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Abstract—RedirectedWalking (RDW) algorithms aim to impose several types of gains on users immersed in Virtual Reality and distort

their walking paths in the real world, thus enabling them to explore a larger space. Since collision with physical boundaries is inevitable,

a reset strategy needs to be provided to allow users to reset when they hit the boundary. However, most reset strategies are based on

simple heuristics by choosing a seemingly suitable solution, whichmay not performwell in practice. In this article, we propose a novel

optimization-based reset algorithm adaptive to different RDWalgorithms. Inspired by the approach of finite element analysis, our

algorithm splits the boundary of the physical world by a set of endpoints. Each endpoint is assigned a reset vector to represent the

optimized reset direction when hitting the boundary. The reset vectors on the edgewill be determined by the interpolation between two

neighbouring endpoints.We conduct simulation-based experiments for threeRDWalgorithmswith commonly used reset algorithms to

compare with. The results demonstrate that the proposed algorithm significantly reduces the number of resets.

Index Terms—Redirected walking, resetting, adaptive optimization, obstacle-ridden area, redirection

Ç

1 INTRODUCTION

VIRTUAL reality (VR) has been developing very fast in the
recent years as witnessed by the emergence of many revo-

lutionary devices such as Oculus Rift and HTC Vive series. Its
immersive experiences have enabled a number of emerging
VR applications in games, training, healthcare, E-commerce,
etc., where the user is often required to navigate in a virtual
world. In practice, the dimension of the virtual space usually
does not match that of the real space. Then how to explore a
relatively large (even infinite) virtual space in a relatively small
space in the realworld is a critical problem.

To address the above problem, several redirectedwalking
(RDW) algorithms have been proposed. The basic idea is to
distort the user’s walking path in the real world to avoid hit-
ting physical boundary without being noticed in the virtual
navigation. The representative algorithms include Steer-to-

Center (S2C), Steer-to-Orbit (S2O), Steer-to-Multiple-Targets
(S2MT), APF-RDW (Redirected walking based on Artificial
Potential Field), etc. Even so, the collision with physical
boundaries is inevitable, especially when the user’s naviga-
tion path is long or/and the layout in the real space is com-
plicated. Hence it is desirable to accompany the RDW
algorithm with one or more reset strategies. Such a strategy
can help users to reset to some ideal direction when hitting
the boundary, allowing them to walk for a relatively long
distance before the next collision.

However, most reset algorithms are only based on simple
heuristics such as Reset-to-Center (R2C) and Reset-to-Gradi-
ent (R2G). There is a lot of room for optimization to further
reduce the number of collisions. Despite some search-based
optimization has been used for RDW algorithms such as
MPCRed [1] and FORCE [2], the optimization of the reset
strategy is yet to be explored to the best of our knowledge. In
this paper, we propose a novel reset algorithm to optimize the
reset direction adaptive to a given RDW algorithm. The algo-
rithm works by dividing the boundary of obstacles and the
physical environment with some endpoints. The reset direc-
tion at each endpoint is optimized instead of heuristically
determined. The reset direction of the point in-between two
neighbouring endpoints is determined by their linear interpo-
lation. To quantitatively measure the quality of reset, we per-
form virtual navigation simulation to achieve the expected
resets with provided reset directions. This is done by sam-
pling abundant walking paths and simulating the resets
accordingly. The reset directions are iteratively updated to
minimize the resets. To evaluate our algorithm, we also con-
duct a variety of simulation-based experiments using various
RDW algorithms under different environments. For realistic
consideration, we demonstrate a bedroom and a living room
with a similar layout in our experiments in Fig. 1 (The left is a
3d scene, the right is a 2d orthogonal plan). The results show
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that our reset strategy largely improves the heuristical reset,
and can easily adapt to the given RDW algorithm in obstacle-
ridden areaswith obstacles.

Our work makes two major contributions. 1) We present
a novel optimization-based RDW reset strategy that signifi-
cantly outperforms heuristical ones. 2) Our simulation-
based reset optimization is adaptive to any RDW algorithm,
and applicable for any obstacle-ridden area with arbitrarily
shaped obstacles.

2 RELATED WORK

2.1 Redirected Walking

Redirected walking (RDW) methods attempt to differ the vir-
tual movement from the physical one, such that the users are
able to explore a larger space. This is normally achieved by
steering the users to some ideal point, or repelling them from
the physical boundary. Three types of gains (rotation, transla-
tion, curvature) play leading roles when manipulating users’
walking paths. Razzaque[3] proposed several generic RDW
algorithms, including Steer-to-Center (S2C), Steer-to-Multiple-
Target (S2MT), and Steer-to-Orbit (S2O). After that, much
research related to these algorithms have been conducted.
Hodgson and Bachmann [4] studied 4 different RDW algo-
rithms (include also Steer-to-Multiple+Centerwhich combines
S2C and S2MT) with simulation-based and live user experi-
ments. They discovered that S2C outperforms the other three
algorithms on average, while S2O leads to better results than
S2C when users perform long, straight-line navigation. Note
that S2C referred in [5] is a modified version of Razzaque’s
one, aiming to overcome the deficiency when the angle
between travel and center directions is too large.

With the advances of machine learning, some emerging
technologies, especially reinforcement learning, have also
been brought into this field. Lee et al. [6] proposed Steer-to-
Optimal-Target (S2OT) to decide the best target among the
candidates to steer to. By applying Deep-Q Learning, the
score that indicates the optimal target is selected. Later, an
extended algorithm called Multiuser-Steer-to-Optimal-Tar-
get (MS2OT) [7] was proposed. This is a multi-user version
of S2OT. An important pre-reset action and other improve-
ment measures were considered here. Strauss et al. [8] also
used deep reinforcement learning in RDW. By employing

Proximal Policy Optimization (PPO), a deep neural network
is trained to directly estimate the rotation, translation, and
curvature gains to transform a virtual environment, given a
user’s position and orientation in the tracked space.
Another work by Chang et al. [9] presented a new redirec-
tion controller by PPO, and applied a new RDW algorithm
(advanced center-based translation gain) and a new reset
method (Turn-to-Furthest) for experimental comparison.

As the theoretical foundation of our simulation experi-
ments, some cognitive and perceptual thresholds on three
types of gains when influencing human walking have been
thoroughly studied. Steinicke et al. [10] investigated three
types of gains, and the thresholds of not noticing these
gains. They showed that the rotation gain should be
between 0.67 and 1.24, translation gain should be between
0.86 and 1.26, and curvature radius should be no less than
22m. Grechkin et al. [11] found no remarkable influence on
curvature gain when combining with translation gain, and
proposed a smaller curvature radius. Neth et al. [12] gave a
more specific conclusion on how curvature gain should be
decided by walking velocity.

