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High-quality Textured 3D Shape Reconstruction
with Cascaded Fully Convolutional Networks

Zheng-Ning Liu†, Yan-Pei Cao†, Zheng-Fei Kuang, Leif Kobbelt, Shi-Min Hu*

Abstract—We present a learning-based approach to reconstructing high-resolution three-dimensional (3D) shapes with detailed
geometry and high-fidelity textures. Albeit extensively studied, algorithms for 3D reconstruction from multi-view depth-and-color
(RGB-D) scans are still prone to measurement noise and occlusions; limited scanning or capturing angles also often lead to incomplete
reconstructions. Propelled by recent advances in 3D deep learning techniques, in this paper, we introduce a novel computation and
memory efficient cascaded 3D convolutional network architecture, which learns to reconstruct implicit surface representations as well
as the corresponding color information from noisy and imperfect RGB-D maps. The proposed 3D neural network performs
reconstruction in a progressive and coarse-to-fine manner, achieving unprecedented output resolution and fidelity. Meanwhile, an
algorithm for end-to-end training of the proposed cascaded structure is developed. We further introduce Human10, a newly created
dataset containing both detailed and textured full body reconstructions as well as corresponding raw RGB-D scans of 10 subjects.
Qualitative and quantitative experimental results on both synthetic and real-world datasets demonstrate that the presented approach
outperforms existing state-of-the-art work regarding visual quality and accuracy of reconstructed models.

Index Terms—high-fidelity reconstruction, 3D vision, cascaded architecture.
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1 INTRODUCTION

H IGH-quality reconstruction of 3D objects and scenes is
key to 3D environment understanding, mixed reality

applications, as well as the next generation of robotics, and
has been one of the major frontiers of computer vision
and computer graphics research for years [1], [2], [3], [4],
[5]. Meanwhile, the availability of consumer-grade RGB-D
sensors, such as the Microsoft Kinect and the Intel RealSense,
involves more novice users to the process of scanning sur-
rounding 3D environments, opening up the need for robust
reconstruction algorithms which are resilient to errors in the
input data (e.g., noise, distortion, and missing areas).

In spite of recent advances in 3D environment recon-
struction, acquiring high-fidelity 3D shapes with imperfect
data from casual scanning procedures and consumer-level
RGB-D sensors is still a particularly challenging problem.
Since the pioneering KinectFusion work [4], many 3D re-
construction systems, both real-time [1], [6], [7], [8], [9]
and offline [5], have been proposed, which often use a
volumetric representation of the scene geometry, i.e., the
truncated signed distance function (TSDF) [10]. However,
depth measurement acquired by consumer depth cameras
contains a significant amount of noise, plus limited scan-
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ning angles lead to missing areas, making vanilla depth
fusion suffer from blurring surface details and incomplete
geometry. Another line of research [2], [11], [12] focuses on
reconstructing complete geometry from noisy and sparsely-
sampled point clouds, but cannot process point clouds with
a large percentage of missing data and may produce bulging
artifacts.

The wider availability of large-scale 3D model repos-
itories [13], [14] stimulates the development of data-
driven approaches for shape reconstruction and comple-
tion. Assembly-based methods, such as [15], [16], require
carefully segmented 3D databases as input, operate on a few
specific classes of objects, and can only generate shapes with
limited variety. On the other hand, recent deep learning-
based approaches [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27] mostly focus on inferring 3D geometry from
single-view images [18], [19], [21], [22], [24], [25], [26] or
high-level information [20], [27] and often get stuck at
low resolutions (typically 323 voxel resolution) due to high
memory consumption, which is far too low for recovering
geometric details.

In this work, we present a coarse-to-fine approach to
high-fidelity volumetric reconstruction of 3D shapes from
noisy and incomplete inputs using a 3D cascaded fully
convolutional network (3D-CFCN) architecture, which out-
performs state-of-the-art alternatives regarding the resolu-
tion and accuracy of reconstructed models. Our approach
chooses recently introduced octree-based efficient 3D deep
learning data structures [28], [29], [30] as the basic building
block, however, instead of employing a standard single-
stage convolutional neural network (CNN), we propose
to use multi-stage network cascades for detailed shape
information reconstruction, where the object geometry is
predicted and refined progressively via a sequence of sub-
networks. The rationale for choosing the cascaded struc-
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Fig. 1: Illustration of a two-stage 3D-CFCN architecture. Given partial and noisy raw RGB-D scans as input, a fused low-
resolution TSDF-color volume is fed to the stage-1 3D fully convolutional network (3D-FCN), producing an intermediate
representation. Exploiting this intermediate feature, the network then 1) regresses a low-resolution but complete TSDF-
color volume and 2) predicts which volumetric patches should be further refined. For each patch that needs further
refinements, the corresponding block is cropped from a fused high-resolution TSDF-color input, and the stage-2 3D-
FCN uses it to infer a detailed high-resolution local TSDF-color volume, which substitutes the corresponding region in
the aforementioned regressed TSDF-color volume and thus improves the output’s resolution. Note a patch of the global
intermediate representation also flows into stage 2 to provide structure guidance. And lastly, predicted color is blended
with raw RGB images to produce the final texture map. The rightmost column shows the high-quality reconstruction.
Close-ups show accurately reconstructed geometry and appearance details, e.g., wrinkles and texts on clothes. Note the
input scan is fused from 2 viewpoints.

ture is two-fold. First, to predict high-resolution (e.g., 5123,
10243, or even higher) geometry information, one may have
to deploy a deeper 3D neural network, which could signif-
icantly increase memory requirements even using memory-
efficient data representations. Second, by splitting the ge-
ometry inference into multiple stages, we also simplify the
learning tasks, since each sub-network now only needs to
learn to reconstruct 3D shapes at a certain resolution.

Training a cascaded architecture is a nontrivial task,
particularly when octree-based data representations are em-
ployed, where both the structure and the value of the out-
put octree need to be predicted. We thus design the sub-
networks to learn where to refine the 3D space partitioning
of the input volume, and the same information is used to
guide the data propagation between consecutive stages as
well, which makes end-to-end training feasible by avoiding
exhaustively propagating every volume block.

