
A Robust Divide and Conquer Algorithm for
Progressive Medial Axes of Planar Shapes

Yong-Jin Liu,Member, IEEE, Cheng-Chi Yu, Min-Jing Yu, Kai Tang, and Deok-Soo Kim

Abstract—The medial axis is an important shape representation that finds a wide range of applications in shape analysis. For large-

scale shapes of high resolution, a progressive medial axis representation that starts with the lowest resolution and gradually adds more

details is desired. In this paper, we propose a fast and robust geometric algorithm that computes progressive medial axes of a large-

scale planar shape. The key ingredient of our method is a novel structural analysis of merging medial axes of two planar shapes along a

shared boundary. Our method is robust by separating the analysis of topological structure from numerical computation. Our method is

also fast and we show that the time complexity of merging two medial axes is Oðn lognvÞ, where n is the number of total boundary

generators, nv is strictly smaller than n and behaves as a small constant in all our experiments. Experiments on large-scale polygonal

data and comparison with state-of-the-art methods show the efficiency and effectiveness of the proposed method.

Index Terms—Progressive medial axes, shape hierarchy and evolution, topology-oriented algorithm, divide and conquer algorithm

Ç

1 INTRODUCTION

THE medial axis is the locus of all points that have at least
two closest points on the shape boundary. After it was

first introduced in 1960s, the medial axis has found rich
applications in a great diversity of disciplines [1], such as
free-form shape design and animation in computer
graphics, motion planning in robotics, shape analysis and
recognition in computer vision, data compression in image
processing, tool path generation and finite element mesh
generation in CAD/CAM, etc.

Nowadays, large-scale shape data of high resolution is
emerging. For example, in the topographical data of U.S.
geological survey, the boundary of each polygonal shape
of six continents has more than 100 K vertices (Fig. 1 and
Table 2). Although many classic and state-of-the-art
medial axis computation methods had been proposed
(e.g., [2], [3], [4], [5], [6], [7]), two challenges still exist.
First, serious degenerate cases frequently appear in large-
scale data. Therefore a robust yet fast geometric algorithm
is needed. Secondly, it often takes a long time to compute
the medial axis of a large-scale planar shape. Users usually
cannot wait for a long time until the result suddenly
appears. Therefore, a progressive medial axis representa-
tion is much desired.

In this paper, we propose a fast and robust geometric
algorithm that computes progressive medial axes of a large-
scale planar shape. The key ingredient of our method is a
topology-oriented algorithm that merges medial axes of
two planar shapes along a shared boundary. Our method
can work with any third-party shape decomposition meth-
ods as long as the resulting sub-shapes share some bound-
aries and their interiors do not intersect. In particular, we
offer the following two contributions in this paper.

The first contribution is that our method can quickly and
robustly compute the medial axis of a large-scale shape.
Notably there are three classes of robust geometric algo-
rithms in literature. The first class is the exact computation
that uses either modular or multi-precision integer to obtain
correct geometric predicates [8]. However, the implementa-
tion of exact computation is usually sophisticated and its
performance is very time consuming. For example, for the
large-scale polygonal shape with 204,545 vertices (Fig. 1), a
state-of-the-art implementation of exact computation in
Computational Geometry Algorithm Library1 (CGAL) using
CORE::Expr as the predicate kernel [9] runs for more than
one week and still cannot output its medial axis. The second
class uses floating-point filters (FPF) based on an analysis of
numerical error bounds (e.g., [10], [11]). This class ofmethods
compute the predicates first in floating arithmetic. Onlywhen
the result is unreliable, exact arithmetic is used secondly. For
the same large-scale shape in Fig. 1, an implementation of a
floating-point filter method in CGAL [7] runs 5.4 hours to
obtain its medial axis. The third class is the topology-oriented
method [12], [13], [14]. In this class of methods, the basic part
of a geometric algorithm is described in terms of combinato-
rial and topological computation primarily, and numerical
computation that is compatible with the topological structure
is used as second information. To our best knowledge, our
proposed method is the first topology-oriented method for

� Y.J. Liu, C.C. Yu and M.J. Yu are with the TNList, the Department of
Computer Science and Technology, Tsinghua University, Beijing, China.
E-mail: liuyongjin@tsinghua.edu.cn, yccbupt@gmail.com,
yumj14@mails.tsinghua.edu.cn.

� K. Tang is with the Department of Mechanical and Aerospace Engineering,
The Hong Kong University of Science and Technology, Hong Kong, China.
E-mail: mektang@ust.hk.

� D.S. Kim is with the Voronoi Diagram Research Center and School of
Mechanical Engineering, Hanyang University, Seoul, Korea.
E-mail: dskim@hanyang.ac.kr.

Manuscript received 21 Apr. 2015; revised 12 Oct. 2015; accepted 13 Dec.
2015. Date of publication 23 Dec. 2015; date of current version 17 Oct. 2016.
Recommended for acceptance by M. Botsch.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2015.2511739 1. https://www.cgal.org/

2522 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 12, DECEMBER 2016

1077-2626� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

computing the medial axis. For the same shape in Fig. 1, our
method takes only 14.8 minutes2 to obtain the result. More
experiments are presented in Section 6 and results show the
efficiency of ourmethod.

The second contribution is that we propose a progressive
medial axis representation of large-scale shapes. For a large-
scale shape with hundreds of thousands of vertices, state-of-
the-art algorithms may take a long time to compute its
medial axis (e.g., at least 14.8 minutes to compute the medial
axis of the shape in Fig. 1). That means, a user has to wait for
a long time until the result suddenly appears. To improve
users’ experience, we first decompose the original large-scale
shape using any third-party decomposition methods (e.g.,
contour evolution [15] or segmentation-based decomposi-
tion [16]). Then starting from the most simplified shape such
as a triangle, we compute its medial axis and progressively
update the medial axis in a refinement process (Fig. 1). Dur-
ing the refinement process, a user can at any time view a
progressive refinement of both the shape and its medial axis
on-the-fly. Two progressive methods, 2D region growing
and 1D boundary evolution, are proposed in this paper.

2 PRELIMINARIES

For a set X, denote by jXj, X, X
�
and @X, respectively, the

cardinality, closure, interior and boundary of X. In this

paper, a shape V is a bounded, connected open set in R2

and its boundary @V ¼ V nV consists of a finite number of
mutually disjoint simple closed curves. Each closed curve
consists of a finite number of real analytic curve segments.

In @V, the simple closed curve that bounds the

unbounded, connected component in R2 nV is called the
outer loop of V, and the remaining curves in @V are called
the inner loops. The number h of inner loops is called the
genus of V (we also say V has h holes). A shape V is simple
if it has no holes; otherwise it is multiply connected.

The segments in each loop of @V are oriented if when
walking from their starting points to end points, the interior
of V always lies to the left side. For each loop, its constitut-
ing segments are separated by vertices where the unit tan-
gent vector field of the loop can be discontinuous. A vertex
is called reflex if its interior angle is larger than p. Otherwise,
the vertex is called convex.

Definition 1. A shape boundary @V consists of edges and reflex
vertices. An edge can be either linear or non-linear. A non-linear
edge is called general if it is not a circular arc. The point of local
positive maximal curvature in a general non-linear edge can
only occur at the endpoint of that edge. Each of edges and reflex
vertices is parameterized in the domain ð0; 1Þ, where edges are
based on a usual arc-length parameterization while reflex verti-
ces are based on the angle range spanned by two inward unit
normal vectors of two incident edges at that vertex (Fig. 2).

When a polygon is represented by one or more B-spline
curves, by Definition 1, the B-spline curves are separated at
points of local positive maximal curvature and decomposed
into a set of non-linear edges.

For any point x 2 V, denote by LðxÞ the set of closest
boundary points of x, i.e., LðxÞ ¼ fp 2 @V : distðx; pÞ ¼
distðx; @VÞg, where distðx; @VÞ is the minimal Euclidean
distance between x and @V.

Definition 2. The medial axisMðVÞ of V is the set of points in V
which has at least two closest boundary points:

MðVÞ ¼ fx 2 V : LðxÞ contains at least two distinct pointsg

Elements in MðVÞ are called medial points. If LðxÞ is count-
able and jLðxÞj � 3, x is called a branch point of degree
jLðxÞj. A branch point is regular if its degree is three, other-
wise it is irregular.

An open disk D � V is said to be maximal if every disk in
V that containsD equalsD.

Definition 3. The skeleton SkðVÞ of V is the set of centers of
maximal disks in V.

Fig. 1. Progressive medial axes of a large-scale polygonal shape for the Africa model. The original polygon has 204,545 vertices. To compute its
medial axis, the exact computation in CGAL runs more than one week and still cannot output the result. The floating-point filter implementation in
CGAL takes 5.4 hours. As a comparison, our topology-oriented method only takes 14.8 minutes. All the results are obtained on a PC (Intel(R) Core
(TM) I7920 CPU 2.67GHz). Due to limited resolution, Only polygons with 3, 20, 100, 500, and 4,076 vertices are illustrated. At any time during the
process, a user can view a progressive medial axis on-the-fly and has a better user experience.

