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Abstract—Deep neural networks (DNNs) have been widely used
for mesh processing in recent years. However, current DNNs can
not process arbitrary meshes efficiently. On the one hand, most
DNNs expect 2-manifold, watertight meshes, but many meshes,
whether manually designed or automatically generated, may have
gaps, non-manifold geometry, or other defects. On the other hand,
the irregular structure of meshes also brings challenges to building
hierarchical structures and aggregating local geometric informa-
tion, which is critical to conduct DNNs. In this paper, we present
DGNet, an efficient, effective and generic deep neural mesh pro-
cessing network based on dual graph pyramids; it can handle
arbitrary meshes. First, we construct dual graph pyramids for
meshes to guide feature propagation between hierarchical levels for
both downsampling and upsampling. Second, we propose a novel
convolution to aggregate local features on the proposed hierarchical
graphs. By utilizing both geodesic neighbors and euclidean neigh-
bors, the network enables feature aggregation both within local
surface patches and between isolated mesh components. Exper-
imental results demonstrate that DGNet can be applied to both
shape analysis and large-scale scene understanding. Furthermore,
it achieves superior performance on various benchmarks, including
ShapeNetCore, HumanBody, ScanNet and Matterport3D. Code
and models will be available at https://github.com/li-xl/DGNet.

Index Terms—Geometric understanding, mesh processing,
neural networks, shape analysis.

I. INTRODUCTION

D EEP learning has greatly facilitated the development of
various fields, including image processing, natural lan-

guage processing, speech recognition, etc. Recently, it has
played an increasingly important role in geometric understand-
ing. Since the voxel-based approach of ShapeNets [1] was pro-
posed, neural-network-assisted geometric understanding meth-
ods have flourished. Following PointNet [2], many works [3],
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[4], [5] began to utilize point representations for geometric
understanding. Now, mesh-based methods [6], [7], [8], [9] have
exploited the topological information of meshes to further im-
prove the effectiveness of neural networks.

Point clouds provide raw 3D geometric information but lack
the topological structure of mesh representations. Therefore,
more and more works [10], [11], [12] are using mesh represen-
tation to improve the performance for geometric understanding.
The major difference between processing meshes and 2D images
is that regularity is an inherent feature of 2D images, while
3D meshes have an irregular structure. The regular structure
of 2D images allows us to quickly build hierarchical structures
and perform local feature aggregation on images [13], [14], two
fundamental operations for deep image understanding.

Current mesh-based neural networks [6], [15] usually assume
meshes to be of high quality, and in particular 2-manifold
and watertight. However, both manually designed and auto-
matically generated meshes can suffer from defects of many
kinds e.g., non-manifold faces, cracks, disconnected pieces, and
self-intersecting surfaces. Mesh-based neural networks need to
be robust in the presence of such topological issues, and other
mesh quality problems: feature aggregation and hierarchical
structure generation should work even given imperfect input.

The main challenge for neural networks on meshes is to
generate a hierarchical structure for the irregular input data.
Various works [6], [8], [9] employ edge collapse to gener-
ate a hierarchical structure, but this naive approach can not
guarantee a consistent enlarged receptive field and constant
topology. Furthermore, simplification failures may occur, and
mappings between hierarchical levels may be ill-defined. Re-
cently, SubdivNet [15] proposed a different architecture based
on the Loop subdivision to ensure the consistency of receptive
fields during convolution and pooling. This method, however, is
rather restrictive as it requires all meshes to be initially remeshed
before subdivision and only can be applied to closed 2-manifold
meshes.

Though graph neural network [16] is directly applied to the
mesh, the number of neighbor nodes aggregated by each node is
inconsistent, which will affect the network performance. We find
that the dual graph of the mesh, which takes faces as nodes and
adjacencies between faces as edges, can ensure that each node
has three neighbor nodes in most cases. This can make the re-
ceptive field of each node consistent, just like the images, which
will help us further build convolution and pooling operations.
In addition, we also need to ensure consistent receptive fields
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Fig. 1. DGNet, our general mesh network for geometric understanding based on dual graph pyramids. Given a possibly low-quality mesh as input, it can generate
dual graph pyramids of the mesh for upsampling and downsampling operators. Taking advantage of hybrid convolution, it can aggregate geodesic features and
euclidean features for the mesh. This efficient and effective network architecture can be used for various mesh analysis tasks.

and clear correspondence between different levels of feature
propagation. Therefore, we sample the dual graph of the mesh
to build a hierarchical structure for an arbitrary mesh. It can then
be used for downsampling and upsampling while ensuring that
the receptive field can be enlarged consistently during feature
propagation.

In addition to the hierarchical structures, the feature aggrega-
tion method used on a mesh also has a great impact on network
performance. Rotation-invariant convolutions on surfaces [6],
[7], [12] can be used to aggregate features over neighborhoods,
while other methods [17], [18] rely on parameterization meth-
ods to extract geometric features. However, both approaches
have either strict requirements on mesh quality or suffer from
poor feature aggregation. In contrast, we propose a concise
and efficient feature aggregation method that can be widely
and robustly applied to meshes of any quality. Specifically, we
use a hybrid convolution, which finds geodesic neighbors and
euclidean neighbors for local feature aggregation.