While geometry information provided by high-
resolution shape reconstructions enables applications such
as shape analysis and physical simulation, obtaining correct
geometric shapes is just the beginning step of 3D reconstruc-
tion and modeling; recovering accurate color information
and appearances of 3D shapes is also essential for human
and machine perception. Therefore, based on our cascaded
network architecture, we further introduce an integrated
method for texture reconstruction. Geometry and color in-
formation of target objects are jointly learned for consistency
and efficiency. However, generating high-frequency texture
details remains hard for neural networks even with high
output spatial resolutions, and thus we propose to blend the
predicted color and projective texture maps, thereby leading
to complete texture maps with rich fine details.

The primary contribution of our work is a novel
learning-based, progressive approach for high-accuracy 3D

shape reconstruction from imperfect data, which also comes
with a hybrid method for recovering high-fidelity shape
textures. To train and quantitatively evaluate our model on
real-world 3D shapes, we also contribute a dataset contain-
ing both detailed full body reconstructions and raw RGB-D
scans of 10 subjects. We then conduct careful experiments on
both simulated and real-world datasets, comparing the pro-
posed framework to a variety of state-of-the-art alternatives.
These experiments show that, when dealing with noisy and
incomplete inputs, our approach produces 3D shapes with
significantly higher accuracy and quality than other existing
methods.

Our initial work has been published in the European
Conference on Computer Vision 2018 [31]. In this paper, we
further address the issue of color information reconstruc-
tion, aiming to recover complete and detailed texture maps.
In addition, we provide more quantitative evaluations, in-
cluding more comparisons with state-of-the-art methods
and computational consumption analyses of the proposed
cascaded architecture.

2 RELATED WORK

2.1 3D Shape Reconstruction
There has been a large body of work focused on 3D re-
construction over the past a few decades. We refer the
reader to [32] and [33] for detailed surveys of methods
for reconstructing 3D objects from point clouds and RGB-
D streams, respectively. Here we only summarize the most
relevant previous approaches and categorize them as geo-
metric, assembly-based, and learning-based approaches.

Geometric Approaches. In the presence of sample noise
and missing data, many choose to exploit the smoothness
assumption, which constrains the reconstructed geometry
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to satisfy a certain level of smoothness. Gradient-domain
methods [2], [34], [35] require that the input point clouds be
equipped with (oriented) normals and utilize them to esti-
mate an implicit soft indicator function which discriminates
the interior region from the exterior of a 3D shape. Simi-
larly, [36], [37] use globally supported radial basis functions
(RBFs) to interpolate the surface. On the other hand, a series
of moving least squares (MLS) -based methods [38], [39]
attack 3D reconstruction by fitting the input point clouds
to a spatially varying low-degree polynomial. By assuming
local or global surface smoothness, these approaches, to a
certain extent, are robust to noise, outliers, and missing data.

Sensor visibility is another widely used prior in scan
integration for object and scene reconstruction [10], [40],
which acts as an effective regularizer for structured noise
[41] and can be used to infer empty spaces. For large-scale
indoor scene reconstruction, since the prominent Kinect-
Fusion, plenty of systems [1], [5], [9] have been proposed.
However, they are mostly focused on improving the accu-
racy and robustness of camera tracking in order to obtain a
globally consistent model.

Compared to these methods, we propose to learn natural
3D shape priors from massive training samples for shape
completion and reconstruction, which better explores the 3D
shape space and avoids undesired reconstructed geometries
resulted from hand-crafted priors.

Assembly-based Approaches. Another line of work
assumes that a target object can be described as a compo-
sition of primitive shapes (e.g., planes, cuboids, spheres,
etc.) or known object parts. [42], [43] detect primitives
in input point clouds of CAD models and optimize their
placement as well as the spatial relationship between them
via graph cuts. The method introduced in [44] first interac-
tively segments the input point cloud and then retrieves a
complete and similar 3D model to replace each segment,
while [16] extends this idea by exploiting the contextual
knowledge learned from a scene database to automate the
segmentation as well as improve the accuracy of shape
retrieval. To increase the granularity of the reconstruction
to the object component level, [15] proposes to reassemble
parts from different models, aiming to find the combination
of candidates which conforms the input RGB-D scan best.
Although these approaches can deal with partial input data
and bring in semantic information, 3D models obtained by
them still suffer from the lack of geometric diversity.

Learning-based Approaches. 3D deep neural networks
have achieved impressive results on various tasks [13],
[45], [46], such as 3D shape classification, retrieval, and
segmentation. As for generative tasks, previous research
mostly focuses on inferring 3D shapes from (single-view)
2D images, either with only RGB channels [17], [18], [19],
[20], [21], [22], [23], or with depth information [24], [25],
[26]. While showing promising advances, these techniques
are only capable of generating rough 3D shapes at low
resolutions. Similarly, in [27], [47], shape completion is also
performed on low-resolution voxel grids due to the high
demand of computational resources.

Another series of research focuses on recovering shape
and pose of 3D human body from single [48], [49] or
multiple [50], [51], [52] images. Kanazawa et al. [48] pro-
pose an end-to-end deep learning framework for recov-

ering 3D meshes of human bodies from monocular RGB
images by inferring parameters of the SMPL model [53];
however, SMPL does not have sufficient degrees of freedom
for expressing geometric details such as clothes and hand
poses, thus the results of [48] may suffer from limited
fidelity. Alldieck et al. [50] extend SMPL by introducing per-
vertex offsets to the template mesh, take as input monocu-
lar videos and reconstruct 3D human body models which
allow personalized geometry variations while still restrict
the topology to be the same as SMPL. Varol et al. [49]
predict 3D human body shapes from natural images under a
multi-task learning framework, using volumetric occupancy
maps as 3D representation for the neural network. Trained
on a large synthetic dataset, [49] achieves state-of-the-art
accuracy for body shape estimation, nevertheless its final
outputs are still of limited spatial resolution (up to 1283).
Huang et al. [51] propose to reconstruct 3D probability fields
from a sparse set of calibrated multi-view images and can
produce promising reconstruction results; for each voxel in
the volume, the method associates it with a feature vector
which is fused from the convolutional features of its corre-
sponding pixels on different 2D images, then a probability
of being on the surface is inferred using a classification
network. However, since each voxel is processed separately
and independently in [51], the estimated probability field
(and hence the final surface) does not always guarantee to
be clean and smooth. In contrast, our approach incorporates
both local and global context during reconstruction, thus can
recover consistent geometric structures and details at each
scale. Note that different from aforementioned human body
reconstruction methods, our approach does not assume any
predefined parametric models and thus can be applied to
arbitrary objects.

