5124

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 12, DECEMBER 2023

Recursive-NeRF: An Efficient and
Dynamically Growing NeRF

Guo-Wei Yang, Wen-Yang Zhou, Hao-Yang Peng, Dun Liang,

Tai-diang Mu

, and Shi-Min Hu

, Senior Member, IEEE

Abstract—View synthesis methods using implicit continuous shape representations learned from a set of images, such as the Neural
Radiance Field (NeRF) method, have gained increasing attention due to their high quality imagery and scalability to high resolution.
However, the heavy computation required by its volumetric approach prevents NeRF from being useful in practice; minutes are taken

to render a single image of a few megapixels. Now, an image of a scene can be rendered in a level-of-detail manner, so we posit that a
complicated region of the scene should be represented by a large neural network while a small neural network is capable of encoding a
simple region, enabling a balance between efficiency and quality. Recursive-NeRF is our embodiment of this idea, providing an efficient
and adaptive rendering and training approach for NeRF. The core of Recursive-NeRF learns uncertainties for query coordinates,
representing the quality of the predicted color and volumetric intensity at each level. Only query coordinates with high uncertainties are
forwarded to the next level to a bigger neural network with a more powerful representational capability. The final rendered image is a
composition of results from neural networks of all levels. Our evaluation on public datasets and a large-scale scene dataset we collected
shows that Recursive-NeRF is more efficient than NeRF while providing state-of-the-art quality. The code will be available at https:/

github.com/Gword/Recursive-NeRF

Index Terms—Scene representation, view synthesis, image-based rendering, volume rendering, 3D deep learning

1 INTRODUCTION

MAGE-BASED rendering (IBR) is a popular topic in computer
graphics with demonstrated value in virtual reality and
deep learning for novel view synthesis and data augmenta-
tion. The basicidea is to reconstruct the underlying geometry
and appearance from a set of images, using representations
which may be mesh-based [1], [2], [3], [4], volumetric [5], [6],
[71,[81, [9], [10] or implicit [11], [12]. These are used to synthe-
size novel views by interpolation [13] or rendering techni-
ques [11], [12]. A recent development, the Neural Radiance
Field (NeRF) method [14] implicitly encodes a scene or object
using a fully-connected neural network, optimized by a nat-
urally differentiable method. It provides excellent novel
high-resolution photorealistic views using a continuous volu-
metric representation. It thus has been extended to large-
scale scenes [15], non-rigidly deforming scenes [16], dynamic
lighting and appearance [17], etc.
Though NeRF achieves unprecedented synthesis quality, its
rendering process is extremely slow and makes high memory
demands, so is unattractive for practical use. The bottleneck is

o The authors are with the BNRist, Tsinghua University, Beijing 100084, China.
E-mail: {ygwl9, zhouwyl9, phyl8)@mails.tsinghua.edu.cn, randonlang@gmail.
com, {taijiang, shimin)@tsinghua.edu.cn.

Manuscript received 17 May 2021; revised 10 August 2022, accepted 22 August
2022. Date of publication 4 October 2022; date of current version 10 November
2023.

This work was supported by the National Key R&D Program of China under
Grant 2021ZD0112902.

(Corresponding author: Shi-Min Hu.)

Recommended for acceptance by T. Ju.

This article has supplementary downloadable material available at https://doi.
0rg/10.1109/TVCG.2022.3204608, provided by the authors.

Digital Object Identifier no. 10.1109/TVCG.2022.3204608

the calculation of each pixel value by integrating along a ren-
dering ray, which is approximated by hierarchical volume sam-
pling in a similar way to importance sampling. For each ray,
NeRF samples 192 coordinates, each forward passing through
the whole neural network, and in total millions of rays are
required to render a single moderate-resolution image (say
800 x 800 pixels). Previous work [18] has improved NeRF's
rendering speed by sampling more carefully using a sparse set
of voxels, and avoiding evaluations on empty voxels.

Let us consider some drawbacks of NeRF's rendering pro-
cess. First, NeRF uses the same network for all sample points,
so NeRF encodes the whole scene using a single neural network
model. For more complicated scenes, it is necessary to ensure
the neural network has sufficient representational power. This
is done by using an increased number of network parameters,
additional hidden layers, or increased dimensions of the latent
vectors. As a result, for every individual query sample, both
the training and inference time of the network increase with
greater scene complexity. Furthermore, NeRF cannot self-adapt
to scenes of different complexity. Second, regardless of whether
inidividual query samples are complicated or simple, NeRF
treats them equally and passes them through the entire neural
network, which is overkill for regions which are empty or have
simple geometric structures and textures. These limitations
seriously affect large-scale scene rendering.

Related problems in other rendering methods have been
solved by using a level of detail (LOD) approach [19]. We
suggest that it can be carried across to give an adaptive and
efficient neural rendering approach based on NeRF: the ren-
dered value of a sample needs to be further processed if and
only its rendered quality is not high enough at the current
level of the neural network. Moreover, a coarser level may be
represented with a smaller neural network while more

1077-2626 © 2022 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 00:55:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9197-346X
https://orcid.org/0000-0002-9197-346X
https://orcid.org/0000-0002-9197-346X
https://orcid.org/0000-0002-9197-346X
https://orcid.org/0000-0002-9197-346X
https://orcid.org/0000-0001-7507-6542
https://orcid.org/0000-0001-7507-6542
https://orcid.org/0000-0001-7507-6542
https://orcid.org/0000-0001-7507-6542
https://orcid.org/0000-0001-7507-6542
https://github.com/Gword/Recursive-NeRF
https://github.com/Gword/Recursive-NeRF
mailto:ygw19@mails.tsinghua.edu.cn
mailto:zhouwy19@mails.tsinghua.edu.cn
mailto:phy18@mails.tsinghua.edu.cn
mailto:randonlang@gmail.com
mailto:randonlang@gmail.com
mailto:taijiang@tsinghua.edu.cn
mailto:shimin@tsinghua.edu.cn
https://doi.org/10.1109/TVCG.2022.3204608
https://doi.org/10.1109/TVCG.2022.3204608

YANG ET AL.: RECURSIVE-NERF: AN EFFICIENT AND DYNAMICALLY GROWING NERF

Stage 1 Stage 11

92

x,y,z,d @

0,

—_—

5125

Stage 111

2

Recursive Rendering
Uncertain Point Classification
1 Branch Module
[/ MLP Module

Fig. 1. Pipeline of Recursive-NeRF. Given a position (z, y, z) and viewing direction d, the initial network ®; outputs color ¢;, density o1, and uncertainty
8. All uncertain points are divided into several categories, and then @, dynamically grows several branch networks to continue training for each sub-
set of uncertain points until the network is believes that all points are reliably predicted. When rendering, early termination allows different points to

exit at different times, reducing the network load.

detailed levels are represented with larger neural networks.
The rendering of a sample adaptively passes through the
neural network according to that sample’s complexity.

We embody this concept in a method we call Recursive-
NeRF (see Fig. 1) , which recursively applies the NeRF struc-
ture with various number of linear layers in each stage when
needed. Starting with a small neural network, at each level, in
additional to the color and volumetric intensity, Recursive-
NeRF also predicts an uncertainty, indicating the quality of
the current results. Recursive-NeRF then directly outputs
results for those query coordinates in the current level with
low uncertainty, instead of passing them forward through
the rest of the network. Query coordinates with high uncer-
tainty are forwarded in clusters to the next level, represented
as multiple neural networks with more powerful representa-
tional capability. The training process terminates when the
uncertainties for all query coordinates are less than a user-
specified threshold, or some maximal number of iterations is
reached. In this way, Recursive-NeRF splits the work adap-
tively to decouple different parts of the underlying scene
according to its complexity, helping to avoid unnecessary
increase in network parameters. Experiments demonstrates
that Recursive-NeRF achieves significant gains in speed
while providing high quality view synthesis.