Benefiting from the dual graph pyramids and hybrid convolu-
tion, our network, named DGNet, provides a simple and general
approach to handle meshes of arbitrary quality. It achieves state-
of-the-art performance on a variety of geometric understand-
ing tasks, including classification, retrieval and segmentation.
Ablation studies demonstrate the effectiveness of the proposed
hierarchical graph generation strategy, the hybrid convolution,
and the overall mesh network.

The contributions of this paper can be summarized as follows:
� a general dual graph pyramids generation method that

can generate an approximately uniform dual graph hi-
erarchy for any mesh, as a basis for neural network
processing;

� a hybrid convolution operation, which can learn both
geodesic features and euclidean features, enhancing the
network’s capabilities and versatility;

� a simple, generic mesh network, which can process meshes
of varying quality, while providing state-of-the-art perfor-
mance for multiple geometric understanding tasks.

II. RELATED WORK

A. Neural Networks on Multi-Views, Points and Voxels

Following successful applications of deep learning to 2D
images, many researchers [2], [6], [19], [20] have considered
applying neural networks to 3D geometric understanding. 3D
data has more varied representations than 2D data [21]; these
include multi-view images, point clouds, voxels, meshes, and so
on. Pioneers [22], [23], [24], [25] applied 2D convolutional neu-
ral networks to 3D shapes using multiple 2D views (multi-views)
on which feature extraction was performed, finally integrating
multiple features for various downstream tasks.

With further improvements in neural networks, neural net-
works have been gradually applied directly to 3D objects [1],
[2], [26]. Unlike images, point clouds are unstructured and
unordered. To apply 3D convolutional neural networks to them,
the easiest approach is to convert the input to a structured, voxel
representation [1], [19], [27], [28]. As the voxels are regularly
ordered, networks used for 2D image processing can be directly
extended to them [29], [30] by using 3D convolutions. However,
the increased number of voxels in 3D compared to pixels in
2D leads to significantly greater computational and memory
requirements. Choy et al. [20] and Graham et al. [31] thus
apply sparse convolution to reduce redundant computation. O-
CNN [32] represents the 3D shape as an octree further reducing
memory consumption and computation. [33], [34], [35] improve
upon this approach by using a patch-guided partitioning strategy
and output-guided skip-connections.

Because of the high computational cost of using voxels, other
works [2], [3], [33] have explored methods of directly utilizing
point clouds. PointNet [2] addresses the lack of structure in
point clouds by using multilayer perceptrons and max pool-
ing, while PointNet++ [3] considers a hierarchical structure
to improve the performance of point-based networks by set
abstraction. PointCNN [4] proposes a convolution operator for
point clouds, which finesses their unstructured nature through
a feature transformation matrix, while KPConv [36] suggests
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deformable convolutions to further improve the performance of
point networks. Recent works [37], [38], [39] use an attention
mechanism to construct self-attention networks to enhance the
results of point cloud processing. In addition, there has been a
series of works [21], [40] summarizing problems and methods
in deep geometric learning.

B. Neural Networks on Meshes and Graphs

The above approaches are hampered by their high computa-
tional cost or lack of topological information, so many works [6],
[7], [41], [42], [43], [44], [45] have considered applying neural
networks to meshes. Some researchers [46], [47], [48], [49]
apply 2D convolutions to meshes by using parametric meth-
ods to map geometric features to a grid structure. Tangent-
Conv [18] proposes the concept of tangent convolution, which
enables neural networks to be applied to large-scale meshes.
TextureNet [17] improves the performance of neural networks
by introducing a convolution that is invariant to the 4-RoSy
ambiguity. PFCNN [50] further improves the capabilities of
neural networks on surfaces by using parallel frames.

However, these methods usually have high computational
costs and are insensitive to certain types of geodesic features.
Therefore, many works [42], [51] treat the meshes as a graph
and apply graph convolutional networks. MeshNet [7] directly
uses 1-ring adjacency relationships of faces to perform surface
convolution, but unlike neural networks on images, does not
build a hierarchical structure for pooling. DiffusionNet [10]
and HodgeNet [11] further explore the application of spectral
methods on meshes to learn geometric features. Some works [6],
[8], [9], [52] do build a hierarchical structure by using mesh
simplification, which improves the capability of networks. Other
efforts have tried new ways of building hierarchical structures,
like random walks [41], Loop subdivision [15], parallel vertex
clustering [52] and adaptive edge contraction [6]. However,
these simplification methods [6], [8] do not guarantee consistent
receptive fields for networks and there is no clear mapping
between levels. The subdivision-based method [15] has high
requirements on meshes, which limits the application of mesh
networks. PD-MeshNet [12] proposes a primal-dual framework
for mesh learning, and it constructs the primal graph and the dual
graph from meshes, and then aggregates the features of the two
graphs. Different from them, we build the dual graph pyramids
without simplification methods, providing a consistent receptive
field for the network and clear mapping for downsampling and
upsampling operators. It can be applied to low-quality meshes
while ensuring a consistent receptive field for networks.