Our RDW reset optimization can be coupled with any
given RDW algorithm. It further improves user experience
in virtual navigation with largely reduced resets.

2.2 Resetting

Although there are some mechanisms enabling the user to
walk along a collision-free path by aligning virtual and
physical environment [13], [14], [15], the reset step is inevi-
table if we do not constrain and control the user’s physical
locomotion for reactive and predictive RDW, since the
user’s walking length can be very long compared with the
dimension of the real physical space. Generally, reset is
always considered together with RDW algorithms. Williams
et al. [16] proposed 3 reset strategies, including Freeze -
Backup, Freeze - Turn, and 2:1 - Turn. The Freeze - Turn
and 2:1 - Turn are the most commonly used for early reset
algorithms. For example, Freitag et al. [17] proposed to
enable the user to create portals to reach the target far away
without much reorientation. Bachmann et al. [18] employed
a modified version of 2:1 - Turn in the research of multi-
user redirected walking. But after all, the above reset strate-
gies pay more attention to maintaining the immersive expe-
rience rather than reducing the collision. And the related
reset algorithms are preliminary attempts, and only focus
on collision with the boundary.

More recent reset algorithms are developed to fit the cor-
responding RDW algorithms. For example, Reset-to-Center
(R2C) always resets the user’s direction to the center of the
physical environment, which coincides with Steer-to-Cen-
ter. Reset-to-Gradient (R2G) was proposed for APF-RDW,
and used in [18], [19]. Thomas et al. [20] presented three
new reset algorithms for a new APF-RDW algorithm named
Push/Pull Reactive (P2R), including MR2C (a modified ver-
sion of Reset-to-Center), R2G, and SFR2G (a modified ver-
sion of Reset-to-Gradient). Besides, the reset step implicitly
breaks the continuity of the user’s walk in the virtual space,
resulting in break-in-presence (BIP) effect. Peck et al.[21]
used distractors in real applications to maintain natural
locomotion. Sra et al.[22] integrated similar attractors into
redirection to make them imperceptible. Cools et al. [23]

Fig. 1. Common physical environments within an obstacle-ridden area.
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investigated different interactivity types and their effects
on users. Our reset optimization enhances existing meth-
ods by using their resets as an initialization, and further
optimizing reset directions based on walking simulation,
resulting in a large decrease of resets. Note that in practical
applications, the Freeze - Backup and the modified version
of 2:1 - Turn are also viable for our algorithm, depending
on user experience.

2.3 Obstacles in the Real Environment

In many situations, the shape of the physical environment is
not as ideal (e.g., a circle or rectangle) as we thought. Some
RDW algorithms work well only when the area is regular.
Treating the walkable area as a whole, the ideal steering
point might be the center of gravity (assuming that each
point in the area has the same density), or the geometric
center. However, it becomes much harder to choose a steer-
ing point when there are unorganized obstacles in the area
(common for indoor environments), let alone multiple steer-
ing points for Steer-to-Multiple-Target.

Fajen et al. [24] built a dynamic system in order to predict
human route selection to avoid obstacles while reaching a
goal. The angular acceleration in the system depends on the
angle and distance to both obstacles and the target. Chen
et al. proposed two approaches to achieve obstacle avoid-
ance. Steer-to-Farthest [25] attempts to steer the user
towards one of the farthest physical boundary points from
the user’s current position. It depends on a cost function
related to the distance from the user to the boundary, and
the angle between the head orientation and the vector from
the user to the obstacle. The other one [26] is a planning
algorithm that uses dynamic obstacles to direct the user
away from the boundary of the irregularly shaped physical
environment. Valentini et al. [27] proposed an approach to
reconstruct the real obstacles in the virtual environment to
maintain the awareness of the real environment.

The physical environments in our experiments are gen-
eral obstacle-ridden areas. We design layouts with obstacles
of varying shapes to demonstrate the performance of our
algorithm.

3 ADAPTIVE RESET OPTIMIZATION ALGORITHM

Unlike previous reset algorithms that rely on simple heuris-
tics, we propose a novel optimization-based reset algorithm
that complements existing RDW algorithms. Our algorithm
manifests its adaptability in two aspects:

� It could be steered with different RDW algorithms
on demand, even adapt to different walking behav-
iors of different users (that is, use the characteristics
of specific users’ walking data as a basis for
optimization).

� It can handle physical boundary of any shape, and
does not make any assumption on the convexity/
concavity of the boundary of the environment or the
obstacle.

In the following, we will elaborate on the optimization
procedure of the algorithm, then introduce the hyper-
parameters involved in the algorithm, and discuss the
details of setting these hyper-parameters.

3.1 Algorithm Description

Following prior work on redirected walking, we also reduce
the problem to 2D for simplicity (see Fig. 2). Suppose the
real space is represented by a number of boundaries, includ-
ing an outer environment boundary and several inner
obstacle boundaries. Each boundary comprises a set of
inter-connected smooth edges, where neighbouring smooth
edges meet at sharp points. Note that any point on a smooth
edge has a continuous tangent except for the sharp point (as
shown in Fig. 2a).

The ultimate goal for a reset algorithm is to specify a
reset direction when hitting a boundary point. We will con-
duct massive simulated walking to optimize the resetting.
Since the resetting in RDW causes a decrease in the sense of
immersion, it is reasonable to use the number of resets as an
evaluation metric for final reset directions. It can be done
on-the-fly for heuristical reset where simple rules can be
applied such as Reset-To-Center (just point to the center).
However, for optimization-based approach, this is not feasi-
ble as the optimization is more expensive. Given the physi-
cal boundaries are practically fixed in real applications, we
can pre-compute the reset direction and assign it accord-
ingly when needed. It can be seen that optimizing the entire
boundary point set is computationally prohibitive given the
physically-based nature of the problem. Thus we propose to
solve a discrete problem that is in line with finite element
analysis [28] as widely used for physical simulation.

Fig. 2. The physical environment in an obstacle-ridden area is repre-
sented in 2D (a), and is discretized for simulation-based reset optimiza-
tion (b).
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As shown in Fig. 2b, we perform a standard 2D discreti-
zation in our implementation. It splits each smooth edge
into several segments by adding evenly distributed interme-
diate points if necessary. After discretization, the length of
each segment is less than a pre-defined edge interval l. Both
the initial sharp points and the newly added intermediate
points are called endpoints. In practice, we only optimize the
reset direction at each endpoint. For the reset direction at
any other boundary point, it is linearly interpolated from
two neighbouring endpoints.