Fig. 2. The parameterization of a reflex vertex v. e1 and e2 are two inci-
dent edges of v. The shaded area is inside the shape V. n1 and n2 are
normal vertices of two incident edges at v respectively. In the predefined
orientation of @V, e1 is before v and e2 is after v. The angle between n1

(or n2) and x axis is a1 (or a2). The parameter domain ð0; 1Þ of v is
mapped to the unit vectors, where u ¼ 0 corresponds to n1, u ¼ 1 to n2,
and u 2 ð0; 1Þ to the vector indicated by ð1� uÞa1 þ ua2.

2. There are totally 2,034,175 critical points appeared in separators
and 6,102,525 updates in mating generator lists in our algorithm; see
Sections 3-6 for details.

LIU ETAL.: A ROBUST DIVIDE AND CONQUER ALGORITHM FOR PROGRESSIVE MEDIAL AXES OF PLANAR SHAPES 2523

SkðVÞ is different from MðVÞ only at some skeleton
points whose closest boundary points are isolated points
of positive maximal curvature or convex vertices. It was

shown that MðVÞ � SkðVÞ and MðVÞ ¼ SkðVÞ (page 383
in [17]), and two examples are illustrated in the supple-
mental material.

MðVÞ is a connected planar graph with finitely many ver-
tices and edges, as long as there are finitely many edges and

reflex vertices in @V [18]. We call an edge in MðVÞ a medial
curve, which is a single trimmed bisector of two generators:

� For any two generators from points, line segments
and circular arcs, their bisector is just a line or a
conic arc [19].

� The bisector of a point and a polynomial (or rational)
curve segment can be parameterized exactly in a
rational B�ezier form [20].

� The bisector of two polynomial (or rational) curve
segments other than conics does not in general admit
exact parametrization. Procedures for computing
ordered sequences of discrete data to approximate
the true bisector with any prescribed tolerance were
proposed in [2], [21], [22].

In Sections 3 to 5, a shape V is assumed to be simple. If V
is not simple, an augmented domain technique [3] is intro-
duced in Section 5.3 to convert V into a simple shape.

3 OVERVIEW OF THE PROPOSED METHOD

Given a large-scale shape V, let V ¼ fV1;V2; . . . ;Vmg be a
shape decomposition by any third-party methods, such that

V ¼ [m
j¼1Vj and Vj

�
\ V

�

k
¼ ? , j 6¼ k. Then the intermediate

shapes [i
j¼1Vj, i ¼ 1; 2; . . . ;m, provide a progressive shape

representation of V. Our method is designed to quickly and

robustly computeMð[i
j¼1VjÞ in a local updating fashion.

A key observation is that if two subshapes [i
j¼1Vj and

Viþ1 always share some boundaries and their interiors do
not intersect, then the change of medial axes by merging two
subshapes is local around the shared boundary (Figs. 3b and
3c). We extend our preliminary work on dynamic medial
axes [23] and propose a symbolic representation called mat-
ing generator list to characterize the topological structure of
medial axis (Section 4). We show that for merging medial
axes, this topological representation can separate combinato-
rial structure updating from numerical computation, and
thus a topology-oriented robust implementation is feasible
(Section 5). Finally two progressive methods based on third-
party shape decompositions are presented (Section 6).

4 MATING RELATION IN MEDIAL AXIS

Our topological structure analysis for merging medial axes
along shared boundary relies on a mating relation as
defined below. To ease reading, the proofs of main results
are presented in the appendix.

Definition 4. Two points p and q in @V are said to mate to each
other if there exists an x 2 MðVÞ such that fp; qg � LðxÞ. x
is called the medial point of the mating pair fp; qg and p is
called a mating point3 of q. Denote the set of mating points of q
as mateðqÞ. If there is only one point p in mateðqÞ, we also
write p ¼ mateðqÞ. If mateðqÞ contains more than one point
in a circular arc Carc, all these mating points in Carc are
treated as a single point Carc.

Definition 5. Let E be an edge or a reflex vertex in @V. E is
called a generator if the mating points of E contains at least
one point not in E.

If the mating points of a circular arc Carc in @V are Carc

itself only, by Definition 5, this circular arc Carc is no longer
a generator. By Definition 1, the point of local positive maxi-
mal curvature cannot occur inside a generator. Then the
mating points corresponding to a medial point in MðVÞ
always belong to different generators in @V [1].

Definition 6. Let G be a generator in @V. A continuous portion
a ¼ ½v1; v2� defined in the parameter domain ð0; 1Þ of G is
called a maximum mating interval (MMI) on G, if

1) the mating points mateðGðuÞÞ, u 2 ½v1; v2�, belong to
a same generator G0, G0 6¼ G, and

2) for any sufficiently small value " > 0, the mating
pointsmateðGðuÞÞ, u 2 ½v1 � "; v2� or u 2 ½v1; v2 þ "�,
lie in at least two different generators G0 and G00.

Denote by mateðaÞ the set of mating points on G0 of an
MMI a on G.

Fig. 4 illustrates Definition 6. A simple argument can
show that mateðaÞ of an MMI a must also be an MMI on
another generator G0.

Definition 7. For an MMI a on G, let a0 ¼ mateðaÞ be an MMI
on G0. a0 is called a mating MMI of a andG0 is called a mating
generator of G. Furthermore, fa;a0g and fG;G0g are called a
mating pair of MMIs and generators, respectively.

Lemma 1. Suppose that V is simple. On a mating pair of genera-
tors fG;G0g, there exists exactly one mating pair of MMIs.

Fig. 3. When two sub-shapes (a) merged into one ðV1 [V2Þ by removing
the shared boundary, compared to the union of two medial axes of sub-
shapes (b), the medial axis of the merged shape (c) is changed locally
inside the shaded area in (b).

Fig. 4. A maximummating interval (shown in red) a onG and itsmateðaÞ
(shown in blue) on G0.

3. The mating point relation needs not to be a one-to-one mapping.
E.g., corresponding to a branch point, a boundary point has two or
more mating points. In [1], the mating point is called the medial invo-
lute. In this paper, we use consistent notations of mating points, mating
intervals and mating generators.

2524 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 12, DECEMBER 2016

By Lemma 1, a mating pair of generators fGi;Gjg can
correspond to only one medial curve and we denote it by
mij ¼ mðGi;GjÞ.

A consequence of Lemma 1 is the preservation of
inverse ordering of mating generators with respect to
their ordering on @V. We first define an in-front relation
that induces an ordering on the generators in @V. Let a, b
and c be three distinct points in @V with a consistent ori-
entation as specified in Section 2. Point b is said to be in
front of c with respect to a, denoted as b �a c, if when one
starting at a walks along the loop with a predefined orien-
tation, point b is encountered before c. Further, if points a,
b and c lie on three distinct generators Ga, Gb and Gc,
respectively, then Gb is said to be in front of Gc with
respect to Ga, denoted as Gb �Ga Gc.

Definition 8. Let fa1;a2; . . . ;arg be the set of ascending
ordered MMIs with respect to the parameter u on a generator
GðuÞ and fGm1

; Gm2
; . . . ; Gmrg be the mating generators

that correspond to fa1;a2; . . . ;arg. Induced from the order in
fa1;a2; . . . ;arg, the list FðGÞ ¼ fGm1

; Gm2
; . . . ; Gmrg is

also ordered (reversely in the second subscript). We call
FðGÞ the mating generator list of G.

Fig. 5 illustrates a mating generator list FðGÞ.
Lemma 2. Gi 2 FðGjÞ if and only if Gj 2 FðGiÞ.
Lemma 3. Let G be a generator in a simple shape V. All the gen-

erators in FðGÞ are distinct.
Lemma 4 (Inverse order preservation lemma). Let the

generators of a simple shape V be ordered using the in-
front relation with respect to a generator G, i.e., G1 �G

G2 �G 	 	 	 �G Gn. In the mating generator list FðGÞ ¼
fGm1

; Gm2
; . . . ; Gmrg, Gmj

�G Gmi
, i; j
 r
 n, if and

only if j > i.

For a simple shape V with ordered generators G1 �G

G2 �G 	 	 	 �G Gn, we symbolically represent MðVÞ by

FðVÞ ¼ fFðG1Þ;FðG2Þ; . . . ;FðGnÞg. FðVÞ is a topological
description of MðVÞ and give a solution to a topology-
oriented implementation in Section 5 for robustly comput-
ing the medial axis. A simple example is presented below.

A simple topology-oriented branch point identification
is illustrated in Fig. 6: if G2 follows G3 in FðG1Þ (i.e.,
fG3; G2g � FðG1Þ), then there must be a branch point as
the intersection of two medial curves mðG1; G3Þ and
mðG1; G2Þ. The degree of this branch point can be quickly
determined by investigating FðG2Þ or FðG3Þ. If
G3 2 FðG2Þ (or G2 2 FðG3Þ), then the degree must be
three. Note that the three intersection points mðG1; G2Þ

T
mðG1; G3Þ, mðG1; G2Þ

T
mðG2; G3Þ and mðG1; G3Þ

T
mðG2; G3Þ, are very likely to be different due to numerical
imprecision. For a topology-consistent answer, these three
different intersection points all pertain to the same regu-
lar branch point that can be represented by their arithme-
tic average.