Learning local features is indispensable to the success of
neural networks for geometric understanding. Many works [6],
[7], [8], [9], [53] explore local feature aggregation methods for
meshes. MeshNet [7] proposes neural networks operating on
a surface by aggregating features of 1-ring neighbors, while
MeshCNN [6] takes advantage of edge features, using edge
convolution for geometric understanding. SubdivNet [15] pro-
poses a general mesh convolutional network based on closest
manifold meshes. As well as geodesic features, euclidean fea-
tures are also important for geometric understanding. There

are also researches [8], [9] that combine the advantages of
both by aggregating geodesic features and euclidean features.
DCM-Net [8] proposes dual convolutions to fuse features on
graphs with features in euclidean spaces. VMNet [9] improves
the performance of mesh neural networks by combining the
sparse voxel-based method and the graph method. In contrast,
we propose a novel convolution in which we use the idea of
space division to aggregate mesh features into voxels, and then
from the voxels into faces. It can make the network aware of the
features of different directions and reduce the computation of
feature propagation.

The successes of the prior works [6], [7], [8], [15] have
confirmed the importance of hierarchical structure, while more
recent works [8], [9], [52] further demonstrate that combining
geodesic features and euclidean features is advantageous. We
incorporate both ideas in our DGNet, which overcomes the
limitations of previous works, generating dual graph pyramids
and making full use of geodesic features and euclidean features.
Thus, our DGNet has a consistent receptive field by using
hierarchical graphs and can capture the feature of the isolated
patches. Compared to [6], [8], [15], DGNet is more versatile and
provides stronger feature extraction capabilities.

III. DUAL GRAPH PYRAMIDS FOR MESHES

A. Considerations

The success of neural networks in 2D image processing
depends on constructing hierarchical structures. Adjacency re-
lationships and hierarchical structures are trivially captured
from images, but since triangle meshes are irregular, for neu-
ral networks to process meshes, we need to explicitly build a
hierarchical structure and appropriate adjacency relationships.

For convolutional neural networks on images, the same filter
kernels are applied to every pixel, and the consistent receptive
field helps to improve the network performance. The same is
true for mesh-based neural networks, so our method is designed
to generate dual graph pyramids that can ensure the approxi-
mate consistency of receptive fields of faces. Generally, for a
mesh, more complex regions require more faces, while simpler
regions require fewer faces, and complex regions tend to be
more distinctive. Therefore, it is beneficial to oversample regions
of interest instead of sampling the surface uniformly. Finally,
clear correspondences between the hierarchical graphs will be
desirable for the propagation of features at different levels for
downsampling and upsampling operators.

Following the above requirements, we propose a hierarchy
generation method on the dual graph of the mesh. Our algorithm
can use meshes of any quality as input and generates dual graph
pyramids through sampling and adjacency construction. In the
dual graph, each node corresponds to a face of the mesh and two
nodes are connected by an edge if and only if the corresponding
faces are adjacent on the mesh. Although connectivity in meshes
may differ, the degree of the dual graph is typically relatively
uniform and close to 3. Therefore, we can generate the next level
graph by sampling almost uniformly, and building adjacency
with a consistent degree.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 12,2025 at 14:38:22 UTC from IEEE Xplore.  Restrictions apply. 



4214 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

Fig. 2. Dual graph pyramids generation. (Top) Schematic diagram of pyramids generation. (Bottom) Sampling state visualized on an example mesh. Dark blue:
faces to retain. Medium blue: faces to discard at the next level. Light blue: discarded faces. Yellow: nodes to retain. Green: nodes to discard. We construct the dual
graph of the mesh, sample it, and rebuild the adjacency relations to generate a new dual graph at the next level. We build dual graph pyramids by alternate sampling
and adjacency construction.

B. Dual Graph Construction

Before describing our method, we first recap dual graph
construction for a mesh.

Let a triangle mesh M be defined as (V,E, F ), where V =
{vi | vi ∈ R3} is a set of vertices,E = {ei | ei ∈ {1, . . . , |V |}2}
is a set of pairs of vertices, or edges, and F = {fi | fi ∈
{1, . . . , |V |}3} is a set of triplets of vertices, or faces. Our
method uses faces to hold features; the adjacency relationships
of faces are used to build hierarchical graphs.

We say that two faces sharing an edge are adjacent. Fig. 2
shows the unweighted dual graph G for a mesh M , where each
face of M is a node and two nodes are connected by an edge if
and only if their corresponding faces are adjacent in M . Faces
with more than three adjacent faces are rare, and in such cases,
we just randomly select three of the adjacent faces. Although
many meshes have non-manifold or disconnected faces, the
unweighted dual graph can always be generated. If the mesh
has several unconnected components or gaps, the dual graph is
not fully connected, and thus cannot be directly used to aggregate
features from disconnected components. We propose a hybrid
convolution in Section IV-A to solve this problem.