Let P ¼ fp1;p2; . . . ;pmg denote the set of m endpoints.
Their reset directions are represented as V ¼ fv1; v2; . . . ; vmg,
where vi ¼ ðxi; yiÞ is the reset vector at pi. The optimization is
formulated as

min
V

F ðVÞ
s:t: ffðvi; tiÞ 2 ð0;pÞ; (1)

where F is the objective function measuring the quality of
the reset V, ti is the tangent vector at pi, and the angle
ffðvi; tiÞ is measured in a local coordinate frame formed by
the tangent ti and normal ni.

Remarks.Note that we use the tangent ti at the endpoint to
constrain the reset direction (within an angle of p as in
Eqn. (1)), thus avoid boundary collision. If an endpoint is a
sharp point, it might have several reset vectors, depending
on how many line segments intersect at that point. In prac-
tice, as shown in Fig. 3, there are two reset vectors at one
point. These two vectors belong to different edges as indi-
cated by their colors.

During the optimization, we optimize the two reset vec-
tors with respect to their corresponding tangents. This better
addresses the shape context of an individual smooth edge
and its surrounding space, so as the interpolation along the
edge. If a vector (such as the red one in Fig. 3) points inside
the obstacle, this might trigger a new collision immediately
after a reset, leading to consecutive collisions. There are prac-
tical solutions for this issue. For instance, we can choose a
point p very close to the endpoint but not on the boundary,
then simulate user movement with a short distance from this
point in the reset direction. If it hits the boundary (meaning
this direction is not appropriate), we continue to change the
reset vector at this endpoint until the user no longer hits the
boundary. We can obtain p as p ¼ aNþ bðM� eÞ, where N
is the normal vector of this boundary on e, M is the coordi-
nate of the midpoint of this boundary, e is the endpoint, a

and b are small values. But most conveniently, this issue can
also be solved by a post-processing step to change the reset
direction after optimization.

The key to the optimization in Eqn. (1) is how to define the
objective function F and how to optimize V accordingly. For
a good reset algorithm, it should provide reset directions
that can largely reduce the number of resets. Hence we
define F as the expected resets during the virtual navigation.
However, F can only be estimated but not determined as the
user’s navigation paths can be very flexible in the virtual
space. Therefore, we utilize a simulation-based approach to
statistically evaluate F . More specifically, we sample s points
in the virtual world and simulate the navigation path by con-
necting these points in the sampling order, by which we
obtain a long walking distance. Then based on the given
RDW algorithm and the current reset configuration V, we
can simulate the number of resets for each path. And we
repeat this process for r times to simulate a distribution of
navigation paths and their corresponding resets. Finally, we
take the average resets as the expected F .

To optimize V based on F , the conventional way is to
apply gradient-based numerical optimization. As the evalu-
ation of F is based on statistical simulation, it is infeasible to
compute gradient or any higher-order derivatives. Thus we
employ a stochastic optimization approach similar to simu-
lated annealing [29]. Starting from an initial reset configura-
tion V0, we iteratively update the current configuration
through a stochastic process as follows. We select k reset
directions to update for each iteration. The potential update
is performed by randomly adjusting the reset direction
within a certain range �. Then we perform simulation and
evaluate F to estimate the quality of the update. If the simu-
lation value is less than the current (minimum) resets by a
threshold Tupdate, then we update V and also the minimum
resets. After a specific number (1,000 by default) of itera-
tions, we achieve the optimized reset V�. The optimization
procedure is structured in Algorithms 1 and 2. The setup of
hyper-parameters will be detailed in the next subsection.

Note that to initialize the optimization, we need to pro-
vide an initial reset configuration V0 to start the simulation.
The simplest way to do so is to randomly sample reset
directions in the feasible space, i.e., ffðvi; tiÞ 2 ð0;pÞ. How-
ever, random initialization is very likely to make our opti-
mization fall into a local minimum. It makes more sense to
make the initialization adaptive to the specific RDW algo-
rithm. This makes sense as reset algorithms are always cou-
pled with RDW algorithms. For instance, Reset-To-Center
reset can be employed to initialize reset optimization for
Steer-To-Center RDW algorithm. And our optimization can
further reduce the number of resets from the initialization
(see Section 4).

3.2 Hyper-Parameters in the Optimization

This subsection elaborates the details on setting up the hyper-
parameters in the optimization.

� Threshold of updating parameters (Tupdate): First, we
take the number of resets from the first round of sim-
ulation as the minimum objective function value
Fmin. In each iteration when we simulate the virtual
navigation, if the current number of resets F is less

Fig. 3. The special rare case of boundary collision at concave sharp
point.
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than the current minimum, then we may make
updates according to Tupdate. More specifically, if the
decay of the objective is greater than the threshold,
we update Fmin with F . A larger Tupdate increases the
confidence that the number of (expected) resets
decreases after the update. On the other hand, a
smaller threshold makes the update easier, but the
confidence of reducing resets decreases. This thresh-
old is set to 2 in our experiments.

� Sampled points (NS): There is obviously a linear rela-
tionship between sampled points and resets. The
more points we sample, the more resets take place,
which makes Tupdate more reachable. However,
merely increasing the number of sampled points does
not make the experiment easier. This is because all
sampled points are from the same normal population.
After they are added, the variance accumulates. To
reduce the variance, we have to repeat the simulated
path many times, and take the average as expected
resets. In each simulated path, we sample 1000 points.

� Repetitions of walking (RW ): In practice, we need to
repeat the virtual navigationmany times to reduce the
reset variance and make a good expectation of resets.
The variance will decrease quadratically as the num-
ber of repetitions increases. This value is set to 500.

� Edge interval (IE): Although linear interpolation is
used to calculate the reset direction at an intermedi-
ate point, the optimal reset direction between two
reset endpoints may not behave linearly (especially
when the edge between the two endpoints is not a
straight line but a curve). Reducing the edge interval
can improve the accuracy of the result, because we
can approximate a nonlinear interpolation through
piecewise linear interpolation. However the compu-
tational cost will increase. For the ease of processing,
l is set to 1.