In summary, our work makes the following main
contributions:

e arecursive scene rendering method, where early ter-
mination prevents further processing once output
quality is good enough, achieving state-of-the-art
novel view synthesis results with much reduced com-
putation, and

e a novel multi-stage dynamic growth method, which
divides uncertain queries in the shallow part of the
network, and continues to refine them in differently

grown deep networks, making the approach adap-
tive for scenes with areas of differing complexity.

2 RELATED WORK

Our approach uses a neural 3D shape representation and
dynamic neural networks for image based synthesis. A full
review of these ideas is outside the scope of this paper, and
we refer interested readers to [20] for classical IBR and [21],
[22] for neural rendering. We consider the most closely
related works below.

2.1 Neural 3D Shape Representations for View
Synthesis

Recently, there has been work training an MLP network to
continuously represent a 3D scene, mapping 3D coordinates
to an implicit representation, e.g., the signed distance func-
tion (SDF) [23], [24] or an occupancy field [25], [26]. Such
approaches usually need to be supervised with ground-
truth 3D geometry. An an alternative, learning from a set of
images has benefits, since images are more readily available,
and supervision can be implemented with neural rendering
techniques [2], [27]. Scene Representation Networks (SRIN)
[11] uses an MLP network to learn scene geometry and
appearance, proposing a differentiable ray-marcher to train
the network end-to-end in an unsupervised manner. Neural
Volumes (NV) [6] learns a dynamic irregular warp field
during ray-marching. Local Light Field Fusion (LLFF) [8]
expands each input view into a local light field through a
multiplane image (MPI), then mixes adjacent local light
fields to render novel views.

Recently proposed, NeRF [14] uses a sparse set of input
views to optimize an MLP network which inputs a query
point and outputs color and density. NeRF trains the net-
work and renders the scene by sampling points in space by

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 00:55:38 UTC from IEEE Xplore. Restrictions apply.

5126

ray marching; it can generate high resolution images of high
quality. This approach has been adapted to handle more
complicated scenarios. For example, Zhang et al. [15] solve
the parameterization problem arising when applying NeRF
to object capture in 360° large-scale scenes. Srinivasan et al.
[17] enhances NeRF for view synthesis under any lighting
conditions. Schwarz et al. [28] propose generative radiance
fields for 3D-aware image synthesis. Park et al. [16] opti-
mize an additional continuous volumetric deformation field
for non-rigidly deforming scenes. Ma et al. [29] composites
virtual objects with a real photograph to emulate shadows
and reflections. Transformer has made great progress in the
field of vision recently [30], [31], [32], [33]. NeRFormer [34]
combines NeRF with Transformer to reconstruct objects in a
small number of views. HyperNeRF [35] maps the input
image to the canonical template coordinate space to solve
the problem of topological discontinuity in the deformation
field. Barron et al. propose Mip-NeRF [36] which improves
the quality of NeRF by using conical frustums to eliminate
aliasing and blurring. Ren et al. [37] constructs sub-net-
works according to the structure of KD-Tree for predicting
the illumination. Different from ours, they directly add sub-
networks if the effect does not get better, and the re-division
is canceled and then trained, which is very time-consuming.

However, these NeRF-based methods need a large num-
ber of samples in the rendering line of sight, so are slow.
NSVF [18] introduces a sparse voxel octree to represent the
space which can skip empty space and allocates more repre-
sentational power to difficult regions areas by subdividing
the corresponding voxels, resulting in improved speed and
quality. DONeRF [38] reduces the number of sampling
points by predicting the depth of the scene. Lindell et al.
[39] propose automatic integration to estimate volume inte-
grals along the viewing ray in closed-form to avoid sam-
pling, but their method suffers from quality degradation
due to the piecewise approximation. Although these meth-
ods have significantly accelerated NeRF, there is still much
room for further improvement. Our dynamic network
adapts to the complexity of the scene, significantly reducing
the amount of calculation. Our method can further adap-
tively adjust the model complexity through the uncertainty
ratio to adapt to scenarios of different complexity, as shown
in Table 7. It is complementary to NSVF [18] and DONeRF
[38], and could be combined with these methods for further
speed-up and enhancing adaptability.

Recently, a series of good speed improvements have
been achieved by caching neural network results [40], [41],
[42], but these methods will bring additional memory con-
sumption. In the future, we will consider researching ways
to improve rendering speed without additional memory
consumption.

DeRF [43] is the most similar approach to ours. DeRF
uses the uniformity of sampling point division as a loss and
optimize through neural network to decompose the scene.
However, DeRF will lead to the problem of uneven division
of complex scenes and a significant increase in the amount
of computation as the number of heads increases. While our
Recursive-NeRF can divide the scene more reasonably and
adaptively according to the predicted distribution of uncer-
tain points, thus achieving higher performance with more
efficient computation.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 12, DECEMBER 2023

2.2 Dynamic Neural Networks
Dynamic neural networks dynamically adjust the network
architecture according to equipment resources.

Multi-scale dense networks [44] train multiple classifiers
according to different resource demands and adaptively
apply them during testing. [45] proposes switchable batch
normalization and slimmable neural networks, which can
adjust width according to device resources. [46] extends
this idea to execute at arbitrary width. [47] extends slim-
mable neural networks to change numbers of channels for
better accuracy with constrained resources.

These approaches adjust the network architecture accord-
ing to equipment resources, whereas we adaptively adjust
the network architecture according to the network training
situation. Also, previous dynamic networks solve a classifi-
cation task. Since the output of the classification network is
the probability of predicting each category, the probability
can naturally be used as the confidence. Ours is a regression
task, which determines whether the network is exited by pre-
dicting a confidence value. This is harder to train than a clas-
sification task.

3 ANALYSIS OF NEURAL RADIANCE FIELDS

3.1 Neural Radiance Fields

NeRF inputs continuous 5D coordinates, composed of a 3D
position and a 2D viewing direction, and estimates view-
dependent radiance fields and volume density at the corre-
sponding position. By producing radiance fields, NeRF can
simulate highlights and reflections well. NeRF calculates
the color C(r) of a pixel in an image by integrating the ray
from the camera to the pixel:

C(r) = / T e (r(t)ex(t), d) di)

0

where r(t) = 0+ td is the camera ray emitted from o in
direction d, and T'(t) represents the cumulative transpar-
ency from 0 to ¢:

T(#) = exp (- /U ox(s)) d5>.)

¢ and o are directional emitted color and volume density
which are calculated via an MLP network Fy:

Fy: (x,d) — (c,0) 3

3.2 Parameters and Scene Complexity
Scenes of greater complexity need to be represented using a
larger number of parameters. At the same time, simple
scenes can be represented by a small number of parameters.
We tested the PSNR of NeRF [14] on the Lego dataset for
different numbers of network layers (2, 4, 6, 8), network
widths (64, 128, 256) and image sizes (25, 50, 100, 200, 400,
800). The capacity of the network is positively corelated
with the number of network layers and the network width.
Here, images are downsampled from the original resolution
of 800*800 pixels by anti-aliased resampling, and the image
size is a proxy for the complexity of the scene. It can be seen
from Fig. 2 that when the scene is relatively simple, the rep-
resentational capabilities of different networks are relatively

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 00:55:38 UTC from IEEE Xplore. Restrictions apply.

