
Fast Galerkin Multigrid Method for Unstructured Meshes
JIA-MING LU, Tsinghua University, China
TAILING YUAN, Independent Researcher, China
ZHE-HAN MO, Tsinghua University, China
SHI-MIN HU∗, Tsinghua University, China

Fig. 1. Our method efficiently handles high-resolution elastodynamic simulations with complex contact mechanics. Left: A million-point Stanford dragon
dropping and deforming. Middle: Detailed cloth-like draping of a million-point bunny model. Right: A squishy ball demonstrating intricate self-contact and
large deformations.

We present a novel multigrid solver framework that significantly advances
the efficiency of physical simulation for unstructured meshes. While multi-
grid methods theoretically offer linear scaling, their practical implementation
for deformable body simulations faces substantial challenges, particularly
on GPUs. Our framework achieves up to 6.9× speedup over traditional meth-
ods through an innovative combination of matrix-free vertex block Jacobi
smoothing with a Full Approximation Scheme (FAS), enabling both piecewise
constant and linear Galerkin formulations without the computational burden
of dense coarse matrices. Our approach demonstrates superior performance
across varying mesh resolutions and material stiffness values, maintaining
consistent convergence even under extreme deformations and challenging
initial configurations. Comprehensive evaluations against state-of-the-art
methods confirm our approach achieves lower simulation error with reduced
computational cost, enabling simulation of tetrahedral meshes with over one
million vertices at approximately one frame per second on modern GPUs.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: physics-based animation

ACM Reference Format:
Jia-Ming Lu, Tailing Yuan, Zhe-Han Mo, and Shi-Min Hu. 2025. Fast Galerkin
Multigrid Method for Unstructured Meshes. ACM Trans. Graph. 44, 6, Arti-
cle 179 (December 2025), 16 pages. https://doi.org/10.1145/3763327

∗Corresponding author

Authors’ Contact Information: Jia-Ming Lu, Tsinghua University, Beijing, China,
jaimeyzzz@outlook.com; Tailing Yuan, Independent Researcher, Beijing, China,
yuantailing@gmail.com; Zhe-Han Mo, Tsinghua University, Beijing, China, mozh23@
mails.tsinghua.edu.cn; Shi-Min Hu, Tsinghua University, Beijing, China, shimin@
tsinghua.edu.cn.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 1557-7368/2025/12-ART179
https://doi.org/10.1145/3763327

1 Introduction
Physical simulation is fundamental to computer graphics, driving
applications from visual effects to interactive experiences. As mod-
ern applications demand increasingly complex, high-fidelity sim-
ulations, computational efficiency has become a critical challenge,
particularly for real-time and large-scale production environments.

The core challenge lies in solving nonlinear systems describing
physical dynamics, and can be written to a nonlinear optimization
form with

𝒙 = arg min
𝒙

1
2Δ𝑡2 (𝒙 − 𝒙̂)

⊤𝑴 (𝒙 − 𝒙̂) + 𝐸 (𝒙), (1)

where 𝑴 is the mass matrix, 𝒙 the current state, 𝒙̂ the predicted state,
Δ𝑡 the time step and 𝐸 (𝒙) the potential energy. While Newton’s
method offers quadratic convergence, its practical application faces
significant challenges, particularly in solving the linear system at
each iteration. High condition numbers—common in ill-conditioned
or high-DOF systems—make the linear solve numerically challeng-
ing. This issue compounds with system size, as both per-iteration
cost and iteration count grow. Traditional solvers often struggle to
maintain efficiency across varying simulation scenarios, especially
with complex materials or real-time constraints, creating a need for
more robust and scalable solutions.