� Number of reset directions updated (Npara): Each time
we randomly choose one or more reset directions to
update. Updating one parameter at a time tends not
to be enough to generate sufficient gradients. That is,
the number of reduced resets will not exceed the
threshold Tupdate. Thus we need to update more
parameters to make an adequate decay. As the opti-
mization goes on, this becomes harder as the current
reset configuration is close to optimum. As a result,
the number of updates needs to grow. In our experi-
ment, the initial k is set to 3, and it increases by 1 for
every 400 iterations.

� Search step (�): Like the gradient descent method, we
need to control the search step size for each iteration.
In our implementation, the search step is the maxi-
mum value of the random angle change of each reset
direction. In the experiment, this value is dynami-
cally set tomaxð10; 55� 5 �NparaÞ.

� Perceptual thresholds: The translation gain is greater
than 0.86, less than 1.26. The rotation gain is greater
than 0.67, less than 1.24, which are the same as sug-
gested in [10]. The radius of curvature is 7.5m and
approximately equals to 1/0.13, where 0.13 is the
curvature gain suggested in [12], corresponding to
an average user walking speed of 1.4m/s[30].

Algorithm 1. Adaptive Reset Optimization

Require: A set of boundary smooth edges E of physical
environment

1: function RESETOPT(E)
2: split E by a set of endpoints P
3: V0 ¼ ;
4: for each reset direction v at p 2 E do
5: v = Reset_Strategy(p)
6: V0 ¼ V0

S fvg
7: end for
8: Fmin = GetAverageResets(V0)
9: for i 1 to RW do
10: for a random Vk, s.t.Vk � V and jVkj ¼ k do
11: for v 2 Vk do
12: v. Rotate(Random(-�=2; �=2))
13: end for
14: F = GetAverageResets(V)
15: if F < Fmin � Tupdate then
16: Fmin  F
17: else
18: Revoke the change in Vk
19: end if
20: end for
21: end for
22: return V
23: end Function

Algorithm 2. Get the Average Resets

Require: A set of reset direction V
1: function GETAVERAGERESETS(V)
2: Average 0
3: for i 1 to RW do
4: Average Average + RandomWalking(V)
5: end for
6: return Average / RW

7: end Function
8: function RANDOMWALKING(V)
9: Initalize the Simulated user U
10: for i 1 toNS do
11: Sample a point p in virtual Environment
12: NextDir p�U.position
13: U.TurnTowards(NextDir=jjNextDirjj)
14: while U.position 6¼ p do
15: U.StepTo(p)
16: if U Collide With Boundary on c then
17: p1;p2  2 Nearest endpoints
18: v1; v2  Reset direction of p1;p2 in V
19: L 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kc� p1k2 þ kc� p2k2

q �1

20: v0  kc� p1kv2 þ kc� p2kv1
21: U.TurnTowards(Lv0)
22: end if
23: end while
24: end for
25: end Function

4 EVALUATION

To evaluate the effectiveness of the algorithm, we conduct
a variety of simulation-based experiments based on widely-
used RDWalgorithms: No-Steering(NS), Steer-to-Center(S2C),
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and Push/Pull Reactive. Following [20], MR2C, R2G, and
SFR2G are used in the experiment as the initial state of our
optimization. Since the T2F algorithm is not as linear as other
algorithms, there may be a sudden change in the position of
the farthest point at some points. Therefore, it does not hold
good interpolation properties(and our algorithm works by
interpolating between two points to represent an algorithm so
that it can be optimized), so we are not planning to add T2F in
our experiments. But it is still valuable for research, and there
will be amore suitable optimizationmethod for it in the future.

Note that SFR2G is different from a regular in-place
method [31], [32], which usually decides the reset direction
right on the spot that the user encounters a collision.
Instead, it takes the point a few steps away in the direction
of the current gradient and resets the user in the gradient
direction of that position. In order to optimize it by our algo-
rithm, we make the following adjustment. We only optimize
the direction of gradient direction on the point hitting an
obstacle in SFR2G. After taking a few steps in that direction,
the user finally selects the gradient direction of the achieved
point as the reset direction. There are cases where we are
not able to take a few steps when performing SFR2G (i.e.,
because the user would collide with another boundary
when following the direction of the reset vector). In this
case, SFR2G will degenerate into R2G, that is, reset the
direction without selecting another point.

In addition, as we test our algorithm in environments
with different layouts composed of obstacles with different
shapes, we may want to see how the size of virtual space
affects the resets. The effect of space size was studied in [33],
as well as those irregular space shapes such as trapezoid- or
L-shaped areas. Usually the size of the virtual environment
is larger than that of the physical environment, however the
extent to which the virtual space is larger than the physical

space also affects the final result. As such, we conduct experi-
ments on 20m�20m and 40m�40m virtual spaces.

To highlight the impact of obstacles for optimization, four
different layouts with obstacles are designed to test different
RDW algorithms (see Figs. 4a-1, 4b-1, 4c-1, 4d-1). And our
testing layouts with reduced walkable space are more chal-
lenging compared with practical cases. The physical environ-
ment is a 10m�10m rectangular space, while the virtual
environments are 20m�20m and 40m�40m obstacle-free
rectangular spaces with fixed borders. No assumption on
navigation is made here, as in practice the user may step to
anywhere that is open in the virtual space. Each environment
has its representative characteristics in the result , and its dif-
ference fromother environments is highlightedwith a variety
of RDW and resetting algorithms. To visualize the optimiza-
tion effect, we chose an algorithm configuration for each
environment, and demonstrate the reset vectors after optimi-
zation (Figs. 4a-2, 4b-2, 4c-2, and d-2) together with the num-
ber of resets during optimization according to the number of
iterations (Fig. 5). Moreover, we perform each RDW method
for each environment, the results are summarized in Table 1,
2, 3, and 4, including the average resets before (Rbefore) and
after (Rafter) optimization, and the reduction rate (Rreduction):
Rreduction ¼ 1�Rafter=Rbefore

We first employ our reset optimization on R2C, R2G for
two reactive RDW algorithms S2C, APF-RDW, respectively.
Two extra experiments are conducted forNo-steering,where
R2C reset is applied for one experiment, and all reset vectors
are perpendicular to the boundary for the other experiment.
For all experiments, we first assign a reset vector at each end-
point according to the original reset strategy (see Fig. 4).
Thenwe perform 1,000 iterations for S2C, P2R, andNo-Steer-
ing in two environments with different obstacle layouts. For
each simulation round of a given reset configuration, we

Fig. 4. The 4 physical environmentswith obstacles, the initial reset vectors(-1) and vectors after optimization(-2) at the boundary reset endpoints. Result
of each environment(-2) demonstrates the vectors optimized from one of the combination of selected redirected algorithm and reset algorithm.
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record the mean resets to form the convergence plot (see
Fig. 5). Since our optimization method is more closed to a
reactive RDW (through a large number of simulations to
reduce average resets), we are yet to apply ourmethod on pre-
dictive or learning-based RDW. But it is important to point
out that ourmethod is capable to copewith those algorithms.