C. Dual Graph Pyramids Generation

To provide a hierarchical structure for mesh neural networks,
we need to build a pyramid from the dual graph of the mesh,
as is done for images. Building this graph hierarchy for a mesh
proceeds in two key steps: sampling, and adjacency construction,
as shown in Fig. 2.

Sampling. Given the dual graph G of the mesh, we first set
the sampling state S, retained or discarded at the next level, for
each node in G. As shown in Algorithm 1, we first set up an
empty queue Q, and select an unvisited node fi from the graph
G to add to the queue; its status is set to retained. Then, we take

Algorithm 1: Sampling.

the first node fnow from the queue. For each unvisited node fnext

adjacent to fnow, we set its state to retained if there are visited
discarded nodes amongst its 1-ring neighbors, and otherwise set
its state to discarded. We then add it to the queue. We process the
nodes in the queue one by one until the queue is empty. Finally,
we repeat the above two steps until all nodes have been visited.

Adjacency Construction. Given the dual graph G and the
sampling states S as inputs, we build the next level graph G1

using the retained faces in G. As shown in Algorithm 2, we first
take all retained nodes in G without edges as G1. Then, for each
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Algorithm 2: Adjacency Construction.

TABLE I
TIME TAKEN TO BUILD DUAL GRAPH PYRAMIDS

node fi in G1, we check its 1-ring neighbors fnext in G, and if
fnext is retained, we add the edge 〈fi, fnext〉 to G1. Otherwise,
we randomly choose one of fnext’s 1-ring neighbors fj (other
than fi), whose state is retained. If such an fj exists, we add the
edge 〈fi, fj〉 to G1. After the adjacency relations of all nodes in
G1 have been constructed, we obtain the dual graph G1 of the
next level.

The sampling states S provide a clear mapping between the
two dual graphs G and G1. Using the above two steps, we build
a graph hierarchy G0, . . . , GL for the mesh iteratively, starting
from G0 = G. The time taken to build the L-layer pyramid is
O(LN), where N is the number of faces in G. Table I compares
the speed of building dual graph pyramids by using quadric
error metrics (QEM), farthest point sampling (FPS) and our
method. The QEM approach builds a hierarchical mapping by
recording the deleted faces, and adjacency relations come from
the dual graph of the simplified mesh. In the FPS, we replace
our sampling method with the furthest point sampling, and use
the same adjacency construction method. Table I gives times for
generating a 5-layer pyramid by the above methods on an AMD
EPYC 7302 CPU for the bunny meshes containing 4000, 8000,
16000 and 100000 faces, respectively. Compared to FPS and
QEM, our method is much faster.

This approach can build a graph hierarchy for aggregating,
downsampling and upsampling any mesh, even if it is non-
manifold or has disconnected pieces. Our approach has two
advantages. First, our sampling method distributes the retained
faces evenly on the mesh, helping to ensure that the neural

network has a consistent receptive field. Second, there is a clear
mapping between different levels of the hierarchical structure.
This helps to define how features are propagated during upsam-
pling and downsampling, with clear benefits as demonstrated by
our ablation study.

IV. MESH NEURAL NETWORKS BASED ON DUAL GRAPH

PYRAMIDS

We now show how to construct mesh neural networks by
defining basic convolution, downsampling and upsampling op-
erations on the above dual graph pyramids.

A. Hybrid Convolution

Most mesh neural networks [6], [15] can only extract features
on a connected surface, and fail to capture relationships between
unconnected components, which are commonly found in a shape
or a scene. DCM-Net [8] employs a dual convolution to combine
geodesic features with euclidean features (i.e., features nearby
on the mesh, and nearby in space), and shows that additionally
using euclidean features can improve the performance of neural
networks on meshes. For example, when there are cracks in the
mesh, features across the crack can be aggregated according to
their euclidean distance, helping to overcome this common prob-
lem of low-quality meshes. Geodesic features are also important.
When two objects are nearby (e.g., a table and a chair), euclidean
features will not distinguish them, but geodesic features will, as
they are on different surfaces.

Inspired by this prior work, to take advantage of both geodesic
and euclidean features, we fuse them to fully capture the rela-
tionships between faces, using a novel approach we call hybrid
convolution.

To guarantee order-invariance of feature extraction for many
tasks [2], [3], we compute the geodesic feature of a face fi
by aggregating the linearly transformed features of its 1-ring
neighbors with the max operation:

Hgeo(xi) = max
j∈Ns(i)

(W0xj), (1)

where Ns(i) is the 1-ring surface neighborhood of face fi, W0

is the weight for the linear transformation module.
Self features of face fi are extracted by another linear module

with weight W1 shared among all faces:

Hself(xi) = W1xi (2)

For euclidean features, we first divide the space into voxels of
size r. For each voxel v we randomly select m faces whose
centers of mass lie within the voxel, and the voxel feature xv is
computed as the maximum of the features of these m faces. In
our experiments, we set m = 5 to balance the memory cost and
the quality of results, as demonstrated in Section V-H2.