Multigrid methods represent a powerful approach to achieving
linear computational scaling with respect to system degrees of free-
dom, showing particular success in regular grid structures such as
fluid simulations. Among these, the Galerkin method is a highly ef-
fective approach that automatically generates coarse-level operators
through projection without requiring explicit rediscretization. This
approach maintains level consistency through variational principles,
ensuring proper energy minimization across scales. The Galerkin
method preserves important mathematical properties of the original

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

179:2 • Jia-Ming Lu, Tailing Yuan, Zhe-Han Mo, and Shi-Min Hu

system such as symmetry and positive-definiteness, while naturally
adapting to problems with complex geometries and heterogeneous
material properties. It also provides theoretically optimal conver-
gence rates independent of problem size and handles boundary
conditions consistently across all levels.

The extension of Galerkin multigrid methods to unstructured
meshes and dynamically deforming systems presents significant
challenges. In volumetric elastodynamics, where the domain is typi-
cally discretized using tetrahedral elements, traditional multigrid
approaches face several limitations. The irregular mesh structure
complicates the construction of coherent coarse levels, and when
smooth linear interpolation weights are used, the coarse matrix
loses its sparsity property. The resulting dense coarse matrices
become computationally intractable both in terms of storage and
computation. These challenges are particularly pronounced in high-
resolution simulations where multigrid methods would potentially
offer the greatest benefits.

Modern GPU architectures, while offering tremendous compu-
tational power, present additional challenges for multigrid method
implementation. The hierarchical nature of multigrid algorithms
suggests sequential execution, making optimal GPU utilization non-
trivial. Key challenges include managing irregular data access pat-
terns, balancing loads across different grid levels, and minimizing
synchronization overhead between GPU kernels. These efficiency
considerations become particularly critical for real-time applications
such as interactive virtual surgery or game physics. The complex
interaction between mesh topology, numerical properties, and GPU
architecture characteristics demands careful algorithm design to
achieve optimal performance while maintaining numerical robust-
ness.

Prior research has explored some solutions, such as piecewise con-
stant weights [Wu et al. 2022; Xian et al. 2019] to avoid dense coarse
matrices, and multilevel additive Schwarz methods with domain de-
composition for parallel computation of multilevel preconditioners
[Wu et al. 2022]. However, these approaches face several limitations:
they require system matrix assembly and linear system solving,
incurring substantial computational costs for matrix evaluation and
precomputation. Moreover, they struggle with heterogeneous ma-
terials and cannot leverage smoother interpolation methods like
piecewise linear operators to improve convergence rates.

Our work addresses these fundamental challenges through a
novel approach that combines theoretical rigor with practical effi-
ciency. The key contributions of our research are:

• A highly efficient matrix-free smoothing operator optimized
for parallel architectures. This smoother outperforms both
previous methods and standard solvers, achieving exceptional
efficiency even as a standalone solver. Our implementation
optimally balances computational throughput with memory
bandwidth utilization, resulting in significant performance
improvements.
• A specialized FAS multigrid method integrated with our novel

smoother for nonlinear equation systems. This combination
delivers faster convergence rates than existing approaches
while maintaining robust numerical behavior across diverse
simulation scenarios.

• An optimized piecewise constant Galerkin formulation for the
FAS scheme that reduces computational overhead on coarser
grids by strategically eliminating interior element calcula-
tions. This approach preserves accuracy while substantially
improving performance.
• A versatile Galerkin formulation framework for unstructured

meshes, offering both piecewise constant and linear variants
without the prohibitive computational costs typically associ-
ated with dense matrices on coarse levels.

2 Related Work
Physics-based simulation in computer graphics predominantly in-
volves solving nonlinear systems. The implicit integration frame-
work, pioneered by [Baraff and Witkin 1998], has established itself
as the standard approach for stable simulation, particularly excelling
in handling stiff systems and large time steps. While extensive re-
search has been conducted in this field over the past decades, we
focus our discussion on works most relevant to our method.

The field has evolved significantly through optimization-based ap-
proaches. Notable contributions from [Liu et al. 2013] and [Bouaziz
et al. 2014] advanced the application of optimization techniques in
deformable body simulation by introducing efficient local-global
solving strategies, establishing new paradigms for physics-based
simulation. [Gast et al. 2015] further developed these concepts by
creating optimization formulations that maintain stability even
with large time steps, significantly improving simulation robustness.
More recently, [Trusty et al. 2022] introduced a mixed variational
framework for implicit time integration of elastica that bridges the
gap between accuracy and efficiency. Their approach employs se-
quential quadratic programming to combine the precision typically
associated with Newton solvers with the computational efficiency
of fast simulation methods.

