] · [w(xi)−w(x0)]
T‖2ds.

4.5 Energy Optimization
To find the warp, we minimize the total energy, a
weighted combination of all the above energy terms:

E = kpEp + khEh + ksEs + klsEls.

Ep is the most important constraint so should have
a larger weight. Results are relatively insensitive to
choice of parameters; all figures in the paper used
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Fig. 3. Stereo images with manipulated perspective showing various orientation changes. Left to right: input left
image, input anaglyph image, output left image with new perspective, output anaglyph image.

fixed weights of kp = 2, kh = 1, ks = 1, kls = 1. The
energy has been carefully designed to be a quadratic
function in the coordinates of the grid mesh, so that
it can be efficiently minimized via a sparse linear
system.

Fig. 4. Alternative approaches to perspective change.
(a): input anaglyph image. (b)–(d): results by: direct
rendering of the reconstructed point cloud, transfor-
mation by two homographies (note the large vertical
disparity at the traffic light, and our method.

5 RESULTS AND DISCUSSIONS
We have tested our algorithm on a variety of stereo-
scopic image pairs, as exemplified in Figure 3. A grid

spacing of between 10 and 20 pixels sufficed for input
images up to 10002 pixels, producing visually pleasing
results in under 10s on a PC with a 3.0GHz quad core
CPU and 4GB RAM. Our method produces plausible
results with almost purely horizontal disparity, pro-
viding a comfortable viewing experience; an approach
using two homographies following [4] does not—see
Figures 4 and 5.

We have also compared our method with a naive
depth-based approach, using the technique in [35] to
compute a dense disparity map, and rendering the
reconstructed 3D point cloud from the new perspec-
tive. However, computing a dense disparity map is
neither efficient nor robust, and as the perspective
changes, the depth-based method leads to gaps, which
need extra non-trivial inpainting operations [6] to
fill—see Figure 4. Warping avoids such gaps, and still
produces visually acceptable results.

5.1 Applications

Changing perspective enables many other editing op-
erations on stereoscopic images. Here we demonstrate
four uses of perspective manipulation.

5.1.1 Disparity Mapping
Our method can be used to change the perceived
depth of a stereoscopic image pair. Similar results
can also be generated using the technique in [3].
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Fig. 5. Camera rotation along the z axis. (a): input anaglyph image. (b,c): results produced by our method. (d,e):
results of transformation by two homographies.

Fig. 6. Dolly zooming: (a) input anaglyph, (b-d) later
shots, moving the camera away while zooming in.

By changing the relative position of the stereoscopic
cameras, the disparity is changed in a scene-centric
manner, rather than relying on a user designed dispar-
ity filter: our approach generates physically realistic
results based on the camera parameters.

5.1.2 Wide-angle Effect
A wide-angle effect is often intentionally used for
artistic effect in photography. We can generate wide-
angle-like stereoscopic images by adding lens distor-
tion to each camera. In this case, we omit the Els
term since lines should no longer be straight after
projection. However, lens radial distortion introduces
vertical disparity [5], so we adapt the energy Ep. For
a pair of feature points xl ∈ Pl and xr ∈ Pr, with
new positions x̃l ∈ P̃l and x̃r ∈ P̃r, we constrain the
vertical position of warped feature points wl(xl) and
wr(xr) to the average vertical position of x̃l and x̃r:
we redefine Ep to be

E′p =
∑

(wl(xl)[x]− x̃l[x])
2

+
∑

(wr(xr)[x]− x̃r[x])
2

+
∑(

wl(xl)[y]−
x̃l[y] + x̃r[y]

2

)2

+
∑(

wr(x)[y]−
x̃l[y] + x̃r[y]

2

)2

.

This leads to a fisheye-like effect while constraining
horizontal disparity, as shown in Figure 1. Note that
for zero camera distortion, E′p ≡ Ep.

Fig. 7. Stereoscopic stitching example. Top: input two
stereo pairs. Middle: panorama generated using our
method. Bottom: panorama generated by stitching the
left images and the right images separately; note the
disparity near the trees (too large and including vertical
disparity), and the foreground grass (vertical disparity),
leading to poor 3D viewing.