Given a triangle~, it is easy to specify Fð~Þ. Let G1 �G1

G2 �G1
G3 be three ordered boundary generators of a trian-

gle. Then FðG1Þ ¼ fG3; G2g, FðG2Þ ¼ fG1; G3g and FðG3Þ ¼
fG2; G1g. Starting from triangles, we apply the topology-
oriented merging method presented in the next section to
computeMðVÞ.

5 TOPOLOGY-ORIENTED MERGING

OF MEDIAL AXES

Let V1 and V2 be two sub-shapes that touch each other at a

shared boundary C ¼ @V1

T
@V2 6¼ ;, V1

� T
V2

�
¼ ;. In this

paper, C is called a separator and we consider the case that
C is a simple open curve, that is, C is not self-intersecting
and can be parameterized over the interval u ¼ ð0; 1Þ by a
one-to-one mapping function CðuÞ (Fig. 7 left).

Denote one endpoint of C by vC . Without loss of gener-
ality, assume vC initially having parameter u ¼ 1. To
obtain MðV1

S
V2Þ, we shrink C by moving vC from Cð1Þ

to Cð0Þ. Let VðuÞ symbolize the shape in which the posi-
tion of moving vC is specified by the parameter u,
0 < u < 1. To ensure that VðuÞ is a correct shape, the
separator CðuÞ is treated as a special generator due to its
orientation: it is a double edge with both sides facing the
interior of VðuÞ. We interpret CðuÞ as a wedge in VðuÞ
with zero width, as illustrated in Fig. 7 right. We denote
the two sides of C by Cþ and C�, and C ¼ fCþ; C�; vCg.
Let FðCÞ ¼ fFðCþÞ;FðC�Þ;FðvCÞg.

5.1 Topological Structure ofMðVðuÞÞ
Note that the difference between MðV1

S
V2Þ and

MðV1Þ
S

MðV2Þ is strictly localized within those medial
curves formed by the composite generator C ¼ fCþ; C�;
vCgwith its mating generator list FðCÞ.

Fig. 5. The mating generator list FðGÞ of the generator G : FðGÞ ¼
fGm1

; Gm2
; Gm3

; Gm4
; Gm5

g, Gm5
�G Gm4

�G Gm3
�G Gm2

�G Gm1
.

Fig. 6. Branch point identification with topological consistency checking.

Fig. 7. The shared boundary C as a special (combinatory) generator
C0 ¼ fCþ; C�; vCg.

LIU ETAL.: A ROBUST DIVIDE AND CONQUER ALGORITHM FOR PROGRESSIVE MEDIAL AXES OF PLANAR SHAPES 2525

Definition 9. Two medial axes MðVðu1ÞÞ and MðVðu2ÞÞ are
said to be topologically equivalent to each other if the two sepa-
rators Cðu1Þ and Cðu2Þ have the identical mating generator
list FðCÞ. An equivalence relation on the parameter domain
ð0; 1Þ is defined as ui � uj, ui; uj 2 ð0; 1Þ, if and only if
MðVðuiÞÞ andMðVðujÞÞ are topologically equivalent.
An example is illustrated in Fig. 8, where u1 � u2 and

u1 ­ u4; u3 corresponds to a critical point (to be defined
below):

� When u ¼ u1, FðCþðu1ÞÞ ¼ fG4; G3g, FðvCðu1ÞÞ ¼
fG3; G2g and FðC�ðu1ÞÞ ¼ fG2; G1g.

� When u ¼ u2, FðCþðu2ÞÞ ¼ fG4; G3g, FðvCðu2ÞÞ ¼
fG3; G2g and FðC�ðu2ÞÞ ¼ fG2; G1g.

� When u ¼ u4, FðCþðu4ÞÞ ¼ fG4g, FðvCðu4ÞÞ ¼ fG4;
G3; G2g and FðC�ðu4ÞÞ ¼ fG2; G1g.

The equivalence relation � in Definition 9 induces a
quotient space in the parametric domain ð0; 1Þ; i.e., ð0; 1Þ
is partitioned into a set of equivalent classes ½u� 2
ð0; 1Þ= � . We characterize the transition between equiva-
lent classes by critical points (to be defined below) and
accordingly, the structure merging of MðV1Þ

S
MðV2Þ

into MðV1

S
V2Þ can be determined by identifying all the

critical points in the parametric domain ð0; 1Þ for C. One
real-world example is shown in Fig. S2 in the supplemen-
tal material.

Due to the continuous shrinking of C, between two topo-
logically inequivalent parameters, there must exist at least a
parameter as the transition point, e.g., u3 in Fig. 8.

Definition 10. Let X be one of Cþ, C� and the endpoint vC . The
parameter u ¼ uc 2 ð0; 1Þ is a critical point of C if and only
if there is a generator G and a sufficiently small value " > 0,
such that

� G is in FðXðuÞÞ for u 2 ðuc; uc þ "Þ but not for
u 2 ðuc � "; ucÞ, or

� G is in FðXðuÞÞ for u 2 ðuc � "; ucÞ, but not for
u 2 ðuc; uc þ "Þ.

Note that for a critical point uc, there exists a corresponding
irregular branch point4 inMðVðucÞÞ.
Lemma 5. Let PðuÞ represent the union of all mating relations in

the shape VðuÞ. Suppose 0 < u2 < u1 < 1. A mating pair of
points fp; qg 2 Pðu2Þ does not belong to Pðu1Þ, if and only
if there exist two distinct parameters up; uq 2 ðu2; u1� such
that fp; CðupÞg and fq; CðuqÞg are two mating pairs of points
in Pðu1Þ.
There are two important implications to Lemma 5. First,

when the separator C is shrunk by moving vcðuÞ from u ¼ 1
to u ¼ 0, no new generators enter the mating generator lists
FðCþÞ andFðC�Þ. Secondly, we have the following corollary.

Corollary 1. If a critical point is traversed during the shrinking
process, one of the two following cases occurs:

Case 1. A generator leaves FðCþÞ or FðC�Þ, and a generator
enters FðvCÞ,

Case 2. A generator leaves FðvCÞ.
According to Corollary 1, there are two types of critical

points (switch and vanishing critical points), and they are
analyzed in Sections 5.2.1 and 5.2.2, respectively.

5.2 Updating Topological Structure
in Merging Process

The critical points on the separator CðuÞ ¼ fCþ; C�; vCg are
classified into two types, one is related to fCþ; C�g and the
other is related to vC .

5.2.1 Topological Structure Updating

in FðCþÞ S FðC�Þ
We analyze the case with Cþ below and the case with C�

can be analyzed in the same way. Let SCþ ¼ fu1; u2; . . . ; umg
be the set of delimiting points of MMIs on Cþ, sorted in the
descending order of u values. By Definitions 6 and 10, each
delimiting point ui 2 SCþ is a critical point and we refer to
its type as switch critical point.

Refer to Fig. 9. When vC moves across a switch critical
point ui, the boundary generator G0 that offers mating
points to ðui; ui�1Þ leaves FðCþÞ and the boundary genera-
tor G that offers mating points to ðuiþ1; uiÞ enters FðvCÞ.
Note that uiþ1 < ui < ui�1. When ui is being traversed, the
locally topological change in FðVÞ is summarized in Algo-
rithm 1: Update_Switch(ui). The necessity of lines 8 and 14
are explained in Section 5.2.2.

Note that the critical point u ¼ u3 in Fig. 8 is a switch crit-
ical point. One real-world example of topological structure

Fig. 8. The equivalence relation � in the parameter domain ð0; 1Þ of the
separator C. The separator C is shown in red and the medial curves
formed by C with FðCÞ are shown in blue. See text for detailed descrip-
tion of topological changes in the mating generator list FðCÞ.

Fig. 9. Topological structure updating when traversing a switch critical
point ui inFðCþÞ, in which " is a sufficiently small value.

4. For example, for the critical point u3 in Fig. 8, there is a branch
point which has four closest points on the boundary, i.e., on Cþ, vC , G3

andG4, respectively.

2526 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 12, DECEMBER 2016

updating with switch critical points in FðC�Þ is shown in
Fig. S3 in the supplemental material.

Algorithm 1. Update_Switch(ui): Update the Symbolic
Representation FðVÞ of the Merged Medial Axis when a
Switch Critical Point ui is Traversed.

1: Let G be the generator that offers mating points to
ðui � "; uiÞ.

2: Let G0 be the generator that offers mating points to
ðui; ui þ "Þ.

3: If ui is a delimiting point from Cþ

4: Delete G0 from FðCþÞ.
5: Delete Cþ from FðG0Þ.
6: Insert vC into FðGÞ at the position before Cþ.
7: Insert G into FðvCÞ as the position after Cþ.
8: Update the priority queue Q.
9: Else //ui is a delimiting point from C�

10: Delete G0 from FðC�Þ.
11: Delete C� from FðG0Þ.
12: Insert vC into FðGÞ at the position after C�.
13: Insert G into FðvCÞ as the position before C�.
14: Update the priority queue Q.

5.2.2 Topological Structure Updating in FðvCÞ
The critical point triggered by a generator leaving FðvCÞ
corresponds to the event that an MMI of vC becomes zero-
length. Suppose at u ¼ uc, an MMI on vC attains zero length,
implying that there is a medial curve m that exists (with
non-zero length) in ðuc; uc þ "Þ for a sufficiently small
" > 0, but reaches zero length at u ¼ uc.