The advent of GPU computing has sparked innovative solutions
for parallel computation. [Wang and Yang 2016] introduced a Jacobi-
preconditioned gradient descent method specifically designed to
harness parallel computing capabilities. [Wang 2015] enhanced con-
vergence rates through Chebyshev acceleration while preserving
implementation simplicity. In recent developments, [Chen et al.
2024] achieved substantial performance improvements through a
vertex block descent method that employs vertex coloring for par-
allel Gauss-Seidel iterations on GPUs. While their approach offers
an elegant solution for GPU-based Gauss-Seidel iterations, block
Jacobi methods have established a strong theoretical foundation
for parallel preconditioning [Hegland and Saylor 1992; Sicot et al.
2008]. These methods naturally align with parallel architectures and
avoid the synchronization overhead inherent in colored schemes.
Our proposed smoother builds upon this tradition of block Jacobi
preconditioning, offering comparable convergence properties with
superior parallelization characteristics.

Despite these advances, physics-based simulation continues to
face significant challenges. Key areas requiring further research
include accelerating simulation rates for systems with high degrees
of freedom, expanding the range of supported material properties
(especially for highly stiff materials), and developing algorithms

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

Fast Galerkin Multigrid Method for Unstructured Meshes • 179:3

that fully utilize the computational capabilities of modern GPU
architectures.

Multigrid Methods in Graphics. Multigrid methods have demon-
strated remarkable success in achieving linear scaling with system
size across various simulation domains.

Multigrid methods can be used to solve linear systems on unstruc-
tured curved surfaces efficiently in [Liu et al. 2021]. In fluid simula-
tion [Wang et al. 2024], particularly for Eulerian frameworks where
grids are regular, multigrid methods have shown exceptional per-
formance. While the problem domain differs significantly from our
focus, notable contributions include [Aanjaneya et al. 2017; Chen-
tanez and Müller 2011; Dick et al. 2015; Ferstl et al. 2014; McAdams
et al. 2010; Shao et al. 2022; Weber et al. 2015]. For Material Point
Method simulations, [Wang et al. 2020] developed a specialized
hierarchical optimization algorithm combining Galerkin multigrid
with quasi-Newton methods, achieving robust and parameter-free
implicit time stepping. Cloth simulation represents another area
where multigrid methods have been extensively explored. [Lee et al.
2010] introduced a multi-resolution approach that identifies regions
with smooth solutions to solve linear systems in a reduced space.
[Jeon et al. 2013] developed a novel soft-constraint formulation for
multigrid solvers that effectively propagates point and sliding con-
straints across mesh levels. [Tamstorf et al. 2015] advanced the field
by applying smooth aggregation multigrid methods to cloth simula-
tion. [Wang et al. 2018] proposed a parallel-friendly full multigrid
method for cloth simulation, while [Wu et al. 2022] focused on a
multi-level additive Schwarz preconditioner with domain decom-
position, specifically designed for GPU acceleration. More recently,
[Ruan et al. 2024] introduced MiNNIE, a comprehensive framework
for real-time simulation of nonlinear near-incompressible elastics
that incorporates a mixed FEM formulation with pressure stabi-
lization and features a GPU multigrid solver with vertex Vanka
smoother. For practical implementations, [Naumov et al. 2015] de-
veloped AMGX, a GPU-accelerated algebraic multigrid library that
provides efficient parallel implementations of hierarchical solvers.