5.1.3 Dolly Zoom
A dolly zoom effect can be produced by zooming out
while moving towards the subject. We can emulate
this to produce an interesting dynamic effect from a
still stereoscopic image pair—see Figures 6(a-d). The
camera moves forwards along the z-axis, while the
focal length of the stereo cameras is adjusted to zoom
out simultaneously.

5.1.4 Stereoscopic Stitching
Stitching is commonly used to merge multiple images,
e.g. to increase the image resolution or angle of view.
Assume we have two stereo image pairs (Il0, Ir0) and
(Il1, Ir1) captured from two different perspectives (so
four monocular viewpoints). A panorama could be
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Fig. 8. Comparison of alternative energy terms. (a) Input anaglyph. (b) Our result and superimposed warping
grid. (c) Results using Ep + Es, Ep + Ec, and Ep + Eus.

naively constructed by stitching the two left images
Il0, Il1 and two right images Ir0, Ir1 separately, result-
ing in left and right panorama images. However, this
will probably break the stereopsis, since in the pinhole
camera model, this is equivalent to applying different
homographies individually to the two images in each
stereo pair (see Section 5), causing incorrect disparity.

Instead, we proceed as follows: we change the
perspective of one stereo image (Il0, Ir0) by changing
the stereo camera oreintation, obtaining (I ′l0, I

′
r0), such

that (I ′l0, I
′
r0) and (Il1, Ir1) can be directly stitched

(through translation) to construct a rotational stereo-
scopic panorama. This will lead to better results with
little vertical disparity (see Figure 7). In practice, the
change of the stereo camera orientation can be ap-
proximated as the average rotation of the two views,
computed from the feature correspondences between
Il0 and Il1, Ir0 and Ir1 separately.

5.2 Homography Constraint
Unlike previous warping based stereoscopic image
or video editing techniques as in [3], [11], [23], a
homography constraint Eh is introduced to guarantee
proper perspective change under warping. [3] is main-
ly concerned with disparity changes while preserving
image content, and thus uses saliency constraints to
minimize visual distortion, enforcing the local Jaco-
bian to be an identity matrix in salient regions. [23]
uses a similarity transformation energy term to ensure
the warp is content-preserving. These approaches are
inappropriate for perspective changes. We illustrate

the benefit of our homography constraint energy ter-
m Eh and compare its use with two other energy
terms: a uniform scaling constraint Eus expressed as
∂wx

∂x = ∂wx

y , ∂wx

y =
∂wy

x = 0 and a conformal constraint
Ec expressed as ∂wx

∂x = ∂wx

y , ∂wx

y =
∂wy

x .
Fig.8(c) shows the results of changing the perspec-

tive of the input stereo image shown in Fig.8(a) using
different energy terms: Ep+Es, Ep+Ec and Ep+Eus.
Es, Ec and Eus are all 2D image content based ener-
gies. The warping function performs 2D interpolation
of feature point warps, without any consideration of
the underlying disparity and the changed perspective.
As our experiments in Fig.8 show, these alternative
energies lead to noticeable distortion in the image.
Our result is shown in Fig.8(b), and is less distorted.

5.3 Depth Discontinuities

Discontinuity of disparity is common in stereoscopic
images, and special attention must be paid to such
regions since the warping function is not smooth.
Ideally, when changing the perspective of an image,
new content should be created (where new parts
of the scene become exposed) and occluded regions
should be hidden, as shown in Fig. 9(a). This is a
difficult underconstrained problem, one solution to
which is the costly process of stereo inpainting [6].

The alternative used in our energy terms Eh and
Es is to allow discontinuous warps [11]. As described
in Sec.4, Eh and Es should not be summed over
discontinuities (in practice, we use a small but non-
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Fig. 9. Warping near occluding regions. (a) Under
large camera translation, new content is needed (red
region) and occluded regions should be hidden (blue).
(b) Warping without using Eh. (c) Our result.

zero weight wε = 0.001 to prevent reduced rank in
the coefficient matrix).