YANG ET AL.: RECURSIVE-NERF: AN EFFICIENT AND DYNAMICALLY GROWING NERF

PSNR
38

36
\.\
34

32 \.\,

30 BN

2 AN
e

26

I

25 50 100 200 400 800

PSNR
36
34
32
30
28
26

24
25 50 100 200 400 800

—o—64 —e—128 256

Fig. 2. Correlation between parameters and scene complexity. Different
curves in the top and bottom plots represent various network depths and
widths, respectively. The horizontal axis is the resolution of the square
image, representing the complexity of the model. The vertical axis is the
PSNR of the image, the higher the better.

close to each other. As the scene becomes complex, the gap
between the representational capabilities of different net-
works widens.

There is an intuitive solution: simply split the scene into
several parts, with each part being represented by an identi-
cal individual network. However, this solution has prob-
lems. Each part uses the same network architecture, while
the complexity of different parts of the scene may differ, so
ideally networks with different capabilities should be used
to represent them. Furthermore, coarse-grained information
will be learned repeatedly. Recursive-NeRF overcomes both
of these issues using a more sophisticated approach.

4 RECURSIVE NEURAL RADIANCE FIELDS

Recursive-NeRF use the NeRF approach in an LOD manner
to adapt to the complexity of the underlying scene, which is
trained in stages and changes dynamically, as shown in
Fig. 1. At each stage, according to the predicted uncertainty,
a query coordinate will be finalised or forwarded to the
next stage which uses more powerful neural networks, con-
trolled by an early termination mechanism. All finalised
predictions of color and intensity from each stage are gath-
ered to render the final image.

In this section, we first introduce neural recursive fields
(Sec. 4.1) which represent the whole scene from coarse to fine.
Early termination (Sec. 4.2) allows our network to finalise the
prediction when the uncertainty is low enough, avoiding
unnecessary calculations and speeding up rendering. We use
the k-means algorithm to cluster the high uncertainty points
in the current stage, thus dividing the scene into several parts
for finer-grained prediction. Additionally, the network grows
several child branch networks to achieve dynamic growth
(Sec. 4.3). Overall, we recursively render (Sec. 4.4) the entire
scene, with input coordinates entering different branches for
network prediction based on previous clustering results.

5127

xY,zd

-,

[Branch Module H Out Module]—> €1, 01

¥)
-,

MLPModule | | MLP Module

| MLP Module

8+

Cmep || mep | | Mmip || MmLP |

Fig. 3. Network architecture of Recursive-NeRFE For every query
(z,y,2,d), the network predicts an uncertainty § used to decide if the
query should be finalised early. If so, it will enter the OutNet to predict its
color ¢ and density o. If not, the point split unit determines which branch
it should subsequently enter.

4.1 Recursive Neural Fields

A recursive neural field takes its parent branch’s output y,,
and the viewing direction d as inputs, and predicts color ¢;,
density o;, uncertainty §; and a latent vector y;:

F(Di : (ypz7d) - (Ciaaivyi78i) @

where Fg, represents the ith subnetwork. Fg, is the root of
our recursive network; in this case, y,, is set to the query
coordinate (z,y,).

As shown in Figs. 1 and 3, sub-network Fg, consists of
three main components: an MLP module, a Branch module
and an Out module. The MLP module includes two or more
Linear layers to ensure that the MLP module performs suffi-
ciently complex processing of features. The Branch module
predicts the uncertainty §; of each query point, forwards the
points with low uncertainty to the Out module for output,
and distributes points with high uncertainty to different
sub-networks according to their distances to the k; cluster
centers of Fg,. The Out module is responsible for decoding
features into ¢; and o;.

4.2 Early Termination

Our early termination mechanism allows the query coordi-
nate to be finalised early (so not processed further) when its
predicted uncertainty is less than a certain threshold. We
next present our novel uncertainty prediction method for
ray marching, then explain the special training method for
Recursive-NeRF.

4.2.1 Uncertainty Prediction

Each branch network predicts an uncertainty for the query
coordinate, which we use to determine where the branch
network exits. We use the original NeRF loss to help us pre-
dict uncertainty. NeRF adopts mean square error (MSE)
between rendered images and real images as the loss for
training coarse and fine networks:

2

Lassze = Y_|Celr) =€) ®)
reR

ﬁMSEf = Z C'f-(r) — C(T’)Hz (6)
reR

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 00:55:38 UTC from IEEE Xplore. Restrictions apply.

5128

where R contains rays in a mini-batch, C.(r) and Cj(r) are
rendered colors from coarse and fine networks, respec-
tively, and C(r) is the ground truth. Our coarse and fine net-
works have the same network structure and training. The
coarse and fine architecture is dedicated to sampling points
since our network is designed to avoid unnecessary calcula-
tion for each sample point. Indeed, the previous uncertainty
response can be used as sampling guidance for NeRF's fine
network. For simplicity, we no longer distinguish coarse
and fine networks, and use C(r) to represent the color ren-
dered by any network.

We introduce two regularization losses to train the
uncertainty effectively. We use a Linear layer following the
output feature y,, of Fy, to calculate the uncertainty §;. We
use the squared error of the pixel to supervise §;, the intent
being that if a pixel has large error, §; of the sample points
that generate the uncertainty associated to the sample
points should also be large. Therefore, we punish §; less
than the squared error:

N

Lsp = Z Zmax(E(r) —38,4,0) (7)
reR i=1

E(r) = ||6tr) - cmHZ ®)

where E(r) is the squared error of ray r, N is the number of
sampling points for ray r, §,; is the predicted uncertainty
for the i-th sample point of ray 7.

To prevent §; from blowing up, we introduce another
regularization loss: for every query point, we encourage §;
to be as close to zero as possible:

N
Ly = Z Z maz(8,;,0) 9

reR i=1

A weighted sum of Lz and £, gives the overall uncer-
tainty loss:

Lonet = a1£SE +aaLy (10)
where o; and «y are weights, here set to «; =1.0 and
oy = 0.01.

We use regularization loss instead of directly using L;
loss to train §; because the difficulty of accurately predicting
E(r) is about the same as directly predicting the color of the
query coordinates for the neural network. In our network
structure, it is difficult for a shallow network to have accu-
rate E(r). Therefore, we use regularization loss with unbal-
anced values for «; and a», so that the network can use
larger penalties for points with uncertainty lower than loss,
while uncertainty higher than loss will be less punished. In
this way, the network learns the uncertainty into the upper
bound of the complex loss function, so that only a truly cer-
tain point can terminate early.

4.2.2 Multi-Scale Joint Training

We thus finalise queries with uncertainty lower than ¢ early,
and forward points with uncertainty greater than or equal to
e to the deeper network. This early termination mechanism
can reduce unnecessary calculations, but unfortunately, also
brings training difficulties. For a query coordinate (x, y, z, d),

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 12, DECEMBER 2023

the uncertainty may exceed e at some stage, and the coordi-
nate will be sent to a deeper network. However, if the deeper
network has not been trained on this coordinate before, it
will output an almost random value. This will cause great
instability in the loss, affecting the training and may even
cause gradient explosion.

To solve this problem, we follow the practice in multi-
scale dense networks [44]: each time, all query coordinates
are output through all outlets; images with early termination
are also output, and their losses are weighted with equal
weight during training. Our overall loss function is thus:

D
L= Zﬁl‘C?WSE + IBQLLn(:t (1
=1

where D is current number of stages (also D — 1 times of
network growth), and L, and L! , are the MSE loss and

uncertainty loss of the output image of layer ¢, respectively.
B and B, are weights, set to f; = 1.0 and 8, = 0.1.

4.3 Dynamic Growth

We now explain our adaptive dynamic growth strategy
which clusters the uncertain queries at the current stage,
and grows deeper networks according to the clustering
result.