For face fi, we aggregate the features of its owning voxel
and those of that voxel’s 6-connected neighbors to obtain its
euclidean feature:

Heuc(xi) =

6∑
k=0

Wv
kx

v
k, (3)
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Fig. 3. Downsampling and upsampling based on the dual graph pyramid.
Arrows denote the directions of feature propagation. Light blue: faces discarded
at the next level. Dark blue: retained faces. Yellow: retained nodes. Green:
discarded nodes.

wherek numbers voxels in the voxel neighborhood of face fi and
Wv

k is the corresponding weight. For efficiency, if r <= 0.1, we
simply use the central cube feature as the euclidean feature.

We fuse the features by using addition to obtain a hybrid
feature yi for face fi:

yi = Hself(xi) +Hgeo(xi) +Heuc(xi). (4)

We also apply channel attention [54] to this hybrid feature to
further improve its capability for feature extraction.

We use voxel neighborhoods as doing so is faster than us-
ing the nearest neighbor search. We further use 6-connected
neighbors rather than 26-connected neighbors again for speed
and a reduced number of parameters. Unlike KPConv [36], we
use fixed directions to construct neighborhood features, and
randomly select faces in each direction to ensure the generality
of the network. This fixed approach can be executed quickly
and efficiently, and random selection also prevents the network
from overfitting. While euclidean features are sensitive to the
rotation of input features, we mitigate this shortcoming by
randomly selecting faces and combining them with the geodesic
features.

Compared to DCM-Net [8] which simply aggregates the
euclidean features from neighbors within a spherical neighbor-
hood, we use the idea of spatial division to get features for each
position in space and then aggregate those features onto the
surface. Our method allows the network to perceive features in
different directions, which gives the network a stronger feature
extraction capability. Further, by randomly selecting the faces
for each voxel, our network has stronger generality and higher
efficiency, as demonstrated by later experiments.

B. Downsampling and Upsampling

1) Downsampling: In the downsampling process, features
are propagated from Gl to Gl+1. This can be regarded as
transferring features from the discarded faces to the retained
faces as shown in Fig. 3. Let Al(i) be the set of 1-ring dis-
carded neighbors of face fi in Gl, and Ω(fi) = {i} ∪Al(i)
be the aggregation scope of face fi. We define two kinds of
aggregations:

Pmax(xi) = max
j∈Ω(fi)

(xj), (5)

Fig. 4. The classification and segmentation network architectures of DGNet.

Pnone(xi) = xi. (6)

We use Pnone as the aggregation method in classification net-
works and Pmax in segmentation networks. In the above aggre-
gation approach, we can easily map features from Gl to Gl+1

by using the state Sl.
2) Upsampling: Fig. 3 shows how features are propagated

from Gl+1 to Gl during upsampling. We first map features from
Gl+1 to Gl using the state Sl for the retained faces, and for faces
discarded from Gl to Gl+1, we take the mean of the retained
features around the discarded face as its feature.

C. Network Architecture

Having the dual graph pyramids built for meshes and convo-
lution, downsampling and upsampling operations defined, we
now propose a family of mesh neural networks, named DGNet,
which is highly adaptable to the quality of the mesh and able to
be applied to various mesh processing tasks.

Our networks use faces to hold features. The input of our
networks is a triangular mesh of arbitrary quality which may
be non-manifold, disconnected, etc. Our network can learn the
global features of the mesh and the local features of each face
by taking advantage of geodesic and euclidean features. We
show the typical network structures for mesh classification and
segmentation in the left of Fig. 4, respectively. Our mesh classi-
fication network takes the typical architecture of convolutional
neural networks, while our mesh segmentation network is a
U-Net like architecture. As shown in the right of Fig. 4, we build
the Hybrid Block for classification by using two Hybrid Con-
volution + BatchNorm + ReLU, and the Hybrid ResBlock for
segmentation by using one Hybrid Convolution + BatchNorm
+ ReLU as the main path and one Hybrid + InstanceNorm +
ReLU as the residual path. For Hybrid ResBlock, we place the
normalization layer behind the activation layer for segmentation,
which can ensure that the data distribution is consistent with that
before convolution. Due to the large difference in the number
of meshes and faces between datasets, we adjust the number
of network layers and channels according to the sizes of the
datasets.
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V. EXPERIMENTS AND DISCUSSION

In order to evaluate the performance and generality of our
DGNet, we conducted experiments on various mesh tasks, in-
cluding shape classification, shape retrieval, shape segmentation
and scene segmentation. In addition, we conducted ablation
studies to evaluate the key components of DGNet.

A. Implementation Details

Unlike the pixels in an image, the local geometry of each mesh
face differs, so we not only use pose descriptors (center, normal,
etc.) of the face, but we also use shape descriptors (angle, area,
curvature, etc.) as the input features of the network. For meshes
of large scenes, as in ScanNet [55], we also use color as an input
feature. In segmentation, some datasets have labelled vertices
(such as Humanbody [48], COSEG [56] and ScanNet [55]).
We determine the label of each face as the mode(the value that
appears most often) of the labels of its three vertices. When
calculating evaluation metrics, we determine the label of each
vertex as the mode of the labels of the faces containing it.