Refer to Fig. 10. Let b1 and b2 be two branch points
that delimit m in MðVðuc þ "ÞÞ. Let mb1 and m1 (resp.
mb2 and m2) be the other two medial curves incident at
b1 (resp. b2), where mb1 and mb2 are formed by vC and
FðvCÞ. At u ¼ uc, these four medial curves meet at a
common irregular branch point c� ¼ c1 ¼ c2. By Defini-
tion 10, uc is a critical point at which a generator G is
just about to leave FðvCÞ, and we refer to its type as van-
ishing critical point. One real-world example is shown in
Fig. S4 in the supplemental material.

Vanishing critical points exist if there are at least three
generators in FðvCÞ. Let FðvCÞ ¼ fGm1

; Gm2
; . . . ; Gmrg, r �

3. Then for i ¼ 2; 3; . . . ; r� 1, each Gmi
contributes to a can-

didate vanishing critical point, which is recorded by its

corresponding parameter value eui on the separator C.
Denote by Di�1;i;iþ1 the maximum disk in V determined by
three generators Gmi�1

, Gmi
and Gmiþ1

(ref. dashed circle

with center c� in Fig. 10b). The value of the eui is then com-
puted as the intersection position of C and @Di�1;i;iþ1.

We sort all the candidate vanishing critical points
feu2; eu3; . . . ; eur�1g in a priority queue Q. For line 7 in Algo-
rithm 1, a new generator Gm0

enters FðvCÞ and then a new
candidate vanishing critical point eu1 is computed as the
intersection position of C and @D0;1;2. Accordingly at line 8
in Algorithm 1, we add eu1 into Q. At line 14 in Algorithm 1,
a new eur is added into Q, which is computed by the inter-
section of of C and @Dr�1;r;rþ1, where Gmrþ1

is the new gen-

erator entering FðvCÞ at line 13.
The maximal element in Q is a true vanishing critical

point. Denote this maximal element by euk. When the critical
point euk is traversed, the generator Gk is leaving FðvCÞ and
we remove euk from Q. Meanwhile, the candidate critical
points euk�1 and eukþ1 are obsolete, since they originally corre-
spond to the triples ðGmk�2

; Gmk�1
; Gmk

Þ and ðGmk
;Gmkþ1

;

Gmkþ2
Þ respectively. We compute the new values of euk�1

and eukþ1 using the new triples ðGmk�2
; Gmk�1

; Gmkþ1
Þ and

ðGmk�1
; Gmkþ1

; Gmkþ2
Þ respectively. Finally, the positions of

new euk�1 and eukþ1 are updated in Q.
The local topological structure change by traversing a

vanishing critical point is summarized in Algorithm 2:
Update_Vanish(euk).
Algorithm 2. Update_Vanish(euk): Update the Symbolic
Representation FðVÞ of Medial Axis when a Vanishing
Critical Point euk is Traversed.

1: Let Gmk
be the generator in FðvCÞ that corresponds to euk.

2: Delete Gmk
from FðvCÞ.

3: Delete vC from FðGmk
Þ.

4: Insert Gmk�1
into FðGmkþ1

Þ between Gmk
and vC .

5: Insert Gmkþ1
into FðGmkþ1

Þ between Gmk
and vC .

6: Update the position of euk�1 in Q using the new value deter-
mined by ðGmk�2

; Gmk�1
; Gmkþ1

Þ.
7: Update the position of eukþ1 in Q using the new value deter-

mined by ðGmk�1
; Gmkþ1

; Gmkþ2
Þ.

5.3 Overall Algorithm Implementation

Let two simple sub-shapesV1 andV2 share a boundary C as
shown in Fig. 11 left, in which v1 and v2 are the intersection
points of C and @ðV1 [V2Þ. To apply the proposed topol-
ogy-oriented method, a special initialization operation is
needed (ref. Fig. 11 middle), which is summarized in Algo-
rithm 3: Initialization(FðV1Þ;FðV2Þ; C).

During the shrinking process ofC, when there is no critical
point onC, the process is terminated.At this end, a special ter-
mination operation is also needed (ref. Fig. 11 right), which is
summarized inAlgorithm 4: Termination(FðVðvCÞÞ; C).

Fig. 10. Topological structure updating when a vanishing critical point eui
in FðvCÞ is traversed. " is a sufficiently small value.

Fig. 11. The special initialization (middle) and termination (right) opera-
tions in the overall algorithm.

LIU ETAL.: A ROBUST DIVIDE AND CONQUER ALGORITHM FOR PROGRESSIVE MEDIAL AXES OF PLANAR SHAPES 2527

Algorithm 3. Initialization(FðV1Þ;FðV2Þ; C)

1: Set Cþ ¼ C in FðV1Þ.
2: Set C� ¼ C in FðV2Þ.
3: Let v1 be an intersection point of C and @ðV1 [V2Þ, and

generate a new boundary generator vC at the position v1
such that Cþ, vC and C� satisfy the predefined orientation
in V1 [V2 (Fig. 11 left and middle).

4: LetGi andGj be the generators adjacent to v1 (other than C)
in V1 and V2 respectively.

5: Let SCþ be the set of delimiting points of MMIs on C in V1.
6: Let SC� be the set of delimiting points of MMIs on C in V2.
7: If v1 become convex after shape merging
8: Set FðvCÞ ¼ fCþ; Gi; Gk; C

�g.
9: Insert vC into FðCþÞ at the back of Gi.
10: Insert vC into FðC�Þ in the front of Gk.
11: Else
12: Set FðvCÞ ¼ fCþ; Gi; v1; Gk; C

�g.
13: Insert vC into FðCþÞ at the back of v1.
14: Insert vC into FðC�Þ in the front of v1.

Algorithm 4. Termination(FðVðvCÞ; CÞ)
1: Let v2 be the intersection point of C and @ðV1 [V2Þ (Fig. 11

right).
2: Let Gj and Gl be the generators adjacent to v2 (other than C)

in V1 and V2 respectively.
3: Remove vL and Cþ from FðGjÞ.
4: Remove C� and vL from FðGlÞ.
5: Remove Cþ, C�, vL and FðCþÞ, FðC�Þ, FðvLÞ from @V and

FðVÞ, respectively.

Now we are ready to present the overall algorithm for
merging two medial axes along a shared boundary, which
is summarized in Algorithm 5: Merge_Medial_Axes
(FðV1Þ;FðV2Þ; C). The following theorem summarizes its
time complexity.

Theorem 1. The time complexity of Algorithm 5 is Oðn lognvÞ,
where n is the number of generators in @V1 [@V2, nv is the
maximal number of elements that simultaneously exist in the
priority queue Q during the merging process, and nv is strictly
smaller than n. Furthermore, the medial axis MðVÞ can be
constructed in OðK n lognvÞ time, where K is the depth of
recursion in a divide and conquer algorithm.

We note that in all our experiments for two progressive
medial axis computations (Section 6), nv behaves as a small
constant (ref. Figs. 17 and 20 for the distributions of nv in
real-world polygonal shapes) and thus Algorithm 5 per-
forms as a linear algorithm. If V is a polygonal domain, K
can be optimally OðlognÞ and MðVÞ are constructed in
Oðn logn lognvÞ time.

So far we have assumed that both sub-shapes V1 and V2

are simple. However, our method does not need such a
restriction. Without loss of generality, assume V1 is not sim-
ple, i.e., there arem � 1 holes in it. We apply the augmented
domain technique in [3] to convert V1 into a simple shape.

Refer to Fig. 12. For each hole hi inside V1, we randomly
pick up a generator G from @hi and a generator G0 from
FðGÞ, such that G0 =2 @hi, and G0 6¼ C. Then we randomly
select a medial point x in the medial curve mðG;G0Þ. Denote

by Dx the maximal disk in V1 centered at x. Let the mating
pair of points of x be fu; vg. Points u and v partition @Dx into
two arcs cuv and cvu. Then the augmented domain is defined

as V0
1 ¼ V0

1 [D1
x [D2

x, where V0
1 ¼ fðp; 0Þjp 2 V1 nDxg,

D1
x ¼ fðp; 1Þjp 2 Dxg and D2

x ¼ fðp; 2Þjp 2 Dxg. Two points

ðp; iÞ and ðq; jÞ are connected in V0
1 if one of the following

conditions is satisfied:

1) i ¼ j and the line segment pq avoids @Dx.
2) i; j ¼ f0; 1g and pq intersects the arc cuv.
3) i; j ¼ f0; 2g and pq intersects the arc cvu.

Algorithm 5. Merge_Medial_Axes(FðV1Þ;FðV2Þ; C): The
Input are Symbolic Representations FðV1Þ and FðV2Þ,
and a Shared Boundary C.

1: Initialization(FðV1Þ;FðV2Þ; C); see Algorithm 3.
2: Merge SCþ and SC� into an array S, in which elements are

in descending order.
3: Initialize a priority queue Q as an empty set.
4: Set i ¼ 0.
5: While (i < jSj or Q is not empty)

// jSj is the number of elements in S.
6: Extract the vanishing critical point eu with the maximal

value from Q.
7: If (i ¼¼ jSj)
8: S½i� ¼ 0;
9: If (element eu 6¼ NULL and its value eu > S½i�)
10: Update_Vanish(eu); see Algorithm 2.
11: Else
12: Update_Switch(S½i�); see Algorithm 1.
13: iþþ;
14: Termination(FðVðvCÞÞ; C); see Algorithm 4.