As shown in Fig. 1, in the initial stage, the network con-
tains only one sub-network ®; which consists of two linear
layers. After I iterations of training for the initial network,
we sample a number of points in space and calculate their
uncertainties. We then cluster those points for which the
uncertainty is higher than ¢; the clustering result determines
the growth of the next stage network. To ensure that cluster-
ing is simple and controllable, we use the k-means algo-
rithm, which can be replaced by a more efficient clustering
algorithm such as methods in [48], with k € [2,4]. The net-
work grows k branches according to the cluster centers;
these are e.g.,, ®; and ®;. Downstream, query points are
assigned to the branch with the closest cluster center.

When scenes become complicated, NeRF has to deepen
its network, while we can simply add further branches to
get the same result. There are two reasons why we split the
grown network into two. First, splitting the points will
reduce the complexity of the network, otherwise, a deeper
network is required for all points. Second, each child-net-
work is only responsible for part of the scene indepen-
dently, making it more effective and adaptive. Ablation
experiment named “no branching” in Table 5 shows that
our full model are better than using a single branch.

The growth-based network is trained for several itera-
tions, and then clustered and grown. This process can be
repeated until the uncertainty of most points is less than
€grow- In order to finish training in a reasonable amount of
time, we specify that Recursive NeRF grows 3 times in total.
The value of k used for each growth step can be different,
but by default, we set k for each to be 2. Recursive-NeRF
has the ability to adaptively grow according to the complex-
ity of the scene. We define the uncertainty ratio:

1 X 1. 8 > €,
R:— . C— 9 1 grow 12

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 00:55:38 UTC from IEEE Xplore. Restrictions apply.

YANG ET AL.: RECURSIVE-NERF: AN EFFICIENT AND DYNAMICALLY GROWING NERF

_
) } !

T / - / >
r‘ *x o~

1 ".
”‘ﬁ % ,a’ '«3‘\, V)
g‘ /-(, ¢ .‘»

Fig. 4. Alpha linear initialization comparison. Left: ground truth. Middle:
our full model’'s result. Right: result of model without alpha linear
initialization.

where M is the number of points sampled in space while
growing, §; is the predicted uncertainty, a; = 1 if i-th sample
point is uncertain, otherwise, a; = 0. When R is greater than
the growth threshold 7', we think that the result is not good
enough and the network will continue to grow, otherwise
we will stop growing. The 2D image memorization experi-
ment in Section 5.6 shows Recursive-NeRF can automati-
cally grow for different times until the quality is high
enough for tasks of different resolutions.

During training, sample points can exit at multiple
stages, while points will exit only once at a specific stage
during inferencing. Sepcifically, points found earlier to be
reliable (i.e., its uncertainty is lower than a given threshold)
will immediately exit and the remaining deeper network
computations will not be executed. We cluster the uncertain
points in the current stage and feed them to different child
branches with the same structure in the next stage. Which
branch is taken depends on the results of clustering. We
add residual links between every two Linear layers. In this
way, our method enables earlier stages to learn simple and
rough structures for reliable points; meanwhile, the later
stages are capable of learning more details based on results
of earlier stages for the uncertainty points.

Trials show that direct growth of a randomly initialized
network results in instability in the staged training, causing
the density of some of the grown networks to reduce to 0.
As a result the rendered scene can lack pieces, as shown in
Fig. 4. The specific structure of the network’s Outnet mod-
ule is shown in Fig. 5, where alpha linear is responsible for
decoding features into the density of query points. Our
approach to overcoming this problem is to initialize the
alpha linear weights of grown sub-network to be same as
those of the parent. This enables the density generation net-
work of the subnet to inherit part of the density information
of the parent, avoiding this instability.

We show staged clustering results for the Lego model in
Fig. 6. It can be seen that the image includes finer and finer
detail from the initial to final stage.

4.4 Recursive Rendering

Unlike NeRF which outputs the color and density for all
points in the last layer of the network, Recursive-NeRF ren-
ders the final image recursively. In the current view, all
points whose uncertainty is lower than the threshold at the
current stage can render a relatively fuzzy image. All points
with uncertainty higher than the threshold enter the next
stage network to be further refined and other points of low

5129
1 — 1
alpha
concat rgb
256 256 r—128 3 — 3
24

Fig. 5. Left: network structure of OutNet. Green block: fully connected
layer. Yellow blocks: input and output variables of the network.

uncertainty can exit from this stage. These points together
with ones from all previous stages can render a clear image.
Fig. 7 renders images using the points finalised at different
stages, these being merged to form the final image at top-
left. The uncertainty is implicitly visualized in Fig. 7, where
areas of low uncertainty at earlier stages are mainly empty
spaces and surfaces with simple structure, such as the floor
of the Lego model.

Each input query point r(t) exits from the first branch
network in which its uncertainty probability is less than e.
We use the color ¢; and density o; predicted by the branch
network to represent c(r(t)) and o(r(t)) needed by Eq. (1).
Then we use Eq. (1) to calculate the color of the query point.

o(r(t)) = o;,i = min{ild; < eAr € R;}
c(r(t)) = ¢y =min{ils;, < eAr € R}

13)
(14)

where R, is the set of points contained in the ith branch.

5 EXPERIMENTS AND DISCUSSION

In this section, we first evaluate our Recursive-NeRF on dif-
ferent datasets and compare it with state-of-art alternatives.
Then we conduct ablation studies to validate the design
choices of our approach, including early termination, uncer-
tain point clustering and the branching mechanism.

5.1 Experimental Settings
5.1.1 Deep Learning Framework

All of our experiments were implemented using the Jittor
deep learning framework [49]. Jittor supports dynamic
graph execution, allowing the neural network to be dynami-
cally changed during each training stage, so is well suited to
training our Recursive-NeRF.

5.1.2 Datasets

We evaluated our method on Synthetic-NeRF [14], LLFF [8],
Cornell Box dataset [50], Google Earth Studio [51] and Mars
image [52]. Synthetic-NeRF contains eight man-made objects
with complicated geometry and materials. Each object is
realistically rendered in 300 views at a resolution of 800 x
800 pixels. We used the same split into training and testing
data as NeRF [14]. LLFF is a real-world scenes dataset, and
we tested our method on the “fern” scene of this dataset.
Cornell Box is a relatively simple synthetic scene, mainly
composed of boxes. We adopted this dataset to demonstrate
the effectiveness of our method. We rendered 400 pictures
at a resolution of 800 x 800 pixels from views uniformly

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 00:55:38 UTC from IEEE Xplore. Restrictions apply.

5130

P

o

tage 1 tage 11

Stage 111

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 12, DECEMBER 2023

Stage IV Mixe results ‘

Fig. 6. Scene segmentation at different stages. Left: segmentation at different stages. Right: blocks owning each query point, indicating early

termination.

sampled with the camera moving along a spiral curve, and
randomly selected 200 pictures as the training set, and the
remainder for testing. We take a city-level data from Google
Earth Studio to demonstrate the capability of Recursive-
NeRF in large-scale complex scenes. We followed the
method of Xiangli et al. [53] by collecting images taken
around a circle at the same altitude over New York City.
We collected a total of 413 images with a resolution of
960*540, and uniformly selected 13 images as the test set
and 400 images as the training set. We use 8000*8000 resolu-
tion image of Mars as a dataset for 2D image memorization
experiments.