For the tasks of shape classification, retrieval and segmenta-
tion, we applied augmentation via random scaling, random rota-
tion, random translation and normalization during training. For
large-scale scene segmentation, we cropped the whole meshes
and used elastic distortion, color distortion and random rotation
to augment each cropped mesh.

Since the sizes of the datasets are quite different, we set
different numbers of layers for the networks according to dataset
difficulty. For all tasks, we used the Adam optimizer with weight
decay 10−4 and an initial learning rate of 10−3. For shape
classification and retrieval, the learning rate was decayed by a
cosine annealing schedule with minimum learning rate10−4. For
shape segmentation and scene segmentation, the learning rate
was decayed by a poly schedule with minimum learning rate 0.
All experiments were performed on an AMD EPYC 7302 CPU
and GeForce RTX 3090 GPUs. Our models were implemented
using Jittor [57], a high-performance deep learning framework.

B. Shape Classification

We verified the effectiveness of DGNet for classification by
using ShapeNetCore, Manifold40, SHREC11 and Cube Engrav-
ing datasets. We used classification accuracy as the evaluation
metric.

1) ShapeNetCore: ShapeNetCore v2 [58] is a challenging
and widely used benchmark. It contains 52,472 shapes in 55
common categories. About 52,000 shapes have more than one
component and about 50,000 shapes have more than 10 compo-
nents. More than 37,000 shapes have non-manifold edges shared
by more than two faces. Because of these characteristics, most
mesh networks [6] cannot be directly applied to this dataset, so
we modified DCM-Net [8] to provide a baseline method. We
randomly divided the shapes into a training and test split in the
ratio 4:1. For the speed of training, we reduced the number of
faces to 1024 for all shapes.

Even on this challenging dataset, our method achieved an
accuracy of 88.5% as shown in Table II, much better than

TABLE II
CLASSIFICATION ACCURACY ON SHAPENETCORE

TABLE III
CLASSIFICATION ACCURACY ON MANIFOLD40

TABLE IV
CLASSIFICATION ACCURACY ON CUBE ENGRAVING

DCM-Net [8]. This is because our graph hierarchy provides
an even receptive field for the network during downsampling,
and clear correspondences between levels, which enables the
features of each discarded face to be spread to multiple retained
faces, improving feature propagation, even for unconnected
components.

2) Manifold40: ModelNet40 [1] is another widely used
benchmark for mesh classification. It contains 12,311 shapes
in 40 categories and is divided into training and test sets with
9843 and 2468 shapes respectively. Most previous works have
used Manifold40 for evaluation, containing reconstructions of
manifold meshes from ModelNet40. For comparison, we also
used it to train and test our network.

We compare our results with several well-known methods,
including PointNet++ [3], MeshNet [7], MeshWalker [41], Sub-
divNet [15] in Table III. Our method achieves greatest classifi-
cation accuracy.

3) Cube Engraving: The Cube Engraving dataset [6] has
icons engraved on 3D cubes, and contains 4381 shapes in 22
categories. It is divided into training and test sets with 3722 and
659 shapes. As shown in Table IV, DGNet again achieves the
best results.

4) SHREC11: SHREC11 [60] has 30 categories, each with
20 shapes. Following previous works, we used 16 or 10 training
samples for each class. The results are reported in Table V;
DGNet achieved 100% accuracy.

C. Shape Retrieval

SHREC16 [61] is a large-scale shape retrieval dataset from
ShapeNet core55. It contains 51300 shapes in 55 categories and
204 subcategories, and is split in the ratio 7:1:2 for training,
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TABLE V
CLASSIFICATION ACCURACY ON SHREC11. SHREC11-16 AND SHREC11-10

DENOTE SPLITS 16 AND 10 RESPECTIVELY

TABLE VI
RETRIEVAL RESULTS ON SHREC16

validation, and test. For speed of training, we reduced the number
of faces to 1024 for all shapes.

The key in mesh retrieval is to extract a descriptive feature
for each shape and use this feature to calculate similarities
between shapes. Like O-CNN [32], we trained our classification
network with 55 main categories and extracted the feature for the
classification network after adaptive max pooling as the shape
descriptor.

We used the evaluation scripts provided by SHREC16, which
are based on five metrics: precision, recall, F1-score, mAP and
NDCG. Precision is the ratio of positive samples in the retrieval
result, while recall represents the number of positive samples
divided by the total number of samples. F1 balances precision
and recall. mAP is based on the area under the precision and
recall curves. NDCG is the normalized discounted cumulative
gain, which represents the quality of the retrieval order. We cal-
culate these metrics: P@N, R@N, F1@N, mAP and NDCG@N,
where the N is the total retrieval list length [61].

We report shape retrieval results in Table VI; the first five
rows are the results of competitors from [61], the penultimate
row is a voxel-based method [32] and the last row is ours. These
experiments show that our method achieves competitive results
for most metrics, and in particular, our method provides the best
retrieval order as assessed by NDCG@N. Fig. 5 shows the Top-5
retrieval results from DGNet.

D. Shape Segmentation

We use the Humanbody [48] and COSEG [56] benchmarks to
evaluate DGNet on shape segmentation. The task is to determine
a category for each face of the mesh. To enable a fair comparison,
we use the dataset processed by [15] and map the predicted
results back to the original mesh using the nearest face.