Aiming to complete and reconstruct 3D shapes at higher
resolutions, [54] proposes a 3D Encoder-Predictor Network
(3D-EPN) to firstly predict a coarse but complete shape
volume and then refine it via an iterative volumetric patch
synthesis process, which copy-pastes voxels from k-nearest-
neighbors to improve the resolution of each predicted patch.
[55] extends 3D-EPN by introducing a local 3D CNN to per-
form patch-level surface refinement. However, these meth-
ods both need separate and time-consuming steps before
local inference, either nearest neighbor queries [54], or 3D
boundary detection [55]. By contrast, our approach only
requires a single forward pass for 3D shape reconstruction
and produces higher-resolution results (e.g., 5123 vs. 1283

or 2563). Inspired by recent image denoising and super-
resolution algorithms, [52] employs a symmetric autoen-
coder for refining probabilistic visual hulls derived from
a sparse set of viewpoints. Nevertheless, to deal with
high-resolution volume data, it chooses to perform the
reconstruction in a sliding window fashion, which is time-
consuming and abandons the global context, making it hard
to complete large holes in the input data. On the other hand,
[29], [56] propose efficient 3D convolutional architectures by
using octree representations, which are designed to decode
high-resolution geometry information from dense interme-
diate features; nevertheless, no volumetric convolutional
encoders and corresponding shape reconstruction architec-
tures are provided. While [3] presents an OctNet-based [28]
end-to-end deep learning framework for depth fusion, it
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refines the intermediate volumetric output globally, which
makes it infeasible for producing reconstruction results at
higher resolutions even with memory-efficient data struc-
tures. Instead, our 3D-CFCN learns to refine output volumes
at the level of local patches, and thus significantly reduces
the memory and computational cost.

2.2 Texture Reconstruction

High-quality texture acquisition plays an equally important
role in 3D reconstruction and is a challenging task when
considering limited number of views, uncontrolled illumi-
nation conditions, and imprecise geometry reconstructions.
Most previous work adopts the projective texture mapping
approach that maps RGB images onto reconstructed geom-
etry. For example, Collet et al. [57] and Orts et al. [58] ap-
ply direct image projection with normal-weighted blending
in their well-controlled lighting environments. In general
cases, Gal et al. [59] minimize visible texture seams between
texture patches via global optimization where compatible
textures are assigned to adjacent triangles. They perform
a multi-label graph-cut optimization and refine the label
under a coarse-to-fine scheme. TextureMontage, proposed by
Zhou et al. [60], partitions the mesh and the images using
feature correspondences, and takes the surface texture in-
painting technique as an additional post-processing step.
Zhou et al. [61] globally optimize the camera poses for all
input images together with non-rigid correction functions,
resolving texture patch misalignments caused by inaccurate
geometry and camera poses. However, the global optimiza-
tion steps involved in above approaches also implies very
long computation time in order of minutes per image. Very
recently, Du et al. [62] introduces Montage4D, a real-time
solution for mutli-view texture blending with per-vertex,
geodesics-guided, and view-dependent weights, reducing
blurring effect and visible texture seams. Nonetheless, it
does not address the issue of insufficient viewing angles.

Image-based Rendering. The image-based rendering
(IBR) technique is becoming an effective way to achieve
view-dependent visual effects such as highlights [63], [64],
[65], [66]. Previous researchers use per-view input infor-
mation, such as per-view geometry and super-pixel over-
segmentation to preserve depth boundaries even with im-
precise 3D reconstructions [67], [68]. View-dependent tex-
ture mapping, which is initially proposed by Debevec et
al. [65], [66], is widely used in IBR systems. They blend
potential source images using angles between the novel
view and source views as blending weights. Eisemann et
al. [67] propose a view-dependent texturing algorithm that
consists of a symbiosis between classical linear interpola-
tion and optical flow-based warping refinement to correct
for local texture misalignments and warping the textures
accordingly in the rendered image domain. Chaurasia et
al. [68] introduce a IBR method which is robust to missing
or unreliable geometry by over-segmenting input images
into super-pixels and improve poorly reconstructed areas
based on a graph structure. In terms of indoor navigation,
Hedman et al. [69] combine indoor-friendly depth sensors
and multi-view stereo for improved reconstruction and
propose a scalable rendering algorithm which uses mesh
simplification and tiling to accelerate free-viewpoint IBR

of indoor scenes. The fidelity of IBR depends critically on
the quality and quantity of images used. In contrast, our
approach can deliver plausible visual effects with only a
few (e.g., 2 or 4) input images.

Learning-based Solutions. Fitzgibbon et al. [70] pose
the problem of novel view synthesis as a learning problem,
optimizing the novel-view image to match the statistics of
example input patches. More recent work [71], [72], [73],
[74], [75] apply CNNs to novel view prediction. Instead of
synthesizing novel views from scratch, Zhou et al. [71] train
a CNN to learn appearance flows, i.e., 2-D coordinate vectors
specifying which pixels in the input view could be used,
to reconstruct the target view. Via a generative completion
network, Park et al. [72] further refine the invisible parts
in the input image after predicting the flow. Hedman et
al. [73] present a deep learning approach to blending for
interactive IBR, where they use the held-out strategy on real
image data to learn blending weights for combining input
photo contributions. Martin-Brualla et al. [74] propose a re-
rendering method that learns to enhance coarse renderings
to high resolution and high quality stereo images for VR
and AR applications. While they design a loss for stereo
consistency, their method cannot extend to full texture at-
las reconstruction. Although promising, these approaches
either suffer from low-resolution results and visual artifacts
or are too computational intensive for real-time applications.
Instead, our method can recover textures in invisible areas
while adding zero overhead during rendering time.

3 METHOD

This section introduces our 3D-CFCN model. We first give a
condensed review of relevant concepts and techniques in
Sec. 3.1. Then we present the proposed architecture and
its corresponding training pipeline in Sec. 3.2 and Sec. 3.3.
Sec. 3.4 summaries the procedure of collecting and gen-
erating the data which we used for training our model.
And finally in Sec. 3.5, details of our texture reconstruction
method are given.