5.2 Results on Synthetic data
5.2.1 Qualitative Comparison

For the Synthetic dataset, the batch size was set to 4096 in
our training stage, 64 and 192 sampling points were used
for the coarse and fine networks respectively, and each
model was trained for 300k iterations, all as in the NeRF
paper. Our network underwent four stages of training, as it
was grown three times. The initial and three grown net-
works had 2, 2, 4, and 4 linear layers respectively. We used
Adam as the optimizer and set a learning rate with an initial
value of 5 x 10~* and 10 times exponential learning rate decay
after 250k iterations. During rendering, we perform a prepro-
cessing that reorders the sample points to make the memory
access more continuous. We compared our approach to sev-
eral current state-of-the-art methods: SRN [11], NV [6], LLFF
[8], and NeRF [14].

Stage 1 Stage 11 Stage 111 Stage IV o
Fig. 7. Recursive rendering. Various query points are finalised early in
different stages, and finally all points are aggregated to form the ren-

dered image at the upper left.

We show different rendering results on Synthetic-NeRF
dataset in Fig. 8. Comparative results on the Cornell Box
dataset are shown in Fig. 9. Our method generates much
clearer local details than the baseline NeRF on the Syn-
thetic-NeRF dataset and achieves comparable results on
Cornell Box dataset. Fig. 10 galleries more results Recur-
sive-NeRF renders at other viewpoints on both Synthetic-
NeRF and Cornell Box dataset.

5.2.2 Quantitative Comparison

We also used PSNR and SSIM to enable a quantitative com-
parison of the results (higher is better), as well as LPIPS [54]
(lower is better). Results for the Synthetic-NeRF dataset are
shown in Table 1, and demonstrate that our method can
perform well on the general dataset. Results for the Cornell
Box dataset are shown in Table 2. We have reduced the
amount of calculation by about 2/3, with only a slight loss
of accuracy.

5.2.3 Speed Comparison

We show the number of million floating point operations
(MFLOPs) and inference time (in seconds) in both Tables 1
and 2. Note that the parameters of NeRF are 2.4M and the
parameters of Recursive-NeRF are 14.6M. Although we
have more parameters than NeRF, our network requires
fewer operations for both simple and complex scenes, with
greater speed improvement for the simple scenes as to be
expected. The maximum depth of our network can reach 12
layers, which is deeper than NeRF’s 8 layers. Using our early
termination strategy, we are able to finalise a large number
of simple query points in the shallow part of the network,
leaving the deep network to focus on the complex informa-
tion, thereby providing better results. Although the number
of deepest layers in our network is greater, our early termina-
tion strategy results in Recursive-NeRF reducing NeRF's
computational effort by 37% and 32.36% less time.

5.2.4 Distribution of Sample Termination

The distribution of sample point termination shows that the
ratios of points terminated in the 2nd, 4th, 8th, and 12th
layers are 45.3%, 27.9%, 7.2%, and 19.6%, respectively. The
sample points will go through 4.95 layers on average in our
network, while 8 layers are required in NeRF, and only
19.6% of points go through a deeper network than in NeRF.
Thus, our adaptive approach can effectively reduce the
computation according to the learned uncertainty: it is more
than a simply deeper NeRF.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 00:55:38 UTC from IEEE Xplore. Restrictions apply.

YANG ET AL.: RECURSIVE-NERF: AN EFFICIENT AND DYNAMICALLY GROWING NERF

4

Ground Truth

NeRF

Ground Truth Ours

NeRF

5131

Microphone

Ours

Ours Ground Truth NeRF

Fig. 8. Qualitative results. Top: scene. Middle, below: Two close-ups of the scene. We show the ground truth, the results of NeRF rendering, and of

our method in turn.

5.3 Comparison With DeRF on Real-World Data
We compare our method with DeRF [43] on the “fern” scene
of the real-world scene dataset LLFF. We follow the setting
of DeRF by using a batch size of 512, 128 samples per ray, 8
layers Linear and training for 300k iterations. We conducted
experiments in a similar manner to the DeRF paper, setting
the number of heads to 1, 4, 8, and the number of hidden
units to 64, 96, 128, 192, 256, and we used the results
reported in the DeRF paper for comparison.

Table 3 shows the comparison of our results with DeRF
and Fig. 11 shows the curve comparison of PSNR with

ailail

Ground Truth

al

Ours

Fig. 9. Qualitative comparison for Cornell Box. Left: original image. Mid-
dle: NeRF’s result. Right: our result.

sl

Fig. 10. Further rendering results from Recursive-NeRF.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 00:55:38 UTC from IEEE Xplore. Restrictions apply.

MFLOPs under different heads. It can be seen that we
mostly achieve better performance with lower FLOPs under
the same head and unit settings, and the larger the number
of heads, the more significant the advantage we have over
DeRF. Although we performed slightly worse than DeRF in
some experiments, the FLOPs of these results were signifi-
cantly lower than DeRF. A representative example is, in the
8-head experiment our method at 128-unit gets better per-
formance than DeRF at 256-unit with 83.6% fewer FLOPs.
Fig. 12 shows a visual comparison with DeRF at 8 heads,
and 256 hidden units. It can be seen that our method produ-
ces sharper details.

Similar to ours, DeRF also decomposes the scene, but it
uses the uniformity of the sampling point division as a loss
and optimizes it through a neural network. This method
has two disadvantages. First, the distribution of sampling
points in the scene is not consistent with the distribution of
complex parts. Simply dividing the scene evenly according
to the sampling points may lead to the fact that different
head would have to represent parts of differnt complexity.
This can lead to insufficient learning of complex parts and

TABLE 1
Quantitative Comparison on the Synthetic-NeRF Dataset [14]
Method PSNR! SSIM' LPIPS! MFLOPs' Time!
SRN [11] 22.26 0.846 0.170 - -
NV [6] 26.05 0.893 0.160 - -
LLFF [8] 24.88 0911 0.114 - -
NeRF[14] 31.01 0.947 0.081 1.18 26.14
Ours 31.34 0.953 0.052 0.75 17.68
TABLE 2
Quantitative Comparison on Cornell Box
Method PSNR' SSIM' LPIPS'! MFLOPs! Time!
NeRF 49.237 0.996 0.015 1.18 26.14
Ours 48.010 0.996 0.010 0.40 10.82

5132 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 12, DECEMBER 2023
TABLE 3
Quantitative Comparison With DeRF on the “FERN” Scene of LLFF Dataset [14]
1 Head 4 Heads 8 Heads
Unit PSNR! SSIM' LPIPS' MFLOPs! PSNR! SSIM! LPIPS! MFLOPs! PSNR! SSIM! LPIPS! MFLOPs!
64 22.15 0.61 0.52 0.149 23.08 0.66 0.46 0.201 23.34 0.67 0.44 0.216
96 22.87 0.64 0.48 0.267 23.56 0.68 0.43 0.299 23.77 0.70 0.41 0.387
DeRF 128 23.20 0.66 0.46 0.353 23.74 0.69 0.42 0.472 23.82 0.70 0.40 0.573
192 23.83 0.70 0.42 0.854 24.01 0.71 0.39 0.894 24.17 0.72 0.37 1.138
256 23.88 0.70 0.41 1.186 24.22 0.72 0.38 1.650 24.26 0.73 0.36 1.913
64 2197 0.6 0.56 0.088 22.69 0.65 0.46 0.088 23.1 0.67 0.41 0.088
96 22.72 0.64 0.47 0.183 23.48 0.69 0.37 0.183 23.93 0.72 0.32 0.183
Ours 128 23.36 0.68 0.4 0.314 23.95 0.73 0.31 0.314 24.39 0.75 0.27 0.313
192 24.1 0.73 0.32 0.679 24.7 0.77 0.24 0.677 24.96 0.79 0.21 0.674
256 24.61 0.76 0.26 1.185 25.05 0.79 0.2 1.182 25.18 0.8 0.18 1.172
5 1 head 255 4 head 555 8 head
24.5 25 25
24 245
23.5 24.5
~ 24
25 23.5
2 23 23.5
21.5 22.5 23
0.00 0.50 1.00 0.00 0.50 1.00 1.50 0.00 0.50 1.00 1.50 2.00
MFLOPs MFLOPs MFLOPs