Fig. 5. Top-5 retrieval results of our method on SHREC16. Above: query
objects. Below: top 5 retrieval results. Note that the top 4 sofas in the second
column differ in scale.

TABLE VII
SEGMENTATION ACCURACY ON HUMANBODY

1) HumanBody: The HumanBody dataset [48] contains 399
shapes, 381 for training and 18 for testing; each shape is seg-
mented into 8 parts. Table VII shows that our method achieved
the best results. Fig. 6 shows that our method accurately seg-
ments the body into different parts with clear boundaries.

2) Coseg: The COSEG dataset [56] has 3 subsets: tele-aliens,
chairs, and vases, with 200, 400 and 300 shapes, respectively;
each shape is segmented into 3 or 4 parts. Quantitative results
are given in Table VIII and example output is shown in Fig. 7.
Our method again achieved the best results for all 3 subsets.
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Fig. 6. DGNet segmentation results on Humanbody.

TABLE VIII
SEGMENTATION ACCURACY ON COSEG

E. Scene Segmentation

We used the large-scale scene datasets ScanNet and Mat-
terport3D to demonstrate the generality and robustness of our
method. These meshes were reconstructed from point clouds
automatically, so generally have lower quality than hand-built
datasets, providing a greater challenge for geometric under-
standing.

Since the number of faces in each scene varies greatly, we
simplified each scene according to the ratio of the average face
area to a target areaAf , the average area of each face desired after
simplification. Assuming that the number of faces is O, the area
of each face is Ai, then the number of faces after simplification
is:

O′ =

⌊
O∑
i=0

Ai/Af

⌋
. (7)

During simplification, we record the reduced edges to allow
mapping of the predicted results back to the original raw mesh.
For each scene in ScanNet, we set the target face area to 10 cm2.
Due to the large number of faces in Matterport3D, we set the
target face area to 25 cm2. After simplification, we randomly
cropped the mesh to about 12,000 faces for training.

To demonstrate the ability of our model to handle large
meshes, we also conducted experiments without simplification
on ScanNet. We voxelized the input meshes with a resolution of
2 cm, and cropped the mesh to about 100,000 faces for training.

Fig. 7. DGNet segmentation results on COSEG.

1) ScanNet: ScanNet v2 [55] is an indoor scene dataset with
a training, validation and test split of 1201:312:100 scenes; each
scene contains 20 valid semantic categories. We adopt mean IoU
as the evaluation metric, following DCM-Net [8].

As Table IX shows, our method outperforms DCM-Net in
mIoU for both large meshes and simplified meshes. Fig. 8 shows
some segmentation results from the ScanNet validation dataset.

2) Matterport3D: Matterport3D [64] contains training, val-
idation, and test sets with 61, 11, and 18 buildings, respectively;
there are several scenes for each building, labeled with 21 valid
categories. Like DCM-Net [8], we used mean accuracy (mAcc)
as the evaluation metric. During training, we used the class
weights from DCM-Net. We report our experimental results in
Table X: our approach provides a significant improvement over
DCM-Net.

F. Efficiency

We compared the number of parameters and accuracy of meth-
ods on the Simplified Humanbody dataset from HodgeNet [11].
To be lightweight, we reduced the number of channels of DGNet,
using 16/24/32 encoder channels and 32/24/24 decoder chan-
nels. Results are shown in Table XI, in which we compared
our method with the classic mesh network MeshCNN [6] and
the lightweight network HodgeNet. We achieve a significant
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TABLE IX
MEAN IOU SCORES ON SCANNET TEST SET. * MEANS THAT WE USE SIMPLIFIED MESHES AS INPUT

Fig. 8. Example segmentation results from the ScanNet v2 validation set.

TABLE X
MEAN CLASS ACCURACY SCORES ON MATTERPORT3D TEST SET

TABLE XI
PERFORMANCES OF LIGHTWEIGHT APPROACHES ON THE SIMPLIFIED

HUMANBODY DATASET

improvement with fewer parameters. We also measured the
iteration time for each sample and GPU memory consumption
during training on an AMD EPYC 7302 CPU and a single

GeForce RTX 3090 GPU (HodgeNet only executes on the CPU
so needs no GPU memory). Our method only takes 5 minutes to
train for 150 epochs.

G. Generality

In addition to its strong performance on manifold mesh
datasets, DGNet also shows its ability to perform well on bench-
marks with imperfect meshes. ShapeNetCore is a well-known
low-quality mesh benchmark, containing many non-manifold
faces, gaps and self-intersecting faces. Table II shows that
DGNet handles ShapeNetCore well, while, most methods such
as MeshCNN [6], MeshNet [7], and SubdivNet [15] can not
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TABLE XII
MIOU OF DIFFERENT HIERARCHY GENERATION METHODS ON SCANNET

handle this dataset due to the nature of its data. Furthermore, as
shown in Tables IX and X, our method works well for large-scale
real scene mesh data, again demonstrating the ability of DGNet
to cope with a wide range of kinds of input.

