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Mesh Neural Networks Based on Dual
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Abstract—Deep neural networks (DNNs) have been widely used
for mesh processing in recent years. However, current DNNs can
not process arbitrary meshes efficiently. On the one hand, most
DNNs expect 2-manifold, watertight meshes, but many meshes,
whether manually designed or automatically generated, may have
gaps, non-manifold geometry, or other defects. On the other hand,
the irregular structure of meshes also brings challenges to building
hierarchical structures and aggregating local geometric informa-
tion, which is critical to conduct DNNs. In this paper, we present
DGNet, an efficient, effective and generic deep neural mesh pro-
cessing network based on dual graph pyramids; it can handle
arbitrary meshes. First, we construct dual graph pyramids for
meshes to guide feature propagation between hierarchical levels for
both downsampling and upsampling. Second, we propose a novel
convolution to aggregate local features on the proposed hierarchical
graphs. By utilizing both geodesic neighbors and euclidean neigh-
bors, the network enables feature aggregation both within local
surface patches and between isolated mesh components. Exper-
imental results demonstrate that DGNet can be applied to both
shape analysis and large-scale scene understanding. Furthermore,
it achieves superior performance on various benchmarks, including
ShapeNetCore, HumanBody, ScanNet and Matterport3D. Code
and models will be available at https://github.com/li-xI/DGNet.

Index Terms—Geometric understanding, mesh processing,
neural networks, shape analysis.

1. INTRODUCTION

EEP learning has greatly facilitated the development of
D various fields, including image processing, natural lan-
guage processing, speech recognition, etc. Recently, it has
played an increasingly important role in geometric understand-
ing. Since the voxel-based approach of ShapeNets [1] was pro-
posed, neural-network-assisted geometric understanding meth-
ods have flourished. Following PointNet [2], many works [3],
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[4], [5] began to utilize point representations for geometric
understanding. Now, mesh-based methods [6], [7], [8], [9] have
exploited the topological information of meshes to further im-
prove the effectiveness of neural networks.

Point clouds provide raw 3D geometric information but lack
the topological structure of mesh representations. Therefore,
more and more works [10], [11], [12] are using mesh represen-
tation to improve the performance for geometric understanding.
The major difference between processing meshes and 2D images
is that regularity is an inherent feature of 2D images, while
3D meshes have an irregular structure. The regular structure
of 2D images allows us to quickly build hierarchical structures
and perform local feature aggregation on images [13], [14], two
fundamental operations for deep image understanding.

Current mesh-based neural networks [6], [15] usually assume
meshes to be of high quality, and in particular 2-manifold
and watertight. However, both manually designed and auto-
matically generated meshes can suffer from defects of many
kinds e.g., non-manifold faces, cracks, disconnected pieces, and
self-intersecting surfaces. Mesh-based neural networks need to
be robust in the presence of such topological issues, and other
mesh quality problems: feature aggregation and hierarchical
structure generation should work even given imperfect input.

The main challenge for neural networks on meshes is to
generate a hierarchical structure for the irregular input data.
Various works [6], [8], [9] employ edge collapse to gener-
ate a hierarchical structure, but this naive approach can not
guarantee a consistent enlarged receptive field and constant
topology. Furthermore, simplification failures may occur, and
mappings between hierarchical levels may be ill-defined. Re-
cently, SubdivNet [15] proposed a different architecture based
on the Loop subdivision to ensure the consistency of receptive
fields during convolution and pooling. This method, however, is
rather restrictive as it requires all meshes to be initially remeshed
before subdivision and only can be applied to closed 2-manifold
meshes.

Though graph neural network [16] is directly applied to the
mesh, the number of neighbor nodes aggregated by each node is
inconsistent, which will affect the network performance. We find
that the dual graph of the mesh, which takes faces as nodes and
adjacencies between faces as edges, can ensure that each node
has three neighbor nodes in most cases. This can make the re-
ceptive field of each node consistent, just like the images, which
will help us further build convolution and pooling operations.
In addition, we also need to ensure consistent receptive fields
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DGNet, our general mesh network for geometric understanding based on dual graph pyramids. Given a possibly low-quality mesh as input, it can generate

dual graph pyramids of the mesh for upsampling and downsampling operators. Taking advantage of hybrid convolution, it can aggregate geodesic features and
euclidean features for the mesh. This efficient and effective network architecture can be used for various mesh analysis tasks.

and clear correspondence between different levels of feature
propagation. Therefore, we sample the dual graph of the mesh
to build a hierarchical structure for an arbitrary mesh. It can then
be used for downsampling and upsampling while ensuring that
the receptive field can be enlarged consistently during feature
propagation.