Fig. 11. Visualization of our performance (colored in blue) compared with DeRF’s (colored in orange) at 1, 4, and 8 heads.

affect the final performance. While Recursive-NeRF can
divide the scene more reasonably and adaptively through
the distribution of uncertain points, and thus can represent
parts of similar complexity with different netowrks. Second,
by optimizing the scene division by loss, it is necessary to
ensure that the division is differentiable. So there must be
overlaps between the heads, which will lead to a more num-
ber of the heads and bring more additional computation.
This can be observed from Table 3 that the MFLOPs of DeRF
increase significantly as the number of heads increases.
Head increase in Recursive-NeRF will not cause increase in
computation. On the contrary, since there are more heads to
share the amount of computation, combined with our early
termination strategy, FLOPs will decrease slightly.

Fig. 12. Visual comparison with DeRF on the “Fern” scene. Left: original
image; middle: DeRF’s result; right: our result.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 00:55:38 UTC from IEEE Xplore. Restrictions apply.

5.4 Performance on Large Scale Scene

We compare with NeRF on the large-scene city-level data-
set to demonstrate the advantages of our method in com-
plex and large-scale scenes. We trained all methods for
900k iterations. The batch size is set to 512. To compare the
performance of NeRF with our method under similar
FLOPs and parameters, we introduce three variants of
NeRF: NeRF(SF), having similar FLOPs with our method
with the number of layers extended to 12, NeRF(SPW) and
NeRF(SPD) having similar parameters to our method with
wider and deeper networks respectively. Specifically,
NeRF(SPW) has 12 layers and 768 hidden units; NeRF
(SPD) has 110 layers and 256 hidden units. To make NeRF
(SPD) easier to converge, we add residual connections
between every two consecutive layers. Quantitative results
are shown in Table 4.

Compared to NeRF, we significantly improve PSNR by
3.14. Comparison to NeRF(SF) shows that we improve
PSNR by 2.79 with basically similar FLOPs. For NeRF(SPW)
and NeRF(SPD) with a similar amount of parameters, our
method still achieves better results while reducing FLOPs
by about 88%. We also show some qualitative comparisons
in Fig. 13. It can be seen that our method generates finer
details than NeRF. This is because we predict the uncer-
tainty of each point in the scene, and for complex areas,
more sub-networks will be subdivided to predict details.
The shallow layers of the network can learn the rough out-
line, and each piece of local information has a separate sub-
network to learn it, so more local details can be obtained
with our Recursive-NeRF.

YANG ET AL.: RECURSIVE-NERF: AN EFFICIENT AND DYNAMICALLY GROWING NERF 5133
TABLE 4 TABLE 5
Quantitative Comparison on Large Scale Scene Ablation Experiment on our Proposed Method

Method PSNR' SSIM! LPIPS! MFLOPs! Params! Method PSNR! SSIM' LPIPS! MFLOPs!
NeRF 18.17 0.43 0.52 1.19 2.1 No classification 32.697 0.966 0.035 0.65
NeRF(SF) 18.52 0.45 0.49 1.71 3.1 No branch 32374 0.962 0.040 0.70
NeRF(SPW) 20.10 0.62 0.33 14.51 27.2 No early termination 33.118 0.970 0.032 1.71
NeRF(SPD) 20.21 0.63 0.32 14.56 27.6 Full method 32900 0967 0.033 0.70
Ours 21.31 0.69 0.28 1.71 27.9

5.5 Ablation Study

We conducted ablation experiments as described below; the
results are shown in Table 5. A qualitative comparison of
results on the Lego dataset is shown in Fig. 14.

5.5.1 Effect of Early Termination

Early termination is a key part of our method. We trained
our model without early termination, which means all sam-
pling points leave at the last exit. It can be seen that the
amount of computation increased significantly. The early
termination mechanism greatly improves performance and
only causes a very minor degradation of the results.

5.5.2 Effect of Uncertain Point Classification

We use K-means to divide the scene into blocks. As an alterna-
tive, we randomly divided the scene into blocks and compared
the outcomes. Fig. 15 shows the results. Without clustering,
many blocks contain many discontinuous parts, and the block
size is also uneven, reducing the quality of the final image.

5.5.3 Effect of Branching

To demonstrate the effectiveness of our network block
structure, we compare the results with a chain structure of
the same depth network (No branch in Table 5). The chain
network had a #2FC — #2FC — #4FC — #4FC structure
where #iFC represents a fully connected layer with i-

Ground Truth Ground Truth

layers. The query points could terminate early from the
2nd, 4th, 8th, and 12th levels. The branching strategy
divides complex parts into different branch networks for
learning, allowing the network to decouple complex scenar-
ios and conduct targeted learning. Thus branch strategy
brings a significant increase in quality.

5.5.4 Effect of Uncertainty Threshold

To demonstrate the effect of uncertainty threshold, we test
the results under different uncertainty thresholds on the
“fern” dataset. The results are shown in Table 6. From
Fig. 16 it can be seen that as the uncertainty threshold
decreases, more points will enter the deeper network for
prediction; meanwhile, the PSNR gets better, also demand-
ing more compuation effort.

5.6 Adaptive Growth

We tested the adaptive growth ability of Recursive-NeRF
through the 2D image memorization experiment. We take
the original image with a resolution of 8000*8000 and
images downscaled to resolutions of 4000*4000, 2000*2000,
1000*1000 by anti-aliased resampling as different complex
tasks. The larger the image resolution, the higher the com-
plexity. Since the original resolution image is too large, we
do not count LPIPS. As stated in Section 4.3, when the
uncertainty ratio R is larger than the growth threshold T,
we indicate that the quality is not high enough, and

v

NeRF 7 Ours ‘ Ground Truth

Fig. 13. Qualitative comparison for a large-scale scene. For three selected views, we also show close-up results of groundtruth, NeRF, and our

method.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 00:55:38 UTC from IEEE Xplore. Restrictions apply.

5134

Ground Truth

Fig. 14. Qualitative comparison of ablation experiment.

Recursive-NeRF will grow. Here we set 7" to 0.03, and set
the maximum times of growths to 3.

Table 7 shows the results at different resolutions and the
corresponding growth times. Fig. 17 shows the resulting
images at different resolutions. It can be seen that as the dif-
ficulty of the task increases, Recursive-NeRF can adaptively
grow until the quality is high enough. The adaptive growth
mechanism enables Recursive-NeRF to achieve similar per-
formance for tasks of different difficulty, while simpler
tasks can save more computation.

5.7 Limitations and Future Works

Recursive-NeRF rendering for large-scale scenes is still chal-
lenging. Inaccurate camera position and motion blur will
degrade the performance of both Recursive-NeRF and
NeRF, which restricts their application to real scenes.
Although the speed of Recursive-NeRF is better than that of
the original NeReF, it is still not adequate for real-time use.
We hope to further improve the performance of Recursive-
NeREF, to adapt it to more complex scenes.

Although we have demonstrated the performance of Recur-
sive-NeRF in large-scale complex scenes, there is still room for
improvement. Introducing a more effective sampling strategy
[18], [38] and better position encoding [36] will further improve

Fig. 15. Scene segmentation results. Left: original Lego scene. Middle:
result using random division (no clustering). Right: result of clustering
uncertain points using K-means.