H. Ablation Study

We conducted ablation experiments using the ScanNet v2
validation set and Manifold40 test set to demonstrate the
contributions of our dual graph pyramid and hybrid convo-
lution. Unlike Manifold40, ScanNet has many disconnected
patches.

1) Dual Graph Pyramids: When building a hierarchical
structure from a mesh, previous work typically used a mesh
simplification algorithm [8] or Loop subdivison [15]. However,
the subdivision method places a very strict requirement on the
input meshes, and therefore cannot be applied to ScanNet. Two
commonly used algorithms for mesh simplification are based on
vertex clustering (VC) [65] or quadric error metrics (QEM) [66].
We also compared our method to the popular, uniform, farthest
point sampling algorithm (FPS) [3].

For the VC algorithm, we set the grid size to 4, 8, 16, 32,
and 64 cm. For the QEM algorithm, we set the retention ratio
for each layer to 30%, 50%, and 70%. Since there is no obvious
correspondence between the levels using mesh simplification,
we adopted nearest neighbors to establish the mapping relation-
ship, with upsampling and downsampling following [8]. We also
replaced our sampling method with FPS, while using the same
adjacency construction method. In addition, we set the retention
ratio for each layer to 30%, 50% and 70%.

Table XII shows that, for both VC and QEM, geometric
errors during simplification lead to a decrease in the quality
of network accuracy. With an increasing retention rate, the
errors caused by mesh simplification become smaller, with
consequently improved network accuracy. FPS samples uni-
formly in space, resulting in some regions of interest retain-
ing too few faces, and with an increasing retention rate, this
situation gradually decreases, resulting in increased network
performance.

On one hand, our method does not change the structure of
the whole mesh in the process of building the graph hierar-
chy, but only reconstructs the adjacency relationships of faces.
Therefore, our method does not introduce any geometric errors,
while mesh simplification changes the tessellation of shapes
and brings geometric distortion. On the other hand, our method

TABLE XIII
ABLATION STUDY FOR HYBRID CONVOLUTION. LEFT: RESULTS ON SCANNET.

RIGHT: RESULTS ON MANIFOLD40

TABLE XIV
MIOU OF DIFFERENT AGGREGATION METHODS IN THE PROPOSED HYBRID

CONVOLUTION ON SCANNET

samples uniformly on the dual graph of the mesh, which not only
gives the network a consistent receptive field but also enables
oversampling of complex regions of the mesh. In addition, there
is a clear mapping between levels of the dual graph pyramid, so
our method constructs a many-to-many transmission of features
in downsampling and upsampling, enhancing the performance
of mesh neural networks using it.

2) Hybrid Convolution: To evaluate our hybrid convolution,
we performed experiments using only geodesic features, only
euclidean features, or both. In addition, we also conducted
experiments to explore the influence of the number of faces
aggregated in each voxel, using m = 1, 5, 10 or 20 faces.

As Table XIII shows, for meshes in ScanNet, using only
geodesic features reduces accuracy greatly, as there is a large
number of separate patches in the real scene dataset, making the
receptive field of a large number of faces very small. Using only
euclidean features also reduces accuracy: segmentation becomes
harder. For example, when chairs and tables are close together,
their euclidean features are very close and hard to distinguish, but
doing so is easy using geodesic features. Meshes in Manifold40
have no disconnected patches, so in principle, each face can
interact with any other face in the mesh, so good results can be
achieved using only geodesic features.

Table XIV shows that increasing the number of faces aggre-
gated in each voxel also affects our model, gradually improving
the results, but at a cost of increasing memory and computation
time. We aggregate 5 faces in our other experiments, which
gives a good balance between the quality of results and the
computational load.

I. Limitations and Future Works

Large kernel convolutions show stronger learning ability
when processing 2D images [67], [68], [69]. These networks
need to achieve a large receptive field and are usually im-
plemented by dilation convolution and depthwise convolution,
which can reduce the amount of computation and parameters.
Besides, traditional and transpose convolutions with a stride
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greater than 1 are also often used in the upsampling and down-
sampling processes. Although we have achieved good results by
using small kernel convolution, we still want to further improve
the scalability of hybrid convolution. Therefore, we will define
more general convolution operations which support user-defined
kernel size, stride and dilation. Furthermore, we will define the
transpose convolution and depthwise convolution.

While our experiments demonstrate that the proposed method
outperforms state-of-the-art approaches in many applications, it
should be noted that due to the random sampling procedure and
the feature conversion between faces and vertices, DGNet may
not be well-suited for stability-sensitive tasks, such as physical
simulations [70], [71].

VI. CONCLUSION

In this paper, we have proposed a general dual graph pyramids
based approach for processing real-world, imperfect 3D mesh
data by neural networks. Our method can allow networks to
have a consistent receptive field, and can perform spatial over-
sampling in complex regions of meshes. We have also designed
a hybrid convolution that aggregates geodesic and euclidean
features and takes the interactions between disjoint pieces of a
surface into account. These two modules enable neural networks
to process imperfect meshes and achieve superior performance
on various mesh analysis benchmarks.
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