3.1 Preliminaries

3.1.1 Volumetric Representation and Integration

The choice of underlying data representation for fusing
depth measurements is key to high-quality 3D reconstruc-
tion. Approaches varies from point-based representations
[76], [77], 2.5D fields [78], [79], to volumetric methods based
on occupancy maps [80] or implicit surfaces [1], [10]. Among
them, TSDF-based volumetric representations have become
the preferred method due to their ability to model continu-
ous surfaces, efficiency for incremental updates in parallel,
and simplicity for extracting surface interfaces. In this work,
we adopt the definition of TSDF from [4]:

V(p) = Ψ(S(p)), (1)

S(p) =

{
‖p− ∂Ω‖2, if p ∈ Ω
−‖p− ∂Ω‖2, if p ∈ Ωc , (2)

Ψ(η) =

{
min(1, ηµ ) sgn(η), if η ≥ −µ

invalid, otherwise
, (3)
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Fig. 2: Architecture of a two-stage 3D-CFCN. In this case, the network takes a pair of low- and high-resolution (i.e., 1283 and
5123) noisy and incomplete TSDF volume {Vl, Vh} as input, and produces a refined TSDF volume at 5123 voxel resolution.
For conciseness, we only demonstrate the data flow for shape reconstruction in this figure.

where S is the standard signed distance function (SDF)
with Ω being the object volume, and Ψ denotes the trun-
cation function with µ being the corresponding truncation
threshold. The truncation is performed to avoid surface
interference, since in practice during scan fusion, the depth
measurement is only locally reliable due to surface occlu-
sions. In essence, a TSDF obliviously encodes free space,
uncertain measurements, and unknown areas.

Given a set of depth scans at hand, we follow the
approach in [10] to integrate them into a TSDF volume:

V(p) =

∑
wi(p) Vi(p)∑

wi(p)
, (4)

where Vi(p) and wi(p) are the TSDFs and weight functions
from the i-th depth scan, respectively.

3.1.2 OctNet
3D CNNs are a natural choice for operating TSDF volumes
under the end-to-end learning framework. However, the
cubic growth of computational and memory requirements
becomes a fundamental obstacle for training and deploy-
ing 3D neural networks at high resolution. Recently, there
emerges several work [28], [29], [30] that propose to exploit
the sparsity in 3D data and employ octree-based data struc-
tures to reduce the memory consumption, among which we
take OctNet [28] as our basic building block.

In OctNet, features and data are organized in the grid-
octree data structure, which consists of a grid of shallow
octrees with maximum depth 3. The structure of shallow
octrees are encoded as bit strings so that the features and
data of sparse octants can be packed into continuous arrays.
Common operations in convolutional networks (e.g., con-
volution, pooling and unpooling) are defined on the grid-
octree structure correspondingly. Therefore, the computa-
tional and memory cost are significantly reduced, while the
OctNet itself, as a processing module, can be plugged into
most existing 3D CNN architectures transparently. How-
ever, one major limitation of OctNet is that the structure
of grid-octrees is determined by the input data and keeps
fixed during training and inference, which is undesirable for
reconstruction tasks where hole filling and detail refinement
need to be performed. We thus propose a Structure Refine-
ment Module which refines the octree structure on-the-fly
to eliminate this drawback in Sec. 3.2.

3.2 Architecture

Our 3D-CFCN is a cascade of volumetric reconstruction
modules, which are OctNet-based fully convolutional sub-
networks aiming to infer missing surface areas and refine
geometric details. Each module Mi operates at a given
voxel resolution and spatial extent. We find 512 3 voxel
resolution and a corresponding two-stage architecture suffice
to common daily 3D scanning tasks in our experiments,
and thus will concentrate on this architecture in the rest of
the paper; nevertheless, the proposed 3D-CFCN framework
can be easily extended to support arbitrary resolutions and
number of stages. We choose to employ a multi-stage cas-
caded scheme for two main reasons. Firstly, while one could
deploy a single-stage deep 3D neural network to infer high-
resolution shape and color information, the computational
and memory cost would increase drastically even using
memory-efficient data structures, as the network needs to
process the volumetric feature globally at each resolution.
Secondly, we make the learning tasks simpler by dividing
shape and color prediction into multiple stages, as each sub-
network is only responsible for doing reconstruction at a
certain resolution and scale.

In our implementation, for both sub-networks, we adopt
the U-net architecture [81] while substituting convolution
and pooling layers with the corresponding operations from
OctNet. Skip connections are also employed between cor-
responding encoder and decoder layers to make sure the
structures of input volumes are preserved in the inferred
output predictions. To complete the partial input data and
refine its grid-octree structure, we refrain from using Oct-
Net’s unpooling operation and propose a structure refinement
module, which learns to predict whether an octant needs to
be split for recovering finer geometric details. Note that even
if the memory footprint of running a single module using
dense volumetric representation is acceptable, employing
OctNet is crucial to multi-stage joint training, batch train-
ing and inference time efficiency (see Sec 4.5, Table 3 and
Table 4).

The first sub-network, M0, receives the encoded low-
resolution (i.e., 1283) TSDF volume V l (see Sec. 3.4), which is
fused from raw depth scans {Di} of an 3D object S , as input
and produces a feature map F l as well as a reconstructed
TSDF volume Rl at the same resolution. Then for each 163
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Fig. 3: Results gallery of high-accuracy shape reconstruction. Top row: Input scans fused from 2 randomly picked
viewpoints. Second row: Reconstruction results of the first stage of our 3D-CFCN. Third row: Full-resolution reconstruction
results of the two-stage 3D-CFCN architecture. Bottom row: Ground-truth references.

patch F̃ lk of F l, we use a modified structure refinement
module to predict if its corresponding block in Rl needs
further improvement.

If a TSDF patch R̃lk is predicted to be further refined, we
then crop its corresponding 643 patch Ṽ hk from V h, which is
an encoded TSDF volume fused from the same depth scans
{Di}, but at a higher voxel resolution, i.e., 5123. Ṽ hk is next
fed to the second stageM1 to produce a local feature map
F̃hk with increased spatial resolution and reconstruct a more
detailed local 3D patch R̃hk of S . Meanwhile, since input
local TSDF patches {Ṽ hk } may suffer from a large portion of
missing data, we also propagate {F̃ lk} to incorporate global
guidance. More specifically, a propagated F̃ lk is concatenated
with the high-level 3D feature map after the second pooling
layer in M1 (see Fig. 2). Note this extra path, in return,
also helps to refine F l during back propagation. Finally, the
regressed local TSDF patch {R̃hk} is substituted back into the
global TSDF, which can be further used to extract surfaces.