TABLE 6
Effect of Uncertainty Threshold

No early termination No classification

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 12, DECEMBER 2023

the performance of Recursive-NeRF. Second, learnable cluster-
ing [55] of uncertain points could be exploited to make the
branched networks more adaptive to complexity of parts of the
underlying scene. Lastly, our method can leverage geometric
priors learned from geometric learning [56], [57] to improve
training performance with a small number of views.

6 CONCLUSION

In this paper, we have proposed the idea of adaptively
modeling parts of a scene with different complexity using
neural networks of different representation capability, analo-
gous to level of detail. We have used it to construct a dynami-
cally growing neural network for novel view synthesis,
called Recursive-NeRF. It extends basic NeRF by addition-
ally predicting uncertainty for the results, and uses it to
dynamically branch new, more powerful neural networks to
represent more uncertain regions, allowing it to efficiently
learn implicit geometric and appearance representations for
complicated scenes. Our experiments have demonstrated
the effectiveness of our method and show that, compared to

25.5

22

0.30 0.50 0.70

MFLOPs
Fig. 16. PSNR follows the trend of MFLOPs under different thresholds.

0.90 1.10

TABLE 7
Adaptive Growth of our Network in Terms of the

Threshold PSNR! SSIM! LPIPS! MFLOPs! Complexity of Image Memorization

888; ;gég 8?88 gigg 1(1); Resolution PSNR! SSIM! MFLOPs! Growth times
0.01 25.04 0.793 0.193 0.89 1000 34.29 0.8898 0.37 0

0.05 24.64 0.751 0.285 0.63 2000 34.81 0.8806 0.47 1

0.1 23.07 0.655 0.452 0.39 4000 35.03 0.9113 0.66 2

0.5 22.39 0.623 0.526 0.37 8000 32.21 0.8650 0.88 3

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 00:55:38 UTC from IEEE Xplore. Restrictions apply.

YANG ETAL.:

Fig. 17. Image memorization results and a zoom-in at different resolution.

Ground Truth

Ours

1000px

2000px

NeRF, Recursive-NeRF can generate more photorealistic
views in a more efficient computation.

ACKNOWLEDGMENTS

We would like to thank Guo-Ye Yang for his kindly help in
experimentation and Prof. Ralph R. Martin for his help in
writing.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob, “Mitsuba 2:
A retargetable forward and inverse renderer,” ACM Trans. Graph.,
vol. 38, no. 6, pp. 203:1-203:17, 2019.

S. Liu, W. Chen, T. Li, and H. Li, “Soft rasterizer: A differentiable
renderer for image-based 3d reasoning,” in Proc. IEEE Int. Conf.
Comput. Vis., 2019, pp. 7707-7716.

T. Li, M. Aittala, F. Durand, and J. Lehtinen, “Differentiable monte
carlo ray tracing through edge sampling,” ACM Trans. Graph.,
vol. 37, no. 6, pp. 222:1-222:11, 2018.

C. Buehler, M. Bosse, L. McMillan, S. J. Gortler, and M. F. Cohen,
“Unstructured lumigraph rendering,” in Proc. 28th Annu. Conf.
Comput. Graph. Interactive Techn., 2001, pp. 425-432.

S. M. Seitz and C. R. Dyer, “Photorealistic scene reconstruction by
voxel coloring,” Int. |. Comput. Vis., vol. 35, no. 2, pp. 151-173, 1999.
S. Lombardi, T. Simon, J. M. Saragih, G. Schwartz, A. M. Lehr-
mann, and Y. Sheikh, “Neural volumes: Learning dynamic ren-
derable volumes from images,” ACM Trans. Graph., vol. 38, no. 4,
pp. 65:1-65:14, 2019.

V. Sitzmann, J. Thies, F. Heide, M. Niefiner, G. Wetzstein, and M.
Zollhofer, “Deepvoxels: Learning persistent 3D feature embeddings,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 2437-2446.
B. Mildenhall et al., “Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines,” ACM Trans. Graph.,
vol. 38, no. 4, pp. 29:1-29:14, 2019.

E. Penner and L. Zhang, “Soft 3d reconstruction for view syn-
thesis,” ACM Trans. Graph., vol. 36, no. 6, pp. 235:1-235:11, 2017.
T. Zhou, R. Tucker,]J. Flynn, G. Fyffe, and N. Snavely, “Stereo
magnification: Learning view synthesis using multiplane images,”
ACM Trans. Graph., vol. 37, no. 4, pp. 65:1-65:12, 2018.

V. Sitzmann, M. Zollhofer, and G. Wetzstein, “Scene representa-
tion networks: Continuous 3D-structure-aware neural scene rep-
resentations,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,
pp- 1119-1130.

M. Niemeyer, L. M. Mescheder, M. Oechsle, and A. Geiger,
“Differentiable volumetric rendering: Learning implicit 3D repre-
sentations without 3d supervision,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2020, pp. 3501-3512.

W. Chen et al., “Learning to predict 3D objects with an interpola-
tion-based differentiable renderer,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2019, pp. 9605-9616.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Rama-
moorthi, and R. Ng, “NeRF: Representing scenes as neural radiance
fields for view synthesis,” in Proc. Eur. Conf. Comput. Vis., 2020,
pp- 405421.

K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “NeRF++: Analyz-
ing and improving neural radiance fields,” 2020, arXiv:2010.07492.

RECURSIVE-NERF: AN EFFICIENT AND DYNAMICALLY GROWING NERF

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]

[35]

5135

4000px 8000px

K. Park et al., “Nerfies: Deformable neural radiance fields,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 5865-5874.

P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall, and
J. T. Barron, “NeRV: Neural reflectance and visibility fields for
relighting and view synthesis,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2021, pp. 7495-7504.

L. Liu, J. Gu, K. Z. Lin, T. Chua, and C. Theobalt, “Neural sparse
voxel fields,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2020,
pp- 15651-15663.

D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R.
Huebner, “Chapter 1 - Introduction,” in Level of Detail for 3D Graphics,
ser. The Morgan Kaufmann Series in Computer Graphics, D. Luebke,
M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner,
Eds. San Mateo, CA, USA: Morgan Kaufmann, 2003, pp. 3-ii.

C. Zhang and T. Chen, “A survey on image-based rendering -
representation, sampling and compression,” Signal Process. Image
Commun., vol. 19, no. 1, pp. 1-28, 2004.

A. Tewari et al., “State of the art on neural rendering,” Comput.
Graph. Forum, vol. 39, no. 2, pp. 701-727, 2020.

H. Kato et al, “Differentiable rendering: A survey,” 2020,
arXiv:2006.12057.

C. M. Jiang, A. Sud, A. Makadia, J. Huang, M. Niefiner, and T. A.
Funkhouser, “Local implicit grid representations for 3D scenes,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 6000-6009.

J. J. Park, P. Florence, J. Straub, R. A. Newcombe, and S. Love-
grove, “DeepSDF: Learning continuous signed distance functions
for shape representation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 165-174.

L. M. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A.
Geiger, “Occupancy networks: Learning 3D reconstruction in
function space,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 4460-4470.

K. Genova, F. Cole, A. Sud, A. Sarna, and T. A. Funkhouser,
“Local deep implicit functions for 3D shape,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 4856—4865.

H. Kato, Y. Ushiku, and T. Harada, “Neural 3D mesh renderer,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 3907-3916.
K. Schwarz, Y. Liao, M. Niemeyer, and A. Geiger, “GRAF: Gener-
ative radiance fields for 3D-aware image synthesis,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2020, pp. 20154-20166.