OneDx removes one hole inV1. We recursively find aDx

and remove a hole at each iteration untilV1 becomes simple.
Finally, if the separator C consists of several generators as

long as their combination is still a simple open curve (e.g., a
polyline with several line segments), we iteratively set C to
be each of the generators and shrink them one by one.

6 EXPERIMENTS

Algorithm 5 is general for planar shapes defined in Defini-
tion 1. We implemented Algorithm 5 for shapes whose gen-
erators consist of line segments and reflex vertices, and
propose two progressive medial axes of polygonal shapes
in this section. One is region-growing progressive medial
axes (Section 6.1) and the other is boundary-evolved pro-
gressive medial axes (Section 6.2).

In addition to providing an important progressive repre-
sentation of medial axes, our method has two more merits.
First, our method is topology-oriented and thus is robust.
Secondly, our method is fast for large-scale shapes with hun-
dreds of thousands of generators. To demonstrate these

Fig. 12. An augmented domain of a non-simple shapeV1.

2528 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 12, DECEMBER 2016

merits, in Sections 6.1-6.3, we compare our method with
state-of-the-art implementation of two robust geometric
algorithms:

� Exact computation in CGAL using CORE::Expr as
the predicate kernel [9].

� A floating-point filter technique in CGAL [7], [24],
which is implemented in the class 2D Segment

Delaunay Graphs using SegmentDelaunay

GraphTraits_2 as the template parameter.5

In Section 6.4, we compare our method with other repre-
sentative medial axis computation methods.

6.1 Region-Growing Progressive Medial Axis

Shape decomposition methods partition a complex planar
shape into a set of simpler parts, and one schematic illustra-
tion is shown in Fig. 13a. We construct a region-growing
progressive shape by building an adjacency graph of the
decomposed shape, in which each node represents a part
(Fig. 13b) and two nodes are connected by an edge if the cor-
responding two parts share some boundary (Fig. 13c). Then
starting with any node (e.g., a node whose related part has
the maximal ordinate coordinate or has the largest area), the
shape region is progressively grown by breadth-first search
of the adjacency graph (Figs. 13d-13j)). A real-world exam-
ple is shown in Fig. 14.

We compute progressive medial axes of the region-grow-
ing progressive shape by iteratively merging one part into
the progressive shape. Note that our progressive medial
axis works for any segmentation-based shape decomposi-
tion ([16] for an example). In this section, for a clear illustra-
tion, we use the polygon triangulation algorithm [25] to
decompose a complex shape into a set of triangles and use
this triangulation to run all the results summarized in
Table 1. Fig. 15 shows an example of this kind of progressive
medial axes. Seven complex shapes shown in Fig. 16 are
tested and their progressive medial axes are illustrated in
the supplemental material (Figs. S8-S14).

During the region-growing, at each iteration, one triangle
is merged into the progressive shape. For each progressive
shape, at iteration i, we record the value ni

v which is the

number of elements that exists in the priority queue in
Algorithm 5. Then the value nv stated in Theorem 1 is

nv ¼ maxifni
vji; 1; 2; . . .g. Fig. 17 shows the value ni

v at
every iteration and the results show that nv behaves as a
small constant with real-world complex shapes. Accord-
ingly, our topology-oriented method (Algorithm 5) behaves
as a linear algorithm. Since any triangulation of a simple
polygon P with n vertices consists of n� 2 triangles, a
region-growing progressive medial axis of P consists of
n� 2 medial axes. By Theorem 1, our method computes

these n� 2 medial axes in Oðn2Þ time. One example of the
run time for the progressive medial axis (including 39,551
medial axes) of the Coral shape is illustrated in Fig. S5 in the
supplemental material.

More results of running time are summarized in Table 1,
showing that in addition to providing an on-the-fly progres-
sive medial axis representation, our method is faster than
the two robust implementations (exact computation and
floating-point filter) in CGAL. In particular, for large-scale
polygonal shapes with vertex number larger than 10 K (not
including the shrimp data in Table 1), our method is 4 to 24
times faster than the floating-point filter technique imple-
mented in CGAL.

Compared with existing medial axis computation meth-
ods [1], our region-growing progressive medial axis compu-
tation has the following merits:

� The progressive medial axis always starts with a tri-
angle whose medial axis is readily obtained. Then at
each iteration, a triangle is merged into the progres-
sive shape locally in a topology-oriented way. There-
fore, our method can compute the medial axis of
complex shape quickly and robustly.

� It is well known that a small change in a shape may
lead to a significant change of its medial axis. Our
method offers a robust implementation of updating
medial axes for shapes with small changes.

Fig. 13. (a) A schematic diagram of shape decomposition. (b) Each part
corresponds to a graph node. (c) Build an adjacency graph by connect-
ing two nodes by an edge if the corresponding two parts share some
boundary. (d)-(j) A progressive region growing is performed by breadth-
first search of the adjacency graph rooted at the green node.

Fig. 14. A region-growing progressive shape starting at a triangle in
which a vertex has the maximal ordinate coordinate. For a clear illustra-
tion of the shape as well as its medial axis shown in Fig. 15, a simplified
shape (674 triangles) is used here. A full-resolution shape (10,833 trian-
gles) is shown in Fig. 16.

5. We use the default setting bool fpFilterFlag = true in
CGAL/CORE/CoreDefs.cpp.

LIU ETAL.: A ROBUST DIVIDE AND CONQUER ALGORITHM FOR PROGRESSIVE MEDIAL AXES OF PLANAR SHAPES 2529

6.2 Boundary-Evolved Progressive Medial Axis

The evolution of closed smooth planar curves by diffu-
sion equations [26] and the evolution of closed polygonal
curves by polyline simplification [15] have been well
studied. We use the method in [15] to construct a bound-
ary evolution of polygonal shape: at every evolution
step, two adjacent boundary edges are replaced by a sin-
gle line segment joining the same endpoints. The substi-
tution is recursively performed using a measure on the
significance of shape change. An example is shown in
Fig. 18.

Given an original, detailed planar shape V0, boundary

evolution generates a set of simplified shapes fV1;V2; . . . ;

Vmg. To compute the medial axis MðV0Þ, we start from the
most simplified version MðVmÞ and refine the shape by
applying the simplification in reverse order. There are two
types of refinements:

� Two adjacent boundary edges are added outside the
current shape Vi; i.e., a new triangle Dnew is added to

Vi. We apply the proposed method to merge the

medial axes of Dnew and Vi along the shared bound-
ary; an example is shown in Fig. 19.

� Two adjacent boundary edges are added inside the
current shape Vj (see evolution step 13 in Fig. 18 for
an example). In this case, the medial curves in

MðVjÞ intersecting two added boundary generators
need to be updated locally. We apply the topology-
oriented incremental Voronoi diagram method [13]
for this local updating.

The computation of progressive medial axes in boundary
evolution shares the same merit in region-growing progres-
sive medial axis computation, that is, it recursively updates
the progressive shape by adding/subtracting triangles
locally in a topology-oriented way. Thus it can compute the
medial axis of complex shape quickly and robustly.

We tested the polygonal shapes of six continents extracted
from the topographical data of U.S. Geological Survey. One
progressive evolution of both the Africa model and its
medial axis is shown in Fig. 1. The others are illustrated in
the supplemental material (Figs. S15-S20). Fig. 20 shows the
value ni

v at every iteration for each model. The experimental

TABLE 1
The Comparison of CGAL and Our Topology-Oriented Method in the Application of Region-Growing Progressive

Medial Axes of Polygonal Shape Data Shown in Fig. 16

Shape Vertex number

Running time (seconds)

CGAL Our topology-oriented method

Exact
computation

Floating-point
filtering Triangulation

Region-growing
progressive medial axis Total time

Shrimp 681 96.7 0.468 0.006 0.273 0.279
Eagle 10,833 50,560.4 88.126 0.307 3.743 4.050
Dragon 16,865 48,389.1 73.172 0.402 6.243 6.645
Phoenix 17,153 74,556.3 157.884 0.535 6.236 6.771
Bamboo 19,921 60,285.0 120.479 0.429 8.036 8.465
Tree 33,457 48,289.5 73.282 0.498 17.687 18.185
Coral 39,553 114,161.0 138.112 0.893 24.678 25.571

All polygonal shapes are normalized by finding the minimum-area bounding box and rescaling the diagonal length of the bounding box to be one. The running
time is measured on a PC (Intel(R) Core(TM) I7920 CPU 2.67GHz) running Windows 7.

Fig. 15. The progressive medial axes of the region-growing progressive
shape shown in Fig. 14.

Fig. 16. Seven complex shapes, shrimp, eagle, bamboo, coral, tree,
dragon, and phoenix, are tested. Results are summarized in Table 1.

2530 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 12, DECEMBER 2016

results show that the value of nv stated in Theorem 1 behaves
as a small constant, which is consistent with the observation
in Fig. 17. In this progressive representation, our method

computes OðnÞ medial axes in Oðn2Þ time. One example of
the run time for the progressive medial axis of the Asia
model is illustrated in Fig. S6 in the supplemental material.