In addition to the hierarchical structures, the feature aggrega-
tion method used on a mesh also has a great impact on network
performance. Rotation-invariant convolutions on surfaces [6],
[71, [12] can be used to aggregate features over neighborhoods,
while other methods [17], [18] rely on parameterization meth-
ods to extract geometric features. However, both approaches
have either strict requirements on mesh quality or suffer from
poor feature aggregation. In contrast, we propose a concise
and efficient feature aggregation method that can be widely
and robustly applied to meshes of any quality. Specifically, we
use a hybrid convolution, which finds geodesic neighbors and
euclidean neighbors for local feature aggregation.

Benefiting from the dual graph pyramids and hybrid convolu-
tion, our network, named DGNet, provides a simple and general
approach to handle meshes of arbitrary quality. It achieves state-
of-the-art performance on a variety of geometric understand-
ing tasks, including classification, retrieval and segmentation.
Ablation studies demonstrate the effectiveness of the proposed
hierarchical graph generation strategy, the hybrid convolution,
and the overall mesh network.

The contributions of this paper can be summarized as follows:

a general dual graph pyramids generation method that
can generate an approximately uniform dual graph hi-
erarchy for any mesh, as a basis for neural network
processing;

a hybrid convolution operation, which can learn both
geodesic features and euclidean features, enhancing the
network’s capabilities and versatility;

a simple, generic mesh network, which can process meshes
of varying quality, while providing state-of-the-art perfor-
mance for multiple geometric understanding tasks.

II. RELATED WORK
A. Neural Networks on Multi-Views, Points and Voxels

Following successful applications of deep learning to 2D
images, many researchers [2], [6], [19], [20] have considered
applying neural networks to 3D geometric understanding. 3D
data has more varied representations than 2D data [21]; these
include multi-view images, point clouds, voxels, meshes, and so
on. Pioneers [22], [23], [24], [25] applied 2D convolutional neu-
ral networks to 3D shapes using multiple 2D views (multi-views)
on which feature extraction was performed, finally integrating
multiple features for various downstream tasks.

With further improvements in neural networks, neural net-
works have been gradually applied directly to 3D objects [1],
[2], [26]. Unlike images, point clouds are unstructured and
unordered. To apply 3D convolutional neural networks to them,
the easiest approach is to convert the input to a structured, voxel
representation [1], [19], [27], [28]. As the voxels are regularly
ordered, networks used for 2D image processing can be directly
extended to them [29], [30] by using 3D convolutions. However,
the increased number of voxels in 3D compared to pixels in
2D leads to significantly greater computational and memory
requirements. Choy et al. [20] and Graham et al. [31] thus
apply sparse convolution to reduce redundant computation. O-
CNN [32] represents the 3D shape as an octree further reducing
memory consumption and computation. [33], [34], [35] improve
upon this approach by using a patch-guided partitioning strategy
and output-guided skip-connections.

Because of the high computational cost of using voxels, other
works [2], [3], [33] have explored methods of directly utilizing
point clouds. PointNet [2] addresses the lack of structure in
point clouds by using multilayer perceptrons and max pool-
ing, while PointNet++ [3] considers a hierarchical structure
to improve the performance of point-based networks by set
abstraction. PointCNN [4] proposes a convolution operator for
point clouds, which finesses their unstructured nature through
a feature transformation matrix, while KPConv [36] suggests
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deformable convolutions to further improve the performance of
point networks. Recent works [37], [38], [39] use an attention
mechanism to construct self-attention networks to enhance the
results of point cloud processing. In addition, there has been a
series of works [21], [40] summarizing problems and methods
in deep geometric learning.