4.1 Experiment Design

4.1.1 Reset Optimization for S2C

In our first environment, there is a 2m�4m rectangular
obstacles on the top middle and a 2m�3m rectangular

obstacles on the bottom left of the physical environment(see
Fig. 4a-1). This environment is almost obstacle-free in the
middle part. As mentioned in [4], S2O outperforms S2C only
for long, straight-line navigation. Otherwise S2C always per-
forms better. In fact, we can onlywalk along a virtual straight
line that is nomore than three times the length of the physical
space at most. Besides, in most cases, the path length
between two consecutive waypoints is far less than that dis-
tance. Therefore, we choose S2C as our first RDW algorithm
to optimize instead of S2O or other algorithms.

We conduct Steer-to-Center for redirected walking, with
MR2C as a heuristic start for our navigation simulation. In

Fig. 5. The convergence plot of resets during optimization for the test environments.X-axis represents number of optimizations, Y -axis represents the
average resets(under 500 simulated walking) under current optimizations. Different environments are applied with different RDWandReset methods.

TABLE 1
The Results for Each RDW Algorithm and Reset Method of Environment 1, the Average Resets of 500 Simulations

Before(columns 3-5) and After(columns 6-8) Optimizations, and the Percentage of Resets Reduced

Virtual Size RDW Alg.
Resets Before Resets After Reduction Rate

MR2C R2G SFR2G MR2C R2G SFR2G MR2C R2G SFR2G

20x20
NS 1193.1 1275.3 1186.6 1089.8 1103.7 1166.2 8.66% 13.46% 1.72%
S2C 1010.1 854.8 844.7 777.2 773.1 844.9 23.06% 9.56% 0.00%
P2R 1113.0 1100.5 1098.9 921.8 902.0 1094.8 17.18% 17.49% 0.52%

40x40
NS 2274.1 2453.1 2260.0 1957.7 1951.4 2150.0 13.91% 20.45% 4.87%
S2C 2300.9 1810.3 1785.0 1487.4 1462.0 1752.8 35.36% 19.24% 1.80%
P2R 2406.9 2272.5 2288.6 1621.5 1838.7 2210.1 32.63% 19.09% 3.43%
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this physical environment, when the user collides with
some points on the boundary of obstacles, it is not possible
to reset to the center because the way from the point to the
center is blocked by other obstacles. In order to deal with
this situation, the reset vector assigned to each endpoint on
the obstacle is perpendicular to it. When all the rectangular
objects in the scene are orthogonal to space, this reset
method is exactly the same as MR2C. For the reset at the
endpoints on the environment boundary, suppose the reset
endpoint is pi, the center of physical environment as o, then
the reset vector at this endpoint is o� pi.

4.1.2 Reset Optimization for P2R

In the second environment, there is a 5m�6m rectangular
obstacles on the bottom middle of the physical environment
(Fig. 4b-1). Unlike Steer-to-Center, we apply Reset-to-Gradi-
ent to the redirected walking by artificial potential fields.
The awkward situation of blocking center in Reset-to-Center

will not happen here. Due to the repulsive force of the
obstacle boundary, the reset vector always points out of the
obstacle boundary.

Due to the characteristics of the artificial potential func-
tion, the closer to the boundary of the obstacle, the greater
the force is received. Given the force is inversely propor-
tional to the distance, we will have infinite force on the
boundary of the obstacle. However, in practice, it is not the
case that the center of the user hits the boundary because
the user has a volume. In the simulation, we treat the user
as a small point without the volume for simplicity. But we
add a correction term d to the repulsion function in the arti-
ficial potential fields to avoid infinite repulsion

UrepulsiveðcÞ ¼
X

O2obstacles

1

kc� pOk þ d
;

where c denotes the current position of the user, pO is its
closest point on the obstacle O, d determines the influence to

TABLE 2
The Results for Each RDW Algorithm and Reset Method of Environment 2, the Average Resets of 500 Simulations

Before(columns 3-5) and After(columns 6-8) Optimizations, and the Percentage of Resets Reduced

Virtual Size RDWAlg.
Resets Before Resets After Reduction Rate

MR2C R2G SFR2G MR2C R2G SFR2G MR2C R2G SFR2G

20x20
NS 1583.8 2417.4 2196.6 1279.7 1323.8 2003.3 19.20% 45.24% 8.80%
S2C 1430.2 1331.4 1282.8 998.9 1005.1 1224.0 30.16% 24.51% 4.58%
P2R 1094.3 1117.4 1147.2 987.1 997.2 1134.1 9.80% 10.76% 1.14%

40x40
NS 3116.2 5176.6 4445.2 2267.2 2346.0 3905.5 27.24% 54.68% 12.14%
S2C 3101.9 2673.4 2531.2 1875.4 1814.2 2242.8 39.54% 32.14% 11.39%
P2R 2140.6 2129.9 2287.8 1895.8 1856.9 2201.5 11.44% 12.82% 3.77%

TABLE 3
The Results for Each RDW Algorithm and Reset Method of Environment 3, the Average Resets of 500 Simulations

Before(columns 3-5) and After(columns 6-8) Optimizations, and the Percentage of Resets Reduced

Virtual Size RDWAlg.
Resets Before Resets After Reduction Rate

MR2C R2G SFR2G MR2C R2G SFR2G MR2C R2G SFR2G

20x20
NS 3059.0 5331.1 5417.2 1464.0 1550.0 1919.9 52.14% 70.93% 64.56%
S2C 3708.8 3646.1 4293.3 1717.9 1594.2 1735.8 53.68% 56.28% 59.57%
P2R 1637.6 2733.5 2895.8 1468.7 1571.9 1785.9 10.31% 42.49% 38.33%

40x40
NS 6271.5 6066.2 14173.0 2698.5 2840.5 3025.8 56.97% 53.17% 78.65%
S2C 5506.7 6973.6 10603.8 3176.0 2863.6 3156.2 42.32% 58.94% 70.24%
P2R 3178.4 5264.3 5743.7 2611.1 2745.9 3578.2 17.85% 47.84% 37.70%