The statistic data of the performance of our boundary-
evolved progressive medial axis as well as the comparison
with the floating-point filter in CGAL are summarized in
Table 2. For all the large-scale polygonal shapes in Table 2,
the exact computation in CGAL is unable to output results
after running one week. So we only present the time of
CGAL with a floating-point filter. The program of CGAL
FPF even crashed when handling the data of North Ameri-
can model and Oceania model. These results demonstrate
that in addition to providing an on-the-fly progressive
medial axis representation, our boundary-evolved progres-
sive medial axis computation is robust and faster than two
robust geometric algorithms in CGAL by at least an order
of magnitude.

6.3 Accuracy Evaluation

Our method is primarily described in terms of combinato-
rial and topological computation, and relies on the numeri-
cal computation6 moderately. To evaluate its numerical
accuracy, we compare our method with the exact computa-
tion in CGAL.

The exact computation in CGAL can represent numbers
of arbitrary precision. Although it computes exact medial
axes, these results cannot be directly used for downstream
applications, if these applications use fixed-precision num-
bers only. Accordingly, in the class CORE::Expr of CGAL,
an approximation function approx is provided to convert
numbers of arbitrary precision into the IEEE double format.
approx computes an approximation with a combined pre-
cision ðrelPrec; absPrecÞ, i.e., if e is the exact value and ee is

the approximate value, then je� eej
 2�absPrec or je� eej

2�relPrecjej. The default setting in CORE::Expr is relPrec ¼
53 and absPrec ¼ 1;024.

We represent the output medial axes in the IEEE double
format. For each branch point x in MðVÞ of a polygonal

shape V, due to numerical errors, let rmin ¼ minifkx� yik2 :
yi 2 LðxÞg and rmax ¼ maxjfkx� yjk2 : yj 2 LðxÞg. Then we

use EðxÞ ¼ 1� rmin
rmax

as a normalized error measure at x. We

sort the values EðxÞ of all branch points in decreasing order
and plot the error curves of our method and the exact com-
putation in CGAL. The error curves of seven shapes in
Fig. 16 are illustrated in Fig. S7 in the supplemental mate-
rial. The means and standard deviations of EðxÞ values in
these seven shapes are summarized in Table 3. These results

Fig. 17. In the refinement process of region-growing progressive medial axes for each model in Table 1, the value nv in Theorem 1, which is the maxi-
mal number of elements that simultaneously exist in the priority queue Q in Algorithm 5, behaves as a small constant.

Fig. 18. Boundary evolution of a polygonal fish shape. Starting from an
original shape (leftmost), at every evolution step, two adjacent boundary
edges (shown in dashed blue color) are replaced by a single line seg-
ment (shown in red) joining the same endpoints.

Fig. 19. Two adjacent boundary edges are added outside of the current
shape (evolution step 12 in Fig. 18) and medial axes are merged along
shared boundary.

TABLE 2
The Comparison of CGALwith a Floating-Point Filter and
our Boundary-Evolved Progressive Medial Axis Method, on
Large-Scale Polygonal Shape Data Extracted from U.S.

Geological Survey

Shape Vertex Running time (minutes)

number CGAL FPF Our method

Africa 204,545 325.1 14.8 (1.7+13.1)
Asia 115,841 60.1 5.2 (1.0+4.2)
Europe 124,097 58.5 5.6 (1.1+4.5)
North America 274,241 crashed 23.2 (2.4+20.8)
South America 190,817 254.4 12.3 (1.5+10.8)
Oceania 147,713 crashed 8.8 (1.3+7.5)

The CGAL exact computation time is not included because it simply takes too
much time compared to the others. The running time of our method consists of
two parts ðaþ bÞ: time a for shape evolution generation and time b for progres-
sive medial axis generation. All polygonal shapes are normalized by rescaling
the diagonal length of the bounding box to be one. The running time is measured
on a PC (Intel(R) Core(TM) I7920 CPU 2.67GHz) runningWindows 7.

6. The numerical computation in Algorithm 5 is based on the code in
[27].

LIU ETAL.: A ROBUST DIVIDE AND CONQUER ALGORITHM FOR PROGRESSIVE MEDIAL AXES OF PLANAR SHAPES 2531

show that our method has comparable numerical accuracy
with the exact computation in CGAL; that is, our method is
better in the data of Shrimp, Phoenix, Bamboo and Tree,
while the CGAL exact computation is better in the data of
Eagle, Dragon and Coral.

6.4 Comparison with Representative Medial Axis
Computation Methods

Merging two sub-shapes into one is a necessary step in a
divide-and-conquer algorithm. In this section, we compare
our method with three representative divide-and-conquer
methods.

An early classic divide-and-conquer algorithm was
proposed in [6]. This method partitions a shape bound-
ary into two halves H1 and H2, and build the Voronoi
diagrams VDðH1Þ and VDðH2Þ respectively. An example
in [6] is shown in Fig. 21 in which the two halves of gen-
erators are H1 ¼ fg1; g2; . . . ; g10g and H2 ¼ fg11; g12; . . . ;
g21g. The merging step starts at a starting bisector
Bðg10; g11Þ of generators g10 and g11, and ends at a termi-
nating bisector Bðg1; g21Þ (Fig. 21c). A numerical tracing is
used in [6] for this merging. For example, given the
merging bisector Bðg9; g13Þ, the algorithm scans the edge
of Voronoi polygon V ðg9Þ in VDðH1Þ in the CCW direc-
tion to find the edge which intersects Bðg9; g13Þ. A similar
scan is performed in Voronoi polygon V ðg13Þ in VDðH2Þ
in the CW direction. Then the numerical values are com-
pared to determine which edge intersects Bðg9; g13Þ first.
If the two intersection points are very close as shown in
this example, the local tracing process may be error-
prone due to numerical imprecision. As a comparison,
our method is robust by adding triangles one-by-one and
updating merged medial axes with topological descrip-
tion of mating generator lists. Both region-growing and

boundary-evolved progressive medial axes by applying
our method to the same example are shown in Fig. 22.

Targeting on a robust implementation, a representative
divide-and-conquer algorithm was proposed in [5] based
on a domain decomposition lemma [18]. Refer to Fig. 23. Let
b be a branch point of the medial axisMðVÞ. Denote by DðbÞ

Fig. 20. In the refinement process of boundary-evolved progressive medial axes for each model in Table 2, the value nv in Theorem 1, which is the
maximal number of elements that simultaneously exist in the priority queue Q in Algorithm 5, behaves as a small constant.

TABLE 3
The Means and Standard Deviations (SD) of Normalized Errors EðxÞ for All Branch Points in Seven Shapes (Fig. 16),

by Our Method and the Exact Computation in CGAL

EðxÞ Shrimp Eagle Dragon Phoenix Bamboo Tree Coral

Our Mean 2:2
 10�10 8:1
 10�6 1:3
 10�6 2:3
 10�7 2:5
 10�12 4:3
 10�12 1:0
 10�5

Method SD 1:1
 10�8 1:1
 10�3 1:8
 10�4 2:6
 10�5 1:6
 10�11 2:4
 10�11 2:0
 10�3

CGAL Mean 4:5
 10�7 6:2
 10�7 5:5
 10�7 9:8
 10�7 5:6
 10�7 8:1
 10�7 1:5
 10�6

EXACT SD 2:1
 10�6 8:2
 10�6 5:0
 10�6 6:1
 10�6 6:8
 10�6 4:9
 10�6 1:9
 10�5

The error curves of EðxÞ in seven shapes are illustrated in Fig. S7 in the supplemental material.

Fig. 21. An example in a classic divide-and-conquer algorithm in [6].

2532 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 12, DECEMBER 2016

the maximal disk centered at b in V. If V nDðbÞ has k > 1
components fA1; A2; . . . ; Akg, the domain decomposition

lemma [18] says that MðVÞ ¼ S k
i¼1MðViÞ, where Vi ¼

Ai [DðbÞ. The algorithm in [5] decomposes the shape by
numerically locating all branch points and terminal points7

by a steepest descent method and stores their connectivity
information in a novel tree structure.

The domain decomposition lemma was further used in a
state-of-the-art divide-and-conquer algorithm [3] in which a
multiple objects’ domain is recursively split. The advan-
tages of the algorithm in [3] are that (1) the Voronoi diagram
of the multiple objects’ domain can be computed stably by
means of applying a medial axis algorithm in a simply
connected domain, and (2) the necessary combinatorial
structure of the medial axis can be constructed without
numerically computing the trimmed bisectors explicitly.

Our proposed method computes the medial axis in a sim-
ilar fashion of [3], [5], but with two improved characteris-
tics. The first is that our method is topology-oriented so that
it is very robust. The second is that the previous methods
[3], [5] decompose the shape using their own specific rules,
while our method works for arbitrary shape decomposition
as long as the sub-shapes share a common boundary. One
example is shown in Fig. 24, in which two sub-shapes V1

and V2 of north and south America are merged into the
whole America continent shape V ¼ V1 [V2. The shapes
V1, V2 and V have respectively 274,241, 190,817 and 465,046
boundary generators. If the medial axes MðV1Þ and MðV2Þ
are available, our method can efficiently compute MðVÞ by
local updating in less than 1 second. Note that all the previ-
ous divide-and-conquer methods [3], [5], [6] fail to merge
medial axes in this case. Note also that other medial axis
computation methods such as the randomized incremental

algorithm [24] in CGAL cannot merge medial axes in this
case either.