S.Ma, Q. Shen, Q. Hou, Z. Ren, and K. Zhou, “Neural compositing
for real-time augmented reality rendering in low-frequency light-
ing environments,” Sci. China Inf. Sci., vol. 64, no. 2, pp. 1-15, 2021.
A. Dosovitskiy et al., “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” in Proc. Int. Conf. Learn.
Representations, 2021, pp. 1-22.

M.-H. Guo, C-Z. Lu, Z-N. Liu, M.-M. Cheng, and S.-M. Hu,
“Visual attention network,” 2022, arXiv:2202.09741.

M.-H. Guo et al,, “Attention mechanisms in computer vision: A
survey,” Comput. Vis. Media, vol. 8, no. 3, pp. 331-368, 2022.

Y. Xu et al., “Transformers in computational visual media: A
survey,” Comput. Vis. Media, vol. 8, no. 1, pp. 33-62, 2022.

J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone, P. Labatut,
and D. Novotny, “Common objects in 3D: Large-scale learning
and evaluation of real-life 3d category reconstruction,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 10901-10911.

K. Park et al., “HyperNeRF: A higher-dimensional representation
for topologically varying neural radiance fields,” ACM Trans.
Graph., vol. 40, no. 6, pp. 1-12, 2021.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 00:55:38 UTC from IEEE Xplore. Restrictions apply.

5136

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471
[48]

[49]

(501
[51]

[52]

[53]

[54]

[55]

[56]

[57]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 12, DECEMBER 2023

J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-
Brualla, and P. P. Srinivasan, “Mip-NeRF: A multiscale represen-
tation for anti-aliasing neural radiance fields,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis, 2021, pp. 5855-5864.

P. Ren, J. Wang, M. Gong, S. Lin, X. Tong, and B. Guo, “Global
illumination with radiance regression functions,” ACM Trans.
Graph., vol. 32, no. 4, pp. 1-12, 2013.

T. Neff et al., “DoNeRF: Towards real-time rendering of compact neu-
ral radiance fields using depth oracle networks,” in Computers Graphics
Forum, vol. 40, no. 4. Hoboken, NJ, USA: Wiley, 2021, pp. 45-59.

D. B. Lindell, J. N. Martel, and G. Wetzstein, “Autoint: Automatic
integration for fast neural volume rendering,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2021, pp. 14 556-14 565.

S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin,
“FastNeRF: High-fidelity neural rendering at 200FPS,” in Proc.
IEEE/CVEF Int. Conf. Comput. Vis, 2021, pp. 14 34614 355.

A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa,
“Plenoctrees for real-time rendering of neural radiance fields,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis, 2021, pp. 5752-5761.
P.Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and P. Debe-
vec, “Baking neural radiance fields for real-time view synthesis,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis, 2021, pp. 5875-5884.

D. Rebain, W. Jiang, S. Yazdani, K. Li, K. M. Yi, and A. Tagliasac-
chi, “DeRF: Decomposed radiance fields,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2021, pp. 14 153-14 161.

G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q.
Weinberger, “Multi-scale dense networks for resource efficient
image classification,” in Proc. Int. Conf. Learn. Representations,
2018, pp. 1-14.

J. Yu, L. Yang, N. Xu, J. Yang, and T. S. Huang, “Slimmable neural
networks,” in Proc. Int. Conf. Learn. Representations, 2019, pp. 1-12.
J. Yu and T. S. Huang, “Universally slimmable networks and
improved training techniques,” in Proc. IEEE Int. Conf. Comput.
Vis., 2019, pp. 1803-1811.

J. Yu and T. Huang, “AUTOSLIM: Towards one-shot architecture
search for channel numbers,” 2019, arXiv:1903.11728.

D. Xu and Y. Tian, “A comprehensive survey of clustering algo-
rithms,” Ann. Data Sci., vol. 2, no. 2, pp. 165-193, 2015.

S.-M. Hu, D. Liang, G.-Y. Yang, G.-W. Yang, and W.-Y. Zhou,
“Jittor: A novel deep learning framework with meta-operators
and unified graph execution,” Sci. China Inf. Sci., vol. 63, no. 12,
pp- 222103:1-222103:21, 2020.

Cornell.edu. The cornell box. 2021. [Online]. Available: http://
www.graphics.cornell.edu/online/box/

Google earth studio, 2018. [Online]. Available: https://earth.
google.com/studio/

J.N. P. Martel, D. B. Lindell, C. Z. Lin, E. R. Chan, M. Monteiro, and G.
Wetzstein, “Acorn: Adaptive coordinate networks for neural scene
representation,” ACM Trans. Graph., vol. 40, no. 4, pp. 1-13, 2021.

Y. Xiangli et al., “BungeeNeRF: Progressive neural radiance field
for extreme multi-scale scene rendering,” in Eur. Conf. Comput.
Vis., 2022, pp. 1-17.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual met-
ric,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp- 586-595.

F. Williams, J. Parent-Lévesque, D. Nowrouzezahrai, D. Panozzo,
K. M. Yi, and A. Tagliasacchi, “VoronoiNet: General functional
approximators with local support,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops, 2020, pp. 1069-1073.

Y.-P. Xiao, Y.-K. Lai, F.-L. Zhang, C. Li, and L. Gao, “A survey on
deep geometry learning: From a representation perspective,”
Comput. Vis. Media, vol. 6, no. 2, pp. 113-133, 2020.

M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J]. Mu, R. R. Martin, and S.-M.
Hu, “PCT: Point cloud transformer,” Comput. Vis. Media, vol. 7,
no. 2, pp. 187-199, 2021.

Guo-Wei Yang received the BS degree in com-
puter science and technology, in 2019. He is cur-
rently working toward the PhD degree in the
Department of Computer Science and Technol-
ogy, Tsinghua University. His research interests
include computer graphics, neural rendering, and
computer vision.

Wen-Yang Zhou is currently working toward the
PhD degree in the Department of Computer Sci-
ence and Technology, Tsinghua University, Bei-
jing. His research interests include computer
graphics, image analysis, and computer vision.

Hao-Yang Peng is currently working toward the
graduate degree with Tsinghua University. His
research interests include computer graphics and
computer vision.

Dun Liang received the BS and PhD degrees in
computer science and technology, in 2016 and
2021, respectively. He is a research assistant in
the Department of Computer Science and Tech-
nology with Tsinghua University. His research
interests include computer graphics, visual media
learning and high-performance computing.

Tai-Jiang Mu received the BS and PhD degrees in
2011 and 2016, respectively. He is currently an assis-
tant researcher in the Department of Computer Sci-
ence and Technology, Tsinghua University. His
research interests include computer graphics, visual
media learning and image processing. He has pub-
lished more than 20 paper in journals and refereed
conference, such as ACM Transactions on Graphics,
IEEE Transactions on Visualization and Computer
Graphics, the Visual Computer, Graphical Models,
Computational Visual Media, CVPR, ICRA, etc.

Shi-Min Hu (Senior Member, IEEE) received the
PhD degree from Zhejiang University, in 1996. He
is current a professor in the Department of Com-
puter Science and Technology, Tsinghua Univer-
sity, Beijing, China. His research interests include
digital geometry processing, video processing,
rendering, computer animation, and computer-
aided geometric design. He has published more
than 100 papers in journals and refereed confer-
ences. He is the Editor-in-Chief of Computational
Visual Media, and on editorial boards of several

journals, including Computer Aided Design and Computer & Graphics.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 00:55:38 UTC from IEEE Xplore. Restrictions apply.

http://www.graphics.cornell.edu/online/box/
http://www.graphics.cornell.edu/online/box/
https://earth.google.com/studio/
https://earth.google.com/studio/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