TABLE 4
The Results for Each RDW Algorithm and Reset Method of Environment 4, the Average Resets of 500 Simulations

Before(columns 3-5) and After(columns 6-8) Optimizations, and the Percentage of Resets Reduced

Virtual Size RDWAlg.
Resets Before Resets After Reduction Rate

MR2C R2G SFR2G MR2C R2G SFR2G MR2C R2G SFR2G

20x20
NS 4306.9 3326.1 2938.2 1629.6 1622.2 1930.0 62.16% 51.23% 34.31%
S2C 3734.4 3209.0 3836.7 1750.9 1709.5 1853.4 53.11% 46.73% 51.69%
P2R 2570.3 2525.7 2766.2 1613.3 1639.2 1757.9 37.23% 35.10% 36.45%

40x40
NS 7569.1 9014.8 6840.1 2903.3 2903.9 3360.6 61.64% 67.79% 50.87%
S2C 11243.8 8004.8 10345.3 3505.4 3416.3 3483.0 68.82% 57.32% 66.33%
P2R 5635.1 5169.8 6271.1 2827.29 3020.4 3422.8 49.83% 41.58% 45.42%
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the user when close to one boundary. Here we let d ¼ 0:1,
which is comparable to the radius of a human head. The
direction of the force is from the closest point on the obstacle
to the user.

When the user collideswith an obstacle, the composition of
the forces from all obstacles will be almost perpendicular to
the boundary, as shown in Fig. 4b-1. The problem comes
when the user is restricted in a narrow space bounded by two
opposite boundaries. Then colliding with one boundary will
reset to the other boundary and vice versa, resulting in a
bouncing situation between two boundaries with many
resets.

4.1.3 Reset Optimization For More Complicated

Environment

In order to evaluate our reset optimization as an indepen-
dent algorithm in virtual navigation, we conduct experi-
ments in two more environments (environment 3 as in
Fig. 4c-1 and environment 4 as in Fig. 4d-1).

In environment 3, there are 4 rectangular obstacles in the
area, including a 2m�3m rectangular obstacle at the bottom
left, a 2m�2m square at the center, a 2m�2m square at the
bottom right (1m away from both sides), and a 3m�4m rect-
angular obstacle at the top right (1m away from the right
side). It can be observed that the area is approximately
divided into three rectangular sub-areas by the obstacles. In
environment 4, more complex and irregular boundaries are
designed. It is difficult to identify the number and shape of
sub-areas divided by obstacles in this case. And even being
identified, it is hard to find their geometric centers like that
of a rectangle. The remaining (compared with Sections 4.1.1
and 4.1.2) RDW method NS and reset method SFR2G are
applied in environment 3, and the combination of P2R and
SFR2G are used in environment 4 as we speculate that they
are the most likely to achieve good results.

For environment 4, we design an additional comparative
experiment to see how the edge interval affects the optimi-
zation. Besides the original experiments with parameter 1,
edge intervals of 2 and of 1 (which means every smooth
edge only has 2 endpoints on both ends of the edge) are con-
sidered. As expected, a smaller edge interval should give
better results at the end, because the smaller the edge inter-
val, the more accurate the optimization. And we also expect
the larger edge interval can optimize faster.

4.2 Results

In this sub-section, we perform statistical analysis on the
pre-optimization and post-optimization results of each
environment and the algorithms they use. First, we con-
duct normality analysis, and then use appropriate meth-
ods for comparisons based on the analysis results. In
addition, even if a small part of the samples does not obey
normal distribution, the average value can actually reflect
the performance of the algorithm. This can also be seen in
comparative tests (T-test and Mann-Whitney U-test), and
the p-value obtained by the final statistical analysis is very
small. In the following discussion, we default that the data
in the table conform to the statistical conclusions. On this
basis, we discuss the configuration and optimization effects
of each algorithm.

The optimization result of environment 1 is shown in
Fig. 5a. It can be seen that the number of resets decreases as
the optimization progresses. Fig. 4a-2 shows the reset vectors
at the endpoints after optimization, and Fig. 6 shows a bar
plot of the number of resets before (Mdn = 979.00, IQR = 99,
M = 1014.21, STD = 105.37) and after (Mdn = 778, IQR = 28,
M = 777.60, STD = 21.33) the optimization. We conducted
Kolmogorov-Smirnov tests for 500 times of user walking
simulation, the data after optimization obeys a normal distri-
bution (D ¼ 0:0309; p ¼ 0:714 > 0:05), but the data before
optimization do not (D ¼ 0:185; p < 0:001), so we use
Mann-Whitney U-test and find out there is a significant dif-
ference between the two sets of data (U	0.0,p
0.001).

The optimization result of environment 2 is shown in
Fig. 5b. Similarly, the number of resets decreases dramati-
cally after optimization. Fig. 4b-2 shows the reset vectors at
the endpoints after optimization, and Fig. 6 shows a bar plot
of the number of resets before (Mdn = 1113.5, IQR = 43.25, M
= 1116.39, STD = 35.94) and after (Mdn = 997, IQR = 31.25,
M = 996.93, STD = 23.99) the optimization. We conducted
Kolmogorov-Smirnov tests for 500 times of user walking
simulation before (D ¼ 0:043; p ¼ 0:290 > 0:05) and after
(D ¼ 0:037; p ¼ 0:500 > 0:05) optimization, results show
that they both obey the normal distribution, thus we conduct
T-test for them (tð499Þ ¼ 61:80; p
 0:001).

The optimization result of environment 3 is shown in
Fig. 5c. It largely reduces the number of resets. Fig. 4c-2
shows the reset vectors at the endpoints after optimization,
and Fig. 6 shows a bar plot of the number of resets before
(Mdn = 5414, IQR = 836, M = 5418.93, STD = 625.61) and
after (Mdn = 1909, IQR = 138.25, M = 1921.82, STD = 102.29)
the optimization. We conducted Kolmogorov-Smirnov
tests for 500 times of simulated user walking before
(D ¼ 0:032; p ¼ 0:645 > 0:05) and after (D ¼ 0:054; 0:096 >
0:05) optimization, results show that they both obey the nor-
mal distribution, thus we conduct T-test for them (tð499Þ ¼
123:35; p 	 0).