Our topology-oriented method is also related to the
VRONI [28], which is an industrial-strength implementation
for computing Voronoi diagrams of points and line seg-
ments, and its ArcVRONI extension to circular arcs [29].
However, neither VRONI nor ArcVRONI can be used to
compute a progressive representation of medial axes.

7 CONCLUSIONS

In this paper, we propose to compute progressive medial
axes of large-scale planar shapes in a fast and robust way.
The key ingredient is a topology-oriented method to merg-
ing medial axes of two planar shapes along a shared bound-
ary. Several topological properties are proved, which are
used to characterize the structural changes in medial axes
using two types of critical points. Our method can work
with any third-party shape decomposition methods, in
which two (region-growing and boundary-evolved) pro-
gressive medial axes representations are implemented. The
experimental results show that in addition to providing an
on-the-fly progressive representation, our topology-ori-
ented method is faster than two robust implementations
(exact computation and floating-point filtering) in CGAL.

Future work includes the extension to medial axis com-
putation for 3D solid shapes. If the shape is represented by
a polyhedron, a straight-forward way is to use a tetrahedro-
nization for building a progressive representation. In this
case, the types of critical points and their distribution on the
separating plane deserve to be investigated carefully.

APPENDIX

Lemma 1. Suppose that V is simple. On a mating pair of genera-
tors fG;G0g, there exists exactly one mating pair of MMIs.

Proof. We prove the case when the two mating generators
are edges, sayGi andGj (Fig. 25a), as the situation involv-
ing reflex vertices is similar (Fig. 25b). Refer to Fig. 25a. If
Lemma 1 does not hold, there are at least twomating pairs

Fig. 22. Robust medial axes computation using our method for the same
example in Fig. 21. Top row: region-growing progressive medial axes.
Bottom row: boundary-evolved progressive medial axes.

Fig. 23. The domain decomposition scheme used in [5].

Fig. 24. Merge north and south America into the whole continent shape.
Due to limited resolution, only 2,595 boundary generators are shown in this
figure. The original whole America shape has 465,046 boundary genera-
tors. If the medial axes of north and south America shapes are available,
our method take less than 1 second to obtain themergedmedial axis.

7. A point x 2 MðVÞ is a terminal point if jLðxÞj ¼ 1.

LIU ETAL.: A ROBUST DIVIDE AND CONQUER ALGORITHM FOR PROGRESSIVE MEDIAL AXES OF PLANAR SHAPES 2533

of MMIs fa;a0g and fb;b0g existing on the mating pair of
generators fGi;Gjg, in which a

T
b 6¼ ; and a0 Tb0 6¼ ;

cannot be held at the same time, otherwise fa S
b;

a0 S b0g would be a single mating pair. Without loss of
generality, we assume a

T
b ¼ ;. Together with normal

vectors at endpoints, the four intervals a;a0;b;b0 intro-
duce three regions, shown as A;A0; B in Fig. 25a. By
the definition of medial axis and mating relation, the
interior of regions A and A0 are clear of any boundary
generators. Since a

T
b ¼ ;, we consider a point p on

Gi, which satisfies p =2 a, p =2 b and mateðpÞ =2 Gj. Let G
be the generator that the mating point q ¼ mateðpÞ
belongs to. Both the mating point q and its medial
point c must be strictly inside region B, otherwise at
least one of the two conditions distðc; pÞ ¼ distðc; @VÞ
and distðc; qÞ ¼ distðc; @VÞ would be violated. This indi-
cates that the generator G must lie inside region B.
Since V is simple, G is connected to other generators in
@V. Therefore, there is a chain of generators that con-
nect G to Gj (or Gi) which has to go through region A

(or A0). This contradicts the assumption that the inte-
rior of both A and A0 are clear of generators. tu

Lemma 2. Gi 2 FðGjÞ if and only if Gj 2 FðGiÞ.
Proof. If Gi 2 FðGjÞ, then the pair fGi;Gjg contributes to a

medial curve mij ¼ mðGi;GjÞ. Therefore Gj 2 FðGiÞ and
vice versa. tu

Lemma 3. Let G be a generator in a simple shape V. All the gen-
erators in FðGÞ are distinct.

Proof. If two generators Gi;Gj 2 FðGÞ, i 6¼ j, are the same,
i.e., Gi ¼ Gj, then between Gi and G there are two dis-
tinct mating pairs of MMIs, i.e., fai;mateðaiÞg and
faj;mateðajÞg, iþ 1 < j. A contradiction to Lemma 1. tu

Lemma 4. (Inverse order preservation lemma.) Let the generators
of a simple shape V be ordered using the in-front relation with
respect to a generator G, i.e., G1 �G G2 �G 	 	 	 �G Gn. In the
mating generator list FðGÞ ¼ fGm1

; Gm2
; . . . ; Gmrg, Gmj

�G

Gmi
, i; j
 r
 n, if and only if j > i.

Proof. We prove the case that G and the boundary genera-
tors in FðGÞ are all edges, as the situation involving
reflex vertices is similar. Refer to Fig. 26. Let pi ¼ GðuiÞ
and pj ¼ GðujÞ be two points on G, 0 < ui < uj < 1,
whose mating points p0i ¼ mateðpiÞ and p0j ¼ mateðpjÞ lie
on generators Gmi

and Gmj
, respectively.

For a sufficient condition, given ui < uj, we need
to prove Gmj

�G Gmi
. Suppose it is not true and

Gmi
�G Gmj

. Let ci 2 MðVÞ be the medial point of mating

pair fpi; p0ig and R be the region enclosed by the ordered
generators fG;Gm1

; . . . ; Gmi
g and the two line segments

cipi and cip
0
i. As illustrated in Fig. 26a, the generator Gmj

cannot lie inside region R, since if so the simple connect-
edness of V would require some generator Gmk

between

Gmi
and Gmj

to intersect one of two line segments cipi

and cip
0
i. This however would eliminate ci from MðVÞ, a

contradiction. If Gmj
is outside region R, on the other

hand, one of two line segments cjpj and cjp0j would inter-

sect one of cipi and cip0i, where cj is the medial point of
fpj; p0jg. There are a limited number of intersection config-

urations and Fig. 26b shows one of them in which cipi

intersects cjp
0
j at a point a. If distða; piÞ � distða; p0jÞ, ci

cannot be a medial point since distðci; p0jÞ < distðci;
aÞ þ distða; p0jÞ
 distðci; piÞ. Conversely, if distða; piÞ <

distða; p0jÞ, cj cannot be a medial point. All the remaining

configurations can be processedwith the same arguments.
By Lemma 1, since each Gmi

corresponds to only one
MMI ai on G, the necessary condition is readily obtained.
This completes the proof. tu

Lemma 5. Let PðuÞ represent the union of all mating relations
in the shape VðuÞ. Suppose 0 < u2 < u1 < 1. A mating
pair of points fp; qg 2 Pðu2Þ does not belong to Pðu1Þ, if and
only if there exist two distinct parameters up; uq 2 ðu2; u1�
such that fp; CðupÞg and fq; CðuqÞg are two mating pairs of
points in Pðu1Þ.

Proof. First, if fp; qg is a mating pair of points in Pðu1Þ,
p; q =2 CðuÞju2ð0;u1�, then fp; qgwill still be inPðu2Þ since the
separator C is always shrunk. Next, if fp; qg 2 Pðu2Þ and
fp; qg =2 Pðu1Þ, then at least one of p and q forms a pair of
mating points in Pðu1Þ with a point in CðuÞju2ðu2;u1�.
Assume fq;CðuqÞg 2 Pðu1Þ, u2 < uq
 u1. If Lemma 5
is not true, then there exists fp; p0g 2 Pðu1Þ, p0 =2
CðuÞju2ðu2;u1�. Refer to Fig. 27. Let c1 be the medial point of

fp; qg in Pðu2Þ and c2, c3 be medial points of fp; p0g,
fq; CðuqÞg in Pðu1Þ, respectively. We have distðc1; pÞ

distðc2; pÞ, otherwise fp; qg cannot be in Pðu2Þ. Then we
have distðc2; CðuqÞÞ < distðc2; c1Þ þ distðc1; CðuqÞÞ <

distðc2; c1Þ þ distðc1; c3Þ þ distðc3; CðuqÞÞ ¼ distðc2; c1Þ þ
distðc1; qÞ ¼ distðc2; pÞ. A contradiction to the assumption
fp; p0g 2 Pðu1Þ. tu

Theorem 1. The time complexity of Algorithm 5 is Oðn lognvÞ,
where n is the number of generators in @V1 [@V2, nv is the
maximal number of elements that simultaneously exist in the
priority queue Q during the merging process, and nv is strictly

Fig. 26. Proof of Lemma 4.Fig. 25. Proof of Lemma 1.

2534 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 12, DECEMBER 2016

smaller than n. Furthermore, the medial axis MðVÞ can be
constructed in OðKn lognvÞ time, where K is the depth of
recursion in a divide and conquer algorithm.