Our method relates to elastic body simulation using multigrid
approaches. Early contributions include [Georgii and Westermann
2006], which introduced a multigrid solver capable of handling lin-
ear, corotational, and nonlinear Green strain models. [Zhu et al.
2010] developed a parallel multigrid framework for high-resolution
elastic simulation that efficiently manages complex geometry and
boundary conditions using structured regular grids. This principle
was later adapted by [McAdams et al. 2011] for high-performance
soft tissue simulation, combining vectorized SVD, efficient multigrid
solving, and collision handling to achieve near-interactive rates for
production-quality character skinning. However, these approaches
face significant challenges when applied to unstructured meshes.
The Scalable Galerkin Method (SGM) [Xian et al. 2019] employs
a Galerkin approach with piecewise constant weights in skinning
space coordinates, using geometric construction for hierarchy lay-
ers. While innovative, this method has two main limitations: its
sequential computation across layers prevents full GPU utilization
for coarse layers, and it is restricted to homogeneous materials. The
more recent Multilevel Additive Schwarz (MAS) method [Wu et al.

2022], while primarily focused on cloth simulation, also demon-
strates results for elastic bodies. It employs domain decomposition
as a preconditioner with parallel computation across layers. How-
ever, this approach faces several constraints: it functions only as
a preconditioner rather than a standalone solver, incurs substan-
tial computational costs for matrix evaluation and precomputation,
and has been validated only for systems up to approximately 500K
points. Additionally, like SGM, it struggles with heterogeneous ma-
terials. Both methods utilize piecewise constant weights or selection
matrices for coarse projection, as this approach preserves sparsity
in coarse layer matrices and avoids the prohibitive storage and
computational costs associated with dense matrices.

Beyond traditional multigrid methods, various hierarchical ap-
proaches have been explored. [Müller 2015] applied hierarchical
structures to constraint solving, explicitly constructing coarse stretch
constraints for cloth simulation to reduce unrealistic stretching. Re-
cently, [Mercier-Aubin and Kry 2024] developed a multi-layer solver
for Position Based Dynamics (PBD) that leverages adaptive rigidity
within a hierarchical framework to accelerate constraint resolu-
tion. Progressive simulation methods have also adopted hierarchi-
cal structures, as demonstrated by [Zhang et al. 2022] and [Zhang
et al. 2023], which incrementally increase simulation detail. This
approach was further extended in [Zhang et al. 2024], combining
spatial hierarchies with time stepping through diagonal refinement.

Full Approximation Scheme. The Full Approximation Scheme, in-
troduced by [Brandt 1977], is a nonlinear multigrid method that
addresses nonlinear problems directly across multiple resolutions
without requiring linearization. Unlike traditional linear multigrid
methods that only transfer correction terms between levels, FAS
transfers both the solution and the residual, making it particularly ef-
fective for nonlinear elasticity problems. In computer graphics, FAS
has demonstrated its utility through various applications. [Otaduy
et al. 2007] employed it to incorporate collision handling at coarse
resolutions in adaptive deformation, while [McAdams et al. 2011] uti-
lized it for efficient high-resolution elastic simulation. The method’s
key strength lies in its preservation of nonlinear characteristics
across all resolution levels, enabling robust convergence for highly
nonlinear elastodynamic problems. Our work leverages FAS to con-
struct a simple yet efficient method suitable for fast, parallel GPU
computation.

3 Method
Having presented a comprehensive review of multigrid methods,
we note that Galerkin multigrid methods are widely adopted for
their natural handling of boundary conditions through full-space
problem construction with restriction and prolongation operators.
However, when applied to unstructured meshes, these methods
face a significant limitation: they generate dense coarse matrices
for irregular grids, leading to computational inefficiency. Previous
work, such as [Xian et al. 2019], addressed this by implementing
piecewise-constant weights to mitigate element explosion in coarse
problems.

While piecewise-linear operators could potentially offer smoother
interpolation and better convergence for multigrid methods, their
naive implementation results in dense coarse matrices, making them

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

179:4 • Jia-Ming Lu, Tailing Yuan, Zhe-Han Mo, and Shi-Min Hu

impractical for unstructured meshes. However, upon reviewing this
approach, we discovered a potential solution. Our key observation
stems from understanding the role of relaxation in multigrid meth-
ods: it primarily addresses high-frequency errors within each layer,
where local computations are sufficient. This is exemplified by meth-
ods like Jacobi-conditioned gradient descent [Wang and Yang 2016],
which effectively operates using local information. This locality
principle suggests that full matrix construction and global infor-
mation processing may be unnecessary for high-frequency error
reduction.