The optimization of environment 4 is also effective as
shown in Fig. 5d. Fig. 4d-2 shows the reset vectors at the
endpoints after optimization. Fig. 6a shows a bar plot of the
number of resets before (Mdn = 2712, IQR = 371.25, M =
2753.33, STD = 300.03) and after (Mdn = 1748.5, IQR = 54, M
= 1755.21, STD = 69.64) the optimization. We conducted

Fig. 6. The bar plot of resets before and after optimization from Environ-
ment 1 to Environment 4 respectively.
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Kolmogorov-Smirnov tests for 500 times of simulated user
walking before (D ¼ 0:063; p ¼ 0:035 < 0:05) and after
(D ¼ 0:162; p ¼
 0:05) optimization, results show that they
both disobey the normal distribution, thus we conduct
Mann-Whitney U-test and find out there is a significant dif-
ference between the two sets of data(U=215.0,p
0.001)..
Results of additional experiment are in Fig. 7, the interval of
1 got the worst performance compared with 1m and 2m,
but 2m is actually better than 1m.

4.3 Discussion

The results show that the initial reset strategy has a lot of
room for optimization. The number of resets largely reduces
after optimization. By judging the resultant reset vectors,
the differences from initial reset vectors are quite noticeable.
Here we discuss the result for each environment in detail.

4.3.1 Discussion of Environment 1

From the result of environment 1(Fig. 4a-1), it turns out that
all reset vectors point out of the obstacle boundaries. This is
also true for duplicated reset vectors at sharp points.
Although some of them originally point into the obstacle,
they are all free of collision after optimization. The reset vec-
tors on the environment boundary still point to the middle
of the space, but not the exact center.

From Table 1 we can see that the optimization effect is not
as good as other environments. The layout of this environ-
ment is nearly obstacle-free, and the middle part of the envi-
ronment is relatively open, thus MR2C is nearly the best
collision handling solution for all RDW algorithms. In addi-
tion, it can be seen that although SFR2G is better than the
other twomethods at first, there is notmuch room for optimi-
zation. Although the other two methods are not comparable
to SFR2G at first, our method can make them exceed SFR2G.
Also, Table 1 demonstrates that the virtual environment
with a larger size brings more reduction rate, and in the fol-
lowing tablewe can find this conclusion holds formost cases.

4.3.2 Discussion of Environment 2

As shown in the results of environment 2(Fig. 4b-2), the
empty space is narrow on the left and right of the area.

Initially, the reset vectors at the endpoints therein are almost
perpendicular to the boundary, except for the points near
the corner. After optimization, these vectors point to the
outside of this area with more open space.

In addition, the second reset endpoint from the bottom
up on the right boundary of the obstacle does not point out
of the narrow space. Instead, it points to the bottom of that
space. The following formula on expected resets helps us to
understand where this result comes from

Eresets½vjp� ¼
ZZ
ðx;yÞ2L

Gðx; yÞP ðx; yÞdxdy;

where vjp indicates resetting to the direction of vector v
when the user collides with the boundary at point p, L
denotes the physical boundary the user may collide with,
Gðx; yÞ represents the expectation of resets at the point
ðx; yÞ, and P ðx; yÞ is the probability density of the next colli-
sion with ðx; yÞ. Eresets½vjp� denotes the expected value of
the number of resets when applying vector v on point p
during the entire walking simulation (while other vectors of
reset endpoints are fixed).

Take the aforementioned endpoint as an example. After
colliding with this endpoint and resetting, the user may col-
lide with the bottom edge shortly afterwards. Then the
user’s orientation is almost reset to upright, and could walk
into an open space. Assume the vector points to the upper
left, then it bears a high possibility to collide with the left
boundary of the environment. In both cases, it has to go
through one collision to enter the open space. And even
after hitting the left boundary, it may collide with the left
edge of the obstacle again. So for this endpoint, the current
reset direction is not globally optimal, i.e., the optimization
leads to a local minimum. Thus it is reasonable to update
multiple parameters (reset vectors) at once, because doing
so is helpful to jump out of the local minimum. But after
optimization, the reset vectors could be like those in the bot-
tom right space. They are not optimal in a greedy view due
to a foreseeable collision, but are good resets in a long run
statistically.

Table 2 also demonstrates that the optimization performs
better when altering the virtual environment size from
20m�20m to 40m�40m. As the obstacle is larger, the space
is more irregular than environment 1, the overall reduction
rate is greater. Similar to Table 1, SFR2G does not exhibit a
clear advantage in the initial and final resets, while our opti-
mization on SFR2G is still effective.

4.3.3 Discussion of Environment 3 and 4

For environment 3, it may have some kind of weird reset vec-
tors. In environment 1, all vectors pointing inside the obstacle
are finally optimized to point outside the obstacle. In contrast,
some vectors are optimized to pointing inside the obstacles
while it originally pointing outside (Fig. 4c-2). But it is reason-
able for SFR2G. When the user cannot walk forward during
SFR2G, it is equivalent to R2G. If a reset vector points inside
the obstacle, it means our optimization tends to apply R2G
for resetting and face the direction of gradient descent. By
observing Table 3, we can find R2G always performs better
than SFR2G, and this is consistent with our inference. Also
we can find a special case that for the combination of MR2C

Fig. 7. The convergence plot of resets with different edge intervals (1, 2,
and 1) for Environment 4. X-axis represents the number of iterations
during the optimization, Y -axis represents the average resets (over 500
walking simulations).
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and S2C, the reduction rate actually decreaseswhen using the
larger virtual environment. Therefore, the increase of virtual
space does not always have a positive effect on the optimiza-
tion space of the algorithm, which needs to be estimated
based on the combination of RDWalgorithms.

Similar conclusions with environment 3 hold as the
results of environment 4. It can be seen from the final reset
vectors (Fig. 4d-2) that the optimization results guide the
user to the largest empty area in the upper half of the physi-
cal layout, and there is also some reset vectors point inside
the obstacles. The explanation of this phenomenon is the
same as that mentioned when discussing environment 3.
The reduction rates of virtual size 40m�40m are larger than
those of 20m�20m in Table 4, except MR2C with NS, whose
reduction rate is higher than 60% when the virtual size is
20m�20m. Note that SFR2G outperforms another 2 reset
methods in this environment on NS, and is only slightly
worse than MR2C and R2G on P2R. Though SFR2G does
not have the advantage over other methods after optimiza-
tion (same as the previous environment), it still makes
promising improvement. In general, the final result of
SFR2G optimization will generally be slightly worse, which
is also to be expected, because the final reset direction of
SFR2G depends on the surrounding gradient, and the gradi-
ent around a certain boundary point generally only covers a
small range of the angle, while the other two methods can
be arbitrarily optimized within the range of 180 degrees.