Near occluding edges, warping fills holes and hides
overlapping regions by locally stretching or shrinking
the image content. As noted in [11], a discontinuous
disparity map can produce significant over-stretching
and over-shrinking near occluding regions, [11] in-
troduced a content-and-disparity aware hole filling
technique which allocates distortion preferentially to
the background. In our case, the homography energy
term Eh is computed from a interpolated smooth
disparity map, and helps to locate the distortion near
occluding regions. This produces acceptable results
without noticeable artifacts. A comparison is shown
in Fig.9(b) (without using Eh) and Fig.9(c) (using Eh).

5.4 Camera Parameters

Our method needs the stereo camera parameters. De-
termining camera parameters from multi-view images
has been carefully studied [36], but it is difficult to
determine accurate values. However, we have found
that approximately knownf camera parameters suffice
to provide visually acceptable results. Fig. 10 demon-
strates the robustness of our methods.

5.5 Validation

Viewing comfort for stereo images and video is af-
fected by various factors [37], and there is no general
objective measurement of stereo visual quality. How-
ever, large vertical disparity and excessive horizontal
disparity are two factors widely-accepted to increase
visual discomfort. We compute an approximate pro-
jection under a new perspective for stereo images,
and consequently the range of horizontal disparity
is highly dependent on the user-specified perspective
change. Table 1 shows the average vertical disparity
(in pixels) at feature points before and after perspec-
tive manipulation for examples in this paper.

TABLE 1
Average vertical disparity for examples in this paper,

before and after manipulation.

Fig No. 1 3(a) 3(b) 3(c) 4 5 10
Before 0.2 0.5 0.4 0.5 0.3 0.4 1.2
After 0.2 0.3 0.3 0.3 0.3 0.5 0.3

We also used a subjective experiment to validate
our method—a user study was conducted to compare
the visual quality of the original and manipulated
stereo images. Ten participants were asked to give
a integer score from -5 (original image is better) to
5 (manipulated is better), both for red-cyan stereo,
and active-shutter stereo. The results in Table.2 show
that the perceived quality of the manipulated stereo
images was comparable to that of the originals.

TABLE 2
Average evaluation score

Fig No. 1 3(a) 3(b) 3(c) 4 5 10
Avg Score 0.8 -0.9 1.3 0.5 1.0 -0.5 -0.5

5.6 Limitations

Our method inevitably has limitations, the main one
being that we can not handle large camera transla-
tions well, as these lead to large distortions. Warping
cannot produce new scenery required under the new
perspective where it is missing from the input, nor
can it hide information where it is occluded. A fur-
ther problem arises when there is a large orientation
change at occluding edges, which produces locally no-
ticeable distortions if image content there has strong
structures. Figure 11 shows two such examples.

6 CONCLUSION

Perspective manipulation is a useful tool for image
editing, and allows the user to apply various effects
after image capture. In this paper, we have presented
a practical tool for manipulating perspective in a
stereoscopic image pair. We pose the problem based
on warping each image in the stereoscopic image pair,
using energy terms to constrain them to maintain
correct geometric information and visual plausibility
under the new perspective. The resulting quadratic
minimization problem can be efficiently solved via a
sparse linear system.

The 3D information in a stereoscopic image pair is
too limited to enable us to make large changes to the
projection, especially when moving the camera by a
significant distance, as occlusions in the original may
result in gaps. There is potential to improve the results
by image inpainting. Other extensions to this work
could consider multiple stereoscopic images and 3D
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Fig. 10. Effects of errors in determined camera parameters. Perspective of input image (a) is changed under
user-specified camera parameters, resulting in (b). (c): Focal length is changed by 10%. (d): Optical center is
shifted by 10%. (e): Camera separation is increased by 10%.

movies, when ensuring temporal coherence will be a
challenge, as well as choosing a suitable camera path
for the new perspective views.

Fig. 11. Examples with distortions. Left: input
anaglyph. Right: output anaglyph and close-up.
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