B. Neural Networks on Meshes and Graphs

The above approaches are hampered by their high computa-
tional cost or lack of topological information, so many works [6],
[7], [41], [42], [43], [44], [45] have considered applying neural
networks to meshes. Some researchers [46], [47], [48], [49]
apply 2D convolutions to meshes by using parametric meth-
ods to map geometric features to a grid structure. Tangent-
Conv [18] proposes the concept of tangent convolution, which
enables neural networks to be applied to large-scale meshes.
TextureNet [17] improves the performance of neural networks
by introducing a convolution that is invariant to the 4-RoSy
ambiguity. PFCNN [50] further improves the capabilities of
neural networks on surfaces by using parallel frames.

However, these methods usually have high computational
costs and are insensitive to certain types of geodesic features.
Therefore, many works [42], [51] treat the meshes as a graph
and apply graph convolutional networks. MeshNet [7] directly
uses 1-ring adjacency relationships of faces to perform surface
convolution, but unlike neural networks on images, does not
build a hierarchical structure for pooling. DiffusionNet [10]
and HodgeNet [11] further explore the application of spectral
methods on meshes to learn geometric features. Some works [6],
[8], [9], [52] do build a hierarchical structure by using mesh
simplification, which improves the capability of networks. Other
efforts have tried new ways of building hierarchical structures,
like random walks [41], Loop subdivision [15], parallel vertex
clustering [52] and adaptive edge contraction [6]. However,
these simplification methods [6], [8] do not guarantee consistent
receptive fields for networks and there is no clear mapping
between levels. The subdivision-based method [15] has high
requirements on meshes, which limits the application of mesh
networks. PD-MeshNet [12] proposes a primal-dual framework
for mesh learning, and it constructs the primal graph and the dual
graph from meshes, and then aggregates the features of the two
graphs. Different from them, we build the dual graph pyramids
without simplification methods, providing a consistent receptive
field for the network and clear mapping for downsampling and
upsampling operators. It can be applied to low-quality meshes
while ensuring a consistent receptive field for networks.

Learning local features is indispensable to the success of
neural networks for geometric understanding. Many works [6],
[71, [81, [9], [53] explore local feature aggregation methods for
meshes. MeshNet [7] proposes neural networks operating on
a surface by aggregating features of 1-ring neighbors, while
MeshCNN [6] takes advantage of edge features, using edge
convolution for geometric understanding. SubdivNet [15] pro-
poses a general mesh convolutional network based on closest
manifold meshes. As well as geodesic features, euclidean fea-
tures are also important for geometric understanding. There
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are also researches [8], [9] that combine the advantages of
both by aggregating geodesic features and euclidean features.
DCM-Net [8] proposes dual convolutions to fuse features on
graphs with features in euclidean spaces. VMNet [9] improves
the performance of mesh neural networks by combining the
sparse voxel-based method and the graph method. In contrast,
we propose a novel convolution in which we use the idea of
space division to aggregate mesh features into voxels, and then
from the voxels into faces. It can make the network aware of the
features of different directions and reduce the computation of
feature propagation.

The successes of the prior works [6], [7], [8], [15] have
confirmed the importance of hierarchical structure, while more
recent works [8], [9], [52] further demonstrate that combining
geodesic features and euclidean features is advantageous. We
incorporate both ideas in our DGNet, which overcomes the
limitations of previous works, generating dual graph pyramids
and making full use of geodesic features and euclidean features.
Thus, our DGNet has a consistent receptive field by using
hierarchical graphs and can capture the feature of the isolated
patches. Compared to [6], [8], [15], DGNet is more versatile and
provides stronger feature extraction capabilities.

III. DUAL GRAPH PYRAMIDS FOR MESHES
A. Considerations

The success of neural networks in 2D image processing
depends on constructing hierarchical structures. Adjacency re-
lationships and hierarchical structures are trivially captured
from images, but since triangle meshes are irregular, for neu-
ral networks to process meshes, we need to explicitly build a
hierarchical structure and appropriate adjacency relationships.