To avoid inconsistency across TSDF patch boundaries,
we add interval overlaps when cropping feature maps and
TSDF volumes. When cropping {F̃ lk}, we expand two more
voxels on each side of the 3D patch, making the actual
resolution of {F̃ lk} grow to 203; similarly, for {Ṽ hk } and
{F̃hk }, we apply 8-voxel overlapping and increase their
resolution to 803. However, when substituting back {R̃hk},
overlapping regions are discarded. So in its essence, this
cropping approach acts as a smart padding scheme. Note

that all local patches are still organized in grid-octrees.
Structure Refinement Module. Since the unpooling op-

eration of OctNet restrains the possibility of refining the
octree structure on-the-fly, inspired by [3], [29], we propose
to replace unpooling layers with a structure refinement
module. Instead of inferring new octree structures implicitly
from reconstructions as in [3], we use 33 convolutional filters
to directly predict from feature maps whether an octant
should be further split. In contrast, OGN [29] predicts three-
state masks using 13 filters followed by three-way softmax.
To determine if a 3D local patch needs to be fed to M1,
we take the average “split score” of all the octants in this
patch and compare it with a confidence threshold ρ (= 0.5).
By employing this adaptive partitioning and propagation
scheme, we achieve high-resolution volumetric reconstruc-
tion while keeping the computational and memory cost to a
minimum level.

3.3 Training
The 3D-CFCN is trained in a supervised fashion on a TSDF
dataset {Fn = {V l, V h, Gl, Gh}} in two phases, where V l

and V h denote the incomplete input TSDFs at low and
high voxel resolution, while Gl and Gh are low- and high-
resolution ground-truth TSDFs, respectively.

In the first phase, M0 is trained alone with a hybrid of
`1, binary cross entropy, and structure loss:

L(θ; V l, Gl) = L`1 + λ1Lbce + λ2Ls. (5)
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The `1 term is designed for TSDF denoising and reconstruc-
tion. Let N represent the output resolution of current stage,
v be a voxel in the volume, and P , G be the predicted and
reference TSDFs, respectively. The `1 loss is then defined as

L`1 =
1

N3

∑
v

|P (v)−G(v)|. (6)

We additionally predict the signs of TSDF entries and em-
ploy an auxiliary binary cross entropy loss Lbce to provide
the network with more guidance for learning shape comple-
tion:

Lbce =
1

N3

∑
v

sgn(G(v)) · log(S(v))+

(1− sgn(G(v))) log(1− S(v)),

(7)

where S is the predicted probability of the TSDF value of
a voxel being positive. In our experiments, we find Lbce
also leads to faster convergence. Our structure refinement
module is learned with Ls, where

Ls =
1

|O|
∑
o∈O

BCE (1− f(o′, Tgt), p(o)) . (8)

Here, O represents the set of octants in the current grid-
octree, and BCE denotes the binary cross entropy. p(o) is
the prediction of whether the octant o should to be split,
while o′ is the corresponding octant of o in the ground-truth
grid-octree structure Tgt (in this case, the structure of Gl).
We define f(o′, Tgt) as an indicator function that identifies
whether o′ exists in Tgt:

f(o′, Tgt) =

{
1, ∃ õ′, such that h(õ′) ≤ h(o′)
0, otherwise

, (9)

where h denotes the height of an octant in the octree.
Furthermore, we employ multi-scale supervision [46],

[82] to alleviate potential gradient vanishing. Specifically,
after each pooling operation, the feature map is concate-
nated with a downsampled input TSDF volume at the
corresponding resolution, and we evaluate the downscaled
hybrid loss at each structure refinement layer.

In the second phase, M1 is trained; at the same time,
M0 is being fine-tuned. To alleviate over-fitting and speed
up the training process, among all the local patches that
are predicted to be fed to M1, we keep only K of them
randomly and discard the rest (we set K = 2 across our
experiments). At this stage, the inferred global structure F̃ lk
flows into M1 to guide the shape completion, while the
refined local features also provide feedbacks and improves
M0. The same strategy, i.e., hybrid loss (see Eq. 5) and
multi-scale supervision, is adopted here when trainingM1

together withM0.

3.4 Training Data Generation
3.4.1 Synthetic Dataset
Our first dataset is built upon the synthetic 3D shape repos-
itory ModelNet40 [13]. We choose a subset of 10 categories,
with 4051 shape instances in total (3245 for training, 806 for
testing). Similar to existing approaches, we set up virtual
cameras around the objects1 and render depth maps, then

1. We place virtual cameras at the vertices of a icosahedron.

simulate the volumetric fusion process [10] to generate
ground-truth TSDFs. To produce noisy and partial training
samples, previous methods [1], [3], [55] add random noise
and holes to the depth maps to mimic sensor noise. How-
ever, synthetic noise reproduced by this approach usually
does not conform real noise distributions. Thus, we instead
implement a synthetic stereo depth camera [83]. Specifically,
we virtually illuminate 3D shapes with a structured light
pattern, which is extracted from Asus XTion sensors using
[84], [85], and apply the PatchMatch Stereo algorithm [86]
to estimate disparities (and hence depth maps) across stereo
speckle images. In this way, the distribution of noise and
missing area in synthesized depth images behaves much
closer to real ones, thus makes the trained network general-
ize better on real-world data. In our experiments, we pick 2
or 4 virtual viewpoints randomly when generating training
samples.

In essence, apart from shape completion, learning volu-
metric depth fusion is to seek a function g({D1, . . . ,Dn})
that maps raw depth scans to a noise free TSDF. Therefore,
to retain information from all input depth scans, we adopt
the histogram-based TSDF representation (TSDF-Hist) pro-
posed in [3] as the encoding of our input training samples.
A 10D smoothed-histogram, which uses 5 bins for negative
and 5 bins for positive distances, with the first and the last
bin reserved for truncated distances, is allocated for each
voxel. The contribution of a depth observation is distributed
linearly between the two closest bins. For outputs, we sim-
ply choose plain 1-dimensional TSDFs as the representation.

Since we employ a cascaded architecture and use multi-
scale supervision during network training, we need to gen-
erate training and ground-truth sample pairs at multiple
resolutions. Specifically, TSDFs at 323, 643, 1283, 2563, and
5123 voxel resolutions are simultaneously generated in our
experiments.