Proof. Note that (1) for each vanishing critical point being
traversed, the number of vanishing critical points is
reduced by one and the mating generator lists of four
generators are updated in Oð1Þ time, and (2) for each
switch critical point being traversed, the number of
switch critical points is reduced by one, and the number
of vanishing critical points is increased by one, and (3)
the mating generator lists of four generators are updated
in Oð1Þ time. It is clear that there are OðnÞ switch critical
points and it takes OðnÞ time to process them. We use a
priority queue to process the vanishing critical points
and its time complexity is nvlognv, nv < n. Finally note
that both Algorithms 3 and 4 take constant time. tu

ACKNOWLEDGMENTS

The topographical data used in Table 2, Figs. 1 and 24 is
courtesy of U.S. Geological Survey. The authors also thank
the CGAL Open Source Project (https://www.cgal.org/) to
make the CGAL software public available. This work was
supported by the Natural Science Foundation of China
(61322206, 61521002, 61432003) and the NRF grant funded
by the Korea government (2012R1A2A1A05026395).

REFERENCES

[1] K. Siddiqi and S. Pizer, Medial Representations: Mathematics, Algo-
rithms and Applications, New York, NY, USA: Springer, 2008.

[2] O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. J€uttler,
and M. Rabl, “Medial axis computation for planar free-form
shapes,” Comput.-Aided Des., vol. 41, no. 5, pp. 339–349, 2009.

[3] O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. J€uttler,
E. Pilgerstorfer, and M. Rabl, “Divide-and-conquer for Voronoi
diagrams revisited,” in Proc. 25th Annu. Symp. Comput. Geom.,
2009, pp. 189–197.

[4] Y.-J. Liu, “Semi-continuity of skeletons in two-manifold and dis-
crete Voronoi approximation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 37, no. 9, pp. 1938–1944, Sep. 2015.

[5] H. I. Choi, S. W. Choi, H. P. Moon, and N.-S. Wee, “New algo-
rithm for medial axis transform of plane domain,” Graph. Models
Image Process., vol. 59, no. 6, pp. 463–483, 1997.

[6] D. T. Lee, “Medial axis transformation of a planar shape,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 4, no. 4, pp. 363–369, Jul. 1982.

[7] K. Mehlhorn and S. Schirra, “Geometric computing with CGAL
and LEDA,” in Curves and Surface Design: St. Malo 1999, Nashville,
TN, USA: Vanderbilt Univ. Press, 2000, pp. 277–286.

[8] C. Yap and T. Dube, “The exact computation paradigm,” in Com-
puting in Euclidean Geometry, D.-Z. Du and F.-K. Hwang, Eds. Sin-
gapore: World Scientific, 1995, pp. 452–492.

[9] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Sch€onherr,
“On the design of CGAL, a computational geometry algorithms
library,” Softw. Pract. Exp., vol. 30, no. 11, pp. 1167–1202, 2000.

[10] D. Salesin, J. Stolfi, and L. Guibas, “Epsilon geometry: Building
robust algorithms from imprecise computations,” in Proc. 5th
Annu. Symp. Comput. Geom., 1989, pp. 208–217.

[11] H. Br€onnimann, C. Burnikel, and S. Pion, “Interval arithmetic
yields efficient dynamic filters for computational geometry,”
Discr. Appl. Math., vol. 109, nos. 1–2, pp. 25–47, 2001.

[12] K. Sugihara and M. Iri, “Construction of the Voronoi diagram for
‘one million’ generators in single-precision arithmetic,” Proc.
IEEE, vol. 80, no. 9, pp. 1471–1484, 1992.

[13] K. Sugihara and M. Iri, “A robust topology-oriented incremental
algorithm for Voronoi diagrams,” Int. J. Comput. Geom. Appl.,
vol. 4, no. 2, pp. 179–228, 1994.

[14] K. Sugihara, M. Iri, H. Inagaki, and T. Imai, “Topology-oriented
implementation - an approach to robust geometric algorithms,”
Algorithmica, vol. 27, no. 1, pp. 5–20, 2000.

[15] L. J. Latecki and R. Lak€amper, “Convexity rule for shape decom-
position based on discrete contour evolution,” Comput. Vis. Image
Understanding, vol. 73, no. 3, pp. 441–454, 1999.

[16] Z. Ren, J. Yuan, and W. Liu, “Minimum near-convex shape
decomposition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35,
no. 10, pp. 2546–2552, Oct. 2013.

[17] J. Serra, Image Analysis and Mathematical Morphology. San Diego,
CA, USA: Academic Press, 1982.

[18] H. I. Choi, S. W. Choi, and H. P. Moon, “Mathematical theory of
medial axis transform,” Pacific J. Math., vol. 181, no. 1, pp. 57–88,
1997.

[19] C. K. Yap, “An Oðn lognÞ algorithm for the Voronoi diagram of a
set of simple curve segments,” Discr. Comput. Geom., vol. 2, no. 1,
pp. 365–393, 1987.

[20] R. T. Farouki and J. K. Johnstone, “The bisector of a point and a
plane parametric curve,” Comput. Aided Geom. Des., vol. 11, no. 2,
pp. 117–151, 1994.

[21] R. T. Farouki and R. Ramamurthy, “Specified-precision computa-
tion of curve/curve bisectors,” Int. J. Comput. Geom. Appl., vol. 8,
nos. 5/6, pp. 599–617, 1998.

[22] J.-K. Seong, E. Cohen, and G. Elber, “Voronoi diagram computa-
tions for planar NURBS curves,” in Proc. Symp. Solid Phys. Model-
ing, 2008, pp. 67–77.

[23] K. Tang and Y.-J. Liu, “Dynamic medial axes of planar shapes,” in
Proc. Comput. Graph. Int., 2006, pp. 460–468.

[24] M. I. Karavelas, “A robust and efficient implementation for the
segment Voronoi diagram,” in Proc. Int. Symp. Voronoi Diagrams
Sci. Eng., 2004, pp. 51–62.

[25] S. Hertel and K. Mehlhorn, “Fast triangulation of simple poly-
gons,” in Proc. Int. FCT-Conf. Fundam. Comput. Theory, 1983,
pp. 207–218.

[26] A. M. Bruckstein, G. Shapiro, and D. Shaked, “Evolutions of pla-
nar polygons,” Int. J. Pattern Recog. Artif. Intell., vol. 9, no. 6,
pp. 991–1014, 1995.

[27] J. R. Shewchuk, “Adaptive precision floating-point arithmetic and
fast robust geometric predicates,” Discr. Comput. Geom., vol. 18,
no. 3, pp. 305–363, 1997.

[28] M. Held, “VRONI: An engineering approach to the reliable and
efficient computation of Voronoi diagrams of points and line
segments,” Comput. Geom.: Theory Appl., vol. 18, no. 2, pp. 95–123,
2001.

[29] M. Held and S. Huber, “Topology-oriented incremental computa-
tion of Voronoi diagrams of circular arcs and straight-line
segments,” Comput.-Aided Des., vol. 41, no. 5, pp. 327–338, 2009.

Yong-Jin Liu received the BEng degree from
the Tianjin University, China, in 1998, and the
PhD degree from the Hong Kong University of
Science and Technology, Hong Kong, China, in
2004. He is an associate professor with the
TNList, Department of Computer Science and
Technology, Tsinghua University. His research
interests include computational geometry, com-
puter graphics, pattern analysis, and computer-
aided design. He is a member of the IEEE.

Fig. 27. Proof of Lemma 5.

LIU ETAL.: A ROBUST DIVIDE AND CONQUER ALGORITHM FOR PROGRESSIVE MEDIAL AXES OF PLANAR SHAPES 2535

Cheng-Chi Yu received the BEng degree from
the Beijing University of Posts and Telecommuni-
cations, China, in 2013. He is a master student
with the TNList, Department of Computer Sci-
ence and Technology, Tsinghua University. His
research interests include computatonal geome-
try, computer graphics, and image processing.

Min-Jing Yu received the BEng degree from the
Wuhan University, China, in 2014, and is currently
working toward the PhD degree with the TNList,
Department of Computer Science and Technol-
ogy, Tsinghua University. Her research interests
include computer graphics, cognitive computa-
tion, and computer vision.

Kai Tang received the BEng degree from the
Nanjing Institute of Technology, China, in 1982,
the MSc degree in information and control engi-
neering, in 1986, from the University of Michigan,
and the PhD degree in computer engineering
also from the University of Michigan, in 1990. He
is a professor with the Department of Mechanical
and Aerospace Engineering, Hong Kong Univer-
sity of Science and Technology. His research
interests concentrate on designing efficient and
practical algorithms for solving real-world compu-

tational and geometric problems.

Deok-Soo Kim received the BEng from the
Hanyang University, Korea, in 1982, the MSc
from the New Jersey Institute of Technology, in
1985, and the PhD degree from the University of
Michigan, in 1990. He is a professor with the Vor-
onoi Diagram Research Center and Department
of Mechanical Engineering, Hanyang University,
Seoul, Korea. He studies the Voronoi diagram of
various kinds for both practical and theoretical
view points, including discovering applications of
Voronoi diagrams in engineering and science.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2536 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 12, DECEMBER 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