The additional experiments (see Fig. 7) verify our under-
standing of the edge interval. Large edge interval results in
worse performance since it cannot precisely control the reset
vector at each position. But for two similar intervals, the
larger one optimizes longer length of the boundary each
time, in this case, the optimization speed increase effect
brought by the length is more significant. And this can
explain why the interval of 2m is better than 1m. Moreover,
there are other factors that affect the optimization potential,
such as it does not always work well that using the same
fixed interval, the position of reset endpoints might be of
great influence to the result. All these factors should be con-
sidered in further study.

5 USER STUDY

5.1 Experiment Design

To evaluate how our optimization works in practice, we also
conducted a user study with the help of human participants.
The users were asked to walk in a 5x5m2 area with a 2x2:5m2

obstacle at the bottom center of the area in our meeting
room, as shown in Fig. 8a. The real obstacle is a little smaller
than the simulated one, and the real boundary is larger than
the simulated one, such that the user could receive a prompt
before hitting the real boundary. This can help to turn the
user around to avoid real collision and possible injury. We
used HTC VIVE HMD, which is suitable for our experiment
in a space of this size. The virtual space size was 20� 20m2.
The object (a blue capsule, as shown in Fig. 8b)was randomly
generated in the virtual space. The user was required to
move towards the object until touching it. Then the object
disappeared and emerged in a new position at least 5m away
from the current position. We used P2R as the RDWmethod
for our irregularly shaped environment. In the user test, we

compared 4 types of reset methods, including 1) our method
after optimization(OPT); 2) Reset to Perpendicular(R2P)
which re-orients the user to the direction that is perpendicu-
lar to the boundary; 3) the mix of R2P and R2C (since R2C
does not work on every boundary, those boundaries that
cannot apply R2Cwere replaced by R2P, and this is the same
as MR2C); and 4) R2G which is the most commonly used in
APF-RDW. SFR2G will not be applied here because the size
of the physical environment may be too constrained to per-
form it. We performed 4 trials on each reset strategy. In each
trial, the user was required to keep moving and touching the
generated object until encountering 10 resets. Then we
recorded the user’s walking distance during the trial. The
values of various gains are the same as those used in the sim-
ulation experiment. Different reset algorithms use the same
parameters except for different reset behaviors. In order to
reduce the experimental deviation caused by mutual influ-
ence between these 4 trails, the order of experiments for these
reset algorithms is random.

We implemented a redirected walking interface in the
VR environment. Whenever the user collides with the phys-
ical boundary, the perspective of the user is set frozen
(Freeze-Turn). There are some texts and arrows to help the
user adjust the direction in order to face the direction that a
certain reset strategy provides. However, the user does not
collide with the real object since the walkable area is larger
than the simulated area, and the user is still able to walk
outside the boundary. Only if the user is inside the simu-
lated area and facing the correct direction, the perspective is
activated. There are 12 participants included, composed of 8
females and 4 males, and about half of them have the expe-
rience of using virtual reality devices. They learned about
this user study through the student work group and depart-
ment group in the communication software, and volun-
teered to participate.

5.2 Result

Fig. 9 shows one of our walking paths using our OPT reset
strategy. The physical path may look shorter because we
doubled the user’s walking distance in the virtual environ-
ment. The results of each reset method of their walking dis-
tance are shown in Fig. 10. We conducted Kolmogorov-
Smirnov Test for 4 groups of results. Each of them fit the nor-
mal distribution (D ¼ 0:173; 0:142; 0:137; 0:190, p ¼ 0:806;

Fig. 8. Physical(a) and virtual(b) environment in the user experiment.
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0:938; 0:954; 0:709 > 0:05). Then the ANOVA test shows
there is a significant difference between the four reset meth-
ods(F(3,44) = 5.49, p< 0.005). T-test shows our optimization
method works better than R2P(t(11)=2.27, p< 0.02), has
advantages over the mix of R2C and R2P(t(11)=1.59,
p< 0.07), and significantly outperform R2G(t(11)=3.76,
p< 0.001). We also ask our subjects to fill Simulator Sickness
Questionnaire(SSQ)[34] before and after the experiment, and
four methods reached similar scores between 3.5 to 4.5, they
all obey the normal distribution (D ¼ 0:215; 0:275; 0:250;
0:258; 0:250; p > 0:27), ANOVA test shows no difference
(F(3,44)=0.13, p> 0.9) between the sickness by 4 reset
strategies.

5.3 Discussion

The user study proves the capability of reducing resets of
our optimization algorithm. We notice the mix of R2C and
R2P method work better than using R2P or R2G only. But in
many situations, we cannot easily tell whether the mix of
certain methods works well in which environment. And
even it works well, our algorithm still possesses an advan-
tage. In the aspect of user experience, our method should
have similar performance with other methods because we
uniformly use the Freeze-Turn method. However, the expe-
rience may also be determined by the resets, more resets
brings more vertigo. Since our methods reduce the resets, it
should provide less sickness during long term walking.

6 CONCLUSION AND FUTURE WORK

In this work, we present a novel optimization algorithm for
redirected walking (RDW) reset in irregular physical space
with obstacles. Inspired by finite element analysis, we discre-
tize the environment and obstacle boundaries, and optimize
reset directions at discrete endpoints while interpolating
directions elsewhere. The optimization is based on virtual
navigation simulation in a stochastic process, and is adaptive
to a given RDW algorithm. We conduct several experiments
with different environment layouts and RDW algorithms.
The results show that our optimization-based reset can signif-
icantly reduce resets in different scenarios, thus largely bene-
fit the existing RDW algorithms. The results also highlight
the choice of different combinations of RDW and resetting
techniques exert a strong influence on the result during finite
iterations of optimization. Theoretically, the in-place method
should have the same optimal solution for reset vectors, how-
ever, due to the stochastic nature of the optimization process

and the difference in optimization speed, different algo-
rithmswill bring differences in the results.

In the future, we would like to further improve the perfor-
mance of our algorithm. The simulation-based optimization
can be very fast. It takes 2-12 seconds to perform one optimi-
zation whenRW ¼ 500 in a 20x20m2 virtual area with a single
3GHz CPU, depending on which RDW algorithm is used for
simulation. Since repetitions of walking are highly paralleliz-
able (we also implemented the multi-core version on CPU,
reducing 38% to 62% of the timewith 2 and 4 cores), our algo-
rithm can be transferred into modern GPU with numerous
cores, significantly reducing the running time. We are also
interested in studying how to further accelerate the simula-
tion based on a pre-trained simulation regressor [35].
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