For convolutional neural networks on images, the same filter
kernels are applied to every pixel, and the consistent receptive
field helps to improve the network performance. The same is
true for mesh-based neural networks, so our method is designed
to generate dual graph pyramids that can ensure the approxi-
mate consistency of receptive fields of faces. Generally, for a
mesh, more complex regions require more faces, while simpler
regions require fewer faces, and complex regions tend to be
more distinctive. Therefore, itis beneficial to oversample regions
of interest instead of sampling the surface uniformly. Finally,
clear correspondences between the hierarchical graphs will be
desirable for the propagation of features at different levels for
downsampling and upsampling operators.

Following the above requirements, we propose a hierarchy
generation method on the dual graph of the mesh. Our algorithm
can use meshes of any quality as input and generates dual graph
pyramids through sampling and adjacency construction. In the
dual graph, each node corresponds to a face of the mesh and two
nodes are connected by an edge if and only if the corresponding
faces are adjacent on the mesh. Although connectivity in meshes
may differ, the degree of the dual graph is typically relatively
uniform and close to 3. Therefore, we can generate the next level
graph by sampling almost uniformly, and building adjacency
with a consistent degree.
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Adjacency Construction -

Dual Graph Sampling

Dual graph pyramids generation. (Top) Schematic diagram of pyramids generation. (Bottom) Sampling state visualized on an example mesh. Dark blue:

faces to retain. Medium blue: faces to discard at the next level. Light blue: discarded faces. Yellow: nodes to retain. Green: nodes to discard. We construct the dual
graph of the mesh, sample it, and rebuild the adjacency relations to generate a new dual graph at the next level. We build dual graph pyramids by alternate sampling

and adjacency construction.

B. Dual Graph Construction

Before describing our method, we first recap dual graph
construction for a mesh.

Let a triangle mesh M be defined as (V, E,F), where V =
{vi|vi R3}isasetofvertices,E = {ej|ei {1,...,|V|}*}
is a set of pairs of vertices, or edges, and F = {fj | Tj
{1,...,[V[}3} is a set of triplets of vertices, or faces. Our
method uses faces to hold features; the adjacency relationships
of faces are used to build hierarchical graphs.

We say that two faces sharing an edge are adjacent. Fig. 2
shows the unweighted dual graph G for a mesh M, where each
face of M is a node and two nodes are connected by an edge if
and only if their corresponding faces are adjacent in M. Faces
with more than three adjacent faces are rare, and in such cases,
we just randomly select three of the adjacent faces. Although
many meshes have non-manifold or disconnected faces, the
unweighted dual graph can always be generated. If the mesh
has several unconnected components or gaps, the dual graph is
not fully connected, and thus cannot be directly used to aggregate
features from disconnected components. We propose a hybrid
convolution in Section IV-A to solve this problem.

C. Dual Graph Pyramids Generation

To provide a hierarchical structure for mesh neural networks,
we need to build a pyramid from the dual graph of the mesh,
as is done for images. Building this graph hierarchy for a mesh
proceeds in two key steps: sampling, and adjacency construction,
as shown in Fig. 2.

Sampling. Given the dual graph G of the mesh, we first set
the sampling state S, retained or discarded at the next level, for
each node in G. As shown in Algorithm 1, we first set up an
empty queue Q, and select an unvisited node T from the graph
G to add to the queue; its status is set to retained. Then, we take

Algorithm 1: Sampling.

Input :initial dual graph G with N faces
Output: the sampling state S
initialize the queue () and the sampling state S;
fori+ 1to N do
if face f; is not visited then
add f; into @) and set S; to retained;
while Q is not empty do
take frow from @ ;
foreach unvisited face fye.t adjacent to frow
do
add fnewt into Q;
if freqt has an adjacent face whose state is
discarded then
| set Speqt to retained ;
else
\ set Spert to discarded ;
end
end
end
end
end

the first node f,,,y from the queue. For each unvisited node ey
adjacent to T, we set its state to retained if there are visited
discarded nodes amongst its 1-ring neighbors, and otherwise set
its state to discarded. We then add it to the queue. We process the
nodes in the queue one by one until the queue is empty. Finally,
we repeat the above two steps until all nodes have been visited.

Adjacency Construction. Given the dual graph G and the
sampling states S as inputs, we build the next level graph G,
using the retained faces in G. As shown in Algorithm 2, we first
take all retained nodes in G without edges as G;. Then, for each
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