3.4.2 Real-world Dataset
We construct a high-quality dynamic 3D reconstruction
(or, free-viewpoint video, FVV) system similar to [57] and
collect 10 4D sequences of human actions, each capturing a
different subject. Then a total of 9746 frames are randomly
sampled from the sequences and split into training and test
set by the ratio of 4 : 1. We name this dataset as Human102.
For each frame, we fuse 2 or 4 randomly picked raw scans
and obtain the TSDF-Hist encodings of the training sample;
while the ground-truth TSDFs is produced by virtually scan-
ning (see the previous section) the corresponding output
triangle mesh of our FVV system. The sophisticated pipeline
of our FVV system guarantees the quality and accuracy
of the output mesh and texture, however, the design and
details of the FFV system is beyond the scope of this paper.

3.5 Texture Reconstruction

After recovering the geometric models of target objects, we
then reconstruct the corresponding appearance information
to further improve visual realism. One straightforward so-
lution is to directly project observed RGB images onto the
predicted geometry. However, the texture will be incomplete

2. https://lzhengning.github.io/human10/
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due to occlusion and limited number of view points. Also,
imprecise geometry may lead to distorted textures. Simi-
larly, since we aim to reconstruct the shape and appearance
of the target objects from a few (typically, 2 to 4) views, it will
be hard for IBR approaches to produce satisfying results
with such limited quantity of input images. Furthermore,
another limitation of IBR techniques is the use of all in-
put images during rendering time, introducing additional
memory loads for real-time applications. Another solution
could be applying learning-based methods in the image
(or, texture) space. Nonetheless, it would be difficult to
control the parameterization of predicted and ground-truth
meshes to be exactly same such that perceptual [87] or
adversarial [88] losses can be used. Therefore, we propose
to exploit our 3D-CFCN architecture with additional RGB
images to learn the appearance information from data.

Similar to the TSDF-based volumetric representation,
with a set of RGB-D images, the color volume [89] is defined
as :

C(p) =

∑
ωc
i (p)Ci(p)∑
ωc
i (p)

, (10)

where Ci(p), ωci (p) are the color and weight of the corre-
sponding pixel in the i-th input RGB image, respectively.

Instead of predicting color information after obtaining
the predicted geometric shapes, we propose to reconstruct
both geometry and texture information jointly. Considering
that the spatial distribution of the color volume is highly
correlated with the TSDF volume, the end-to-end joint learn-
ing task is easily tractable and also more efficient compared
with the two-step learning scheme. Another motivation for
joint learning is to maintain the consistency between the
geometry and the appearance since they share the same
low-level features and octree structures. To this end, we
introduce an additional color loss term Lc to L for color
prediction, where

L(θ; V l, Gl) = L`1 + λ1Lbce + λ2Ls + λ3Lc (11)

Lc =
1∑
τ(p)

∑
τ(p)‖C(p)− Cgt(p)‖ (12)

τ(p) =

{
1, if − 1 < V(p) < 1
0, otherwise

. (13)

Here τ(p) represents whether a voxel p is close enough to
the surface. In this way, only voxels close to the shell of the
target shape are considered in the color loss function. This
constraint reduces computation on redundant voxels and
avoids the network generating extra occupancy volume to
distinguish black color from empty voxels. We find this con-
straint improves both accuracy and speed during training in
our experiments.

Thus, the input of the network is a 3D volume with n+3
channels (i.e., n-bin Tsdf-hist encoding plus 3 channels for
RGB values), and the output is the predicted TSDF and RGB
values. To produce a colored model, we then extract the
color of each vertex on the reconstructed mesh from the
corresponding color volume. After parameterizing the mesh
via the LSCM algorithm [90], we bake the vertex color to a
texture map.

Texture maps often contain much more fine details
than their corresponding geometric shapes. Although the

designed network is able to recover the low- to middle-
frequency components of the target models’ appearance, it
remains hard to reconstruct high-frequency visual details,
which may lead to blurring effects. Since input RGB im-
ages already provide some appearance information about
the target objects under certain view points, we can blend
input RGB images with predicted color maps for improved
fidelity. One straightforward approach is to directly map
input images onto the predicted 3D shapes with normal
weighted blending, and override the predicted texture.
However, it may lead to visible seams due to the color
inconsistency between predicted and directly observed re-
gions. We address this issue by applying Poisson Blending
algorithm [91] to blend the predicted texture and direct
mapping texture.

4 EXPERIMENTS

We have evaluated our 3D-CFCN architecture on both Mod-
elNet40 and Human10 and compared different aspects of
our approach with other state-of-the-art alternatives.

4.1 High-quality Shape Reconstruction

In our experiments, we train the 3D-CFCN separately on
each dataset for 20 epochs (12 for stage 1, 8 for two stages
jointly), using the ADAM optimizer [92] with 0.0001 learn-
ing rate, which takes ≈ 80 hours to converge. Balancing
weights in Eq. 5 are set to: λ1 = 0.5 and λ2 = 0.1. During
inference, it takes ≈ 3.5 s on average to perform a forward
pass through both stages on a NVIDIA GeForce GTX 1080
Ti. The Marching Cubes algorithm [93] is used to extract
surfaces from output TSDFs. Figs. 1, 3, and 4 illustrate the
high-quality reconstruction results achieved with our 3D-
CFCN architecture.

In Fig. 3 we show a variety of test cases from both
Human10 and ModelNet40 dataset. All the input TSDF-
Hists were fused using depth maps from 2 viewpoints, and
the same TSDF truncation threshold were applied. Despite
the presence of substantial noise and missing data, our
approach was able to reduce the noise and infer the missing
structures, producing clean and detailed reconstructions.
Comparing the second and the third column, for Human10
models, stage 2 of our 3D-CFCN significantly improved
the quality by bringing more geometric details to output
meshes; on the other hand, 1283 voxel resolution suffices
to ModelNet40, thus stage 2 does not show significant
improves in these cases.

4.1.1 Auxiliary Visual Hull Information
In practice, most RGB-D sensors can capture synchronized
depth and color images, which opens up the possibility
of getting auxiliary segmentation masks [94]. Given the
segmentation masks from each view, a corresponding visual
hull [95], which is essentially an occupancy volume, can
be extracted. Visual hulls provide additional information
about the distribution of both occupied and empty spaces,
which is crucial to reliable shape completion. We thus
evaluated the performance of our 3D-CFCN when visual
hull information is available. Towards this goal, we added
corresponding visual hull input branches to both two stages,
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TABLE 1: Quantitative comparisons of shape reconstruction
techniques. Relative Hausdorff RMS distance with respect
to the diagonals of bounding boxes are measured against
the ground-truth triangle meshes. All baseline methods use
input data fused from 2 views.

Method Human10 ModelNet40
PSR 0.0092 0.0620
Hull-constrained PSR 0.0086 0.0388
3D-EPN 0.0263 0.0178
OctNetFusion 0.0040 0.0035
3D-CFCN (2 views) 0.0035 0.0032
3D-CFCN (2 views w/ visual hull) 0.0031 0.0019
3D-CFCN (4 views) 0.0021 0.0010

which are concatenated with intermediate features after
two 33 convolutional layers. Table 1 reports the average
Hausdorff RMS distance between predicted and ground-
truth 3D meshes, showing that using additional visual hull
volumes as input brought a performance gain around 11%.
Both TSDF-Hists and visual hull volumes in this experiment
were generated using 2 viewpoints. Note that we scaled
the models in Human10 to fit into a 33 bounding box. To
further prove the effectiveness of the proposed visual hull
branch, we also compared the reconstruction accuracy of
our approach and hull-constrained PSR [57] (Table 1, second
row), showing the significant advantage of the presented
3D-CFCN architecture.

4.1.2 Number of Viewpoints
Here we evaluated the impact of the completeness of input
TSDF-Hists, i.e., the number of viewpoints used for fusing
raw depth scans, on reconstruction quality. We trained and
tested the 3D-CFCN architecture using TSDF-Hists fused
from 2 and 4 viewpoints, listing the results in Table 1. As
expected, using more depth scans led to increasing accuracy
of output meshes, since input TSDF-Hists were less incom-
plete.

4.1.3 Robustness to Calibration and Tracking Error
Apart from sensor noise, calibration and tracking error is
another major factor that can crack scanned models. To eval-
uate the robustness of the proposed approach to calibration
and tracking error, we added random perturbations (from
2.5% to 10%) to ground-truth camera poses, generated cor-
responding test samples, and predicted the reconstruction
results using 3D-CFCN. As shown in Fig. 5, although the
network has not been trained on samples with calibration
error, it can still infers geometric structures reasonably.

4.2 Texture Reconstruction

In this part, we only consider experiments on Human10
dataset, since ModelNet40 does not provide ground-truth
textures. λc is set to 0.5 in all experiments. Rest experi-
ment settings are the same as the shape reconstruction (see
Sec. 4.1).

We compared our texture reconstruction approach with
naive projective texture mapping, Screened Poisson Surface
Reconstruction [2], PatchMatch [96], and a learning-based
image completion method, i.e. Iizuka et al. [97]. Since the

approach in Iizuka et al. [97] is built upon Generative
Adversarial Networks (GAN) and hence designed to in-
paint natural images, we apply it on re-rendered images,
instead of directly on parameterized texture atlas images.
More specifically, we set up 25 virtual cameras around
the reconstructed subject (with projective texture applied),
render the partial color images and occlusion masks at
each camera view, employ Iizuka et al. [97] (trained on the
Places2 dataset) to complete rendered images, and then re-
compute the final texture map from inpainted color images.
For PatchMatch [96], we also follow the above scheme
to get completed textures, as we find it performs better
than operating directly on parameterized UV space in our
experiments. Compared with Screened Poisson Surface Re-
construction, the proposed 3D-CFCN architecture is able
to reconstruct geometric shapes with better completeness
and accuracy, reducing distortion and ghosting artifacts on
projected textures (see Fig. 6(b,f)). While PatchMatch [96]
is able to fill in missing regions with reasonable colors, it
sometimes fails to inpaint large holes (e.g., see the head and
face regions of the last two subjects in Fig. 6(d)); also, it may
have problems to make predictions around fine structures
(see the regions around the hands and arms of the first
two subjects in Fig. 6(d)). Iizuka et al. [97] fails to infer
large missing regions as well, and it may produce ghosting
effects (e.g., see Fig. 6(e), third, fifth, and seventh row). In
comparison, our approach is able to complete missing areas
with more consistent content.

We further evaluated the effect of texture blending in
Fig. 7. We can observe some texture seams along the
boundary between visible and occluded regions due to
inconsistent resolutions and illumination conditions across
different viewpoints (see Fig. 7(a)). These corresponding
regions present more natural appearance after blending (see
Fig. 7(b)).

In addition, Fig. 8 illustrates the effect of the auxiliary
RGB input and color prediction branch on geometric re-
construction. Comparing shape reconstruction results with
and without RGB inputs, it can be observed that color
information helps to enhance the reconstruction of fine
geometric details (e.g. see the facial regions, bottom opening
and embossed letters on clothes in Fig. 8), as RGB channels
provide complementary high frequency signals while the
color reconstruction branch helps to improve training and
generalization from the multi-task learning perspective.

4.3 Comparison with Existing Learning-based Ap-
proaches

Fig. 4 and Table 1 compare our 3D-CFCN architecture
with three learning-based state-of-the-art alternatives for 3D
shape reconstruction, i.e., OctNetFusion [3], 3D-EPN [54],
and OGN [29], as well as the widely used geometric method
Poisson surface reconstruction (PSR) [2].

OctNetFusion. Similar to our approach, OctNetFusion
adopts OctNet as the building block and learns to denoise
and complete input TSDFs in a multi-stage manner. How-
ever, each stage in OctNetFusion is designed to take an up-
sampled TSDF and refine it globally (i.e., each stage needs to
process all the octants in the grid-octree at the current resolu-
tion), making it infeasible to reconstruct 3D shape at higher
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(a) (b) (c) (d) (e) (f)

Fig. 4: Comparison of our shape reconstruction results with other state-of-the-art alternatives. (a): Input scans. (b): PSR [2].
(c): 3D-EPN [54]. (d): OctNetFusion [3]. (e): Ours. (f): Ground-truth references. Note the bulging artifacts on PSR’s results.

(a) (b) (c) (d)

Fig. 5: Reconstruction results of the proposed 3D-CFCN
under different levels of calibration error. (a): No error. (b):
2.5%. (c): 5%. (d): 10%.

resolutions, as learning at higher resolutions (e.g., 5123) not
only increases the memory cost at input and output layers,
but also requires deeper network structures, which further
challenges the limited computational resource. Fig. 4 and
Table 1 summarize the comparison of our reconstruction
results at 5123 voxel resolution with OctNetFusion’s results
at 2563.

3D-EPN. Without using octree-based data structures,
3D-EPN employs a hybrid approach, which first completes
the input model at a low resolution (323) via a 3D CNN and
then uses voxels from similar high-resolution models in the
database to produce output distance volumes at 1283 voxel
resolution. However, as shown in Fig. 4, while being able to
infer the overall shape of input models, this approach fails to
recover fine geometric details due to the limited resolution.

OGN. As another relevant work to our 3D-CFCN ar-
chitecture, OGN is a octree-based convolutional decoder.
Although scales well to high resolution outputs, it remains
challenging to recover accurate and detailed geometry infor-
mation from encoded shape features via only deconvolution
operations. To compare our approach with OGN, we trained
the proposed 3D-CFCN on Human10 dataset to predict
occupancy volumes, extracted 323 intermediate feature from

TABLE 2: Quantitative comparisons of occupancy recon-
struction. We use average Hamming distance to measure
the reconstruction accuracy, since the outputs are binary
occupancy volumes. Our approach performs better than
OGN on both dataset.

Method Human10 ModelNet40
OGN (2 views) 0.1862 0.1391
OGN (4 views) 0.0844 0.0439
3D-CFCN (2 views) 0.0084 0.0019
3D-CFCN (4 views) 0.0033 0.0010

the stage-1 3D FCN of our architecture, and used these fea-
ture maps to train an OGN. Fig. 9 compares the occupancy
maps decoded by OGN with the corresponding occupancy
volumes predicted by the proposed 3D-CFCN (both at 5123

resolution), showing that our method performs significantly
better than OGN with respect to fidelity and accuracy.
Table 2 summarizes the results of quantitative comparisons
between OGN and 3D-CFCN.

4.4 Generalization Ability
In Fig. 10, we demonstrate the reconstruction results of
our approach on human scans that were not included in
Human10. Per-vertex color predicted using 3D-CFCN is
used in Fig. 10(c) for better evaluation of the behavior of
the proposed network architecture. As shown in the figure,
our approach generalize well on unseen data.

4.5 Computational Efficiency
Table 3 and Table 4 compare the runtime and memory
consumption for OctNetFusion, OGN and the proposed
3D-CFCN at different output resolutions. We performed
the experiment with batch size 1, and the iteration time
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Fig. 6: Comparison of our texture reconstruction results with alternative approaches. Inset boxes highlight artifacts or
details on reconstructed 3D models. (a): Input scans. (b): Screened PSR [2]. (c): Geometric shapes predicted using 3D-
CFCN, textured with projective mapping. (d): Textured with projective mapping, inpainted using PatchMatch [96]. (e):
Textured with projective mapping, inpainted using Iizuka et al. [97] (f): Our results. (g) Ground-truth references. The first
row of each subject is fused from 2 views while the second row is fused from 4 views. Note that black regions in (c) indicate
occluded areas in input views.
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Fig. 7: Effect of texture blending. (a): Without blending.
(b): With Poisson blending. Inset boxes highlight details on
reconstructed models.

Fig. 8: Improved shape reconstruction with the auxiliary
color prediction task. (a) Results without color reconstruc-
tion loss. (b) Results with color reconstruction loss. Inset
boxes highlight the improvements (lower boxes visualize
the normal direction).

Fig. 9: Comparison with OGN. (a): Occupancy maps recon-
structed by 3D-CFCN. (b): Occupancy maps decoded by
OGN, using features learned by 3D-CFCN.

Fig. 10: Generalization ability of 3D-CFCN on unseen data.
(a): Input scans (fused from 2 viewpoints). (b): Geometric
shapes predicted using 3D-CFCN. (c): Jointly reconstructed
shape and color using 3D-CFCN. (d): Ground-truth refer-
ences.

TABLE 3: Iteration time (s) at training stage. 3D-CFCN (C)
predicts both TSDF and color volumes while 3D-CFCN (O)
predicts occupancy maps.

Method 1283 2563 5123 10243

OctNetFusion 0.42 0.99 n/a n/a
3D-CFCN 0.63 1.31 3.14 5.81
OGN 0.09 0.20 1.32 7.03
3D-CFCN (O) 0.41 0.81 1.45 2.72
3D-CFCN (C) 1.02 1.63 4.98 8.10

considers both forward and backward passes. For a fair
comparison, when comparing with OGN, we trained our
3D-CFCN to predict occupancy maps (i.e., 3D-CFCN (O)).
Note OctNetFusion networks for 5123 or higher resolutions
cannot be fitted into a single GPU. While both 3D-CFCN
and OGN scale well for high resolutions, our approach
performs much faster forward and backward passes than
OGN at the highest resolution. Although training 3D-CFCN
for joint shape and color prediction (i.e., 3D-CFCN (C))
introduces noticeable extra cost, the growth of the overall
memory footprint and computation time of our method
keeps sublinear.

5 CONCLUSION AND DISCUSSION

We have presented a cascaded 3D convolutional network
architecture for efficient and high-fidelity shape and texture
reconstruction at high resolutions. Our approach refines the
volumetric representations of partial and noisy input mod-
els in a progressive and adaptive manner, which substan-
tially simplifies the learning task and reduces computational
cost. Experimental results demonstrate that the proposed
method can produce high-quality reconstructions with ac-
curate geometric details and visually plausible textures.
We also believe that extending the proposed approach to
reconstructing dynamic sequences is a promising direction.

Limitations. One limitation of the proposed hybrid
textured shape reconstruction approach is that although it
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TABLE 4: Memory comsuption (GB) at training stage. 3D-
CFCN (C) predicts both TSDF and color volumes while 3D-
CFCN (O) predicts occupancy maps.

Method 1283 2563 5123 10243

OctNetFusion 0.72 1.58 n/a n/a
3D-CFCN 2.05 2.16 3.59 6.48
OGN 0.39 0.45 0.75 2.74
3D-CFCN (O) 1.26 1.63 2.28 3.49
3D-CFCN (C) 2.22 2.76 4.43 7.89

can produce overall high-fidelity reconstructions, in large
occluded regions, inferred textures at lower resolution may
still cause noticeable blurring artifacts (see Fig. 7(b), first
row). To reduce the blurring effect, we could design the net-
work architecture to predict geometric shapes and textures
at different spatial resolutions (e.g., appending more cas-
cades for color refinement). Also, predicting color gradients
instead of values could help to reduce the solution space
and thus improve color reconstruction. Besides, we do not
set constraints when blending textures across seams, which
may lead to visible texture seams in some cases.
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