To formalize our method, we first review the classical multigrid
framework for linear systems. Consider a linear system 𝑨𝒙 = 𝒃 .
For a two-layer multigrid V-cycle with prolongation matrix 𝑷 and
restriction matrix 𝑹 = 𝑷⊤, the algorithm proceeds as follows:

ALGORITHM 1: A two-grid v-cycle for solving 𝑨𝒙 = 𝒃

1 Initialize 𝒙 = 𝒙0 ;
2 Apply pre-smoothing iterations to update 𝒙 ;
3 Compute residual 𝒓 = 𝒃 − 𝑨𝒙 ;
4 Restrict residual 𝒓𝑐 = 𝑷⊤𝒓 ;
5 Solve coarse system 𝑨𝑐𝒆𝑐 = 𝒓𝑐 ;
6 Update solution 𝒙 ← 𝒙 + 𝑷𝒆𝑐 ;
7 Apply post-smoothing to 𝒙 ;

The Full Approximation Scheme to nonlinear problems follows a
similar structure but with crucial modifications:

ALGORITHM 2: A two-grid FAS v-cycle for solving 𝑨(𝒙) = 𝒃

1 Initialize 𝒙 = 𝒙0 ;
2 Apply pre-smoothing iterations to update 𝒙 ;
3 Compute residual 𝒓 = 𝒃 − 𝑨(𝒙) ;
4 Compute restricted residual 𝒓𝑐 = 𝑷⊤𝒓 and solution approximation

𝒙𝑐 = 𝑷⊤𝒙 ;
5 Solve nonlinear coarse system 𝑨𝑐 (𝒙𝑐) = 𝑨𝑐 (𝒙𝑐) + 𝒓𝑐 ;
6 Update solution 𝒙 ← 𝒙 + 𝑷 (𝒙𝑐 − 𝒙𝑐) ;
7 Apply post-smoothing to 𝒙 ;

The distinguishing feature of FAS lies in its nonlinear coarse-grid
problem and the transfer of the full solution rather than just the
error correction between levels.

We now examine the Galerkin projection in both linear and non-
linear contexts. For linear systems, the Galerkin projection con-
structs the coarse matrix as 𝑨𝑐 = 𝑷⊤𝑨𝑷 . This naturally extends
to nonlinear problems as 𝑨𝑐 (𝒙𝑐) = 𝑷⊤𝑨(𝑷𝒙𝑐). The coarse-grid
equation can thus be reformulated as:

𝒈(𝒙𝑐) = 𝑷⊤𝑨(𝑷𝒙𝑐) − 𝑷⊤𝑨(𝑷𝒙𝑐) − 𝒓𝑐 = 0. (2)

To solve this nonlinear equation utilizing only local information, we
employ Jacobi-preconditioned gradient descent, which efficiently
reduces high-frequency errors while requiring only diagonal matrix
elements. For a nonlinear function 𝑔(𝑥), the update takes the form:

Δ𝒙𝑐 = −diag−1 (𝒈′ (𝒙𝑐))𝒈(𝒙𝑐). (3)

With initial guess 𝒙𝑐 = 𝒙𝑐 , we obtain:
𝒈(𝒙𝑐) = 𝑷⊤𝑨(𝑷𝒙𝑐) − 𝑷⊤𝑨(𝑷𝒙𝑐) − 𝒓𝑐

= −𝒓𝑐
= −𝑷⊤ (𝒃 −𝑨(𝒙)) .

(4)

The preconditioner takes the form:
diag(𝒈′ (𝒙𝑐)) = diag(𝑷⊤𝑨′ (𝑷𝒙𝑐)𝑷)

= diag(𝑷⊤𝑨′ (𝑷𝑷⊤𝒙)𝑷) .
(5)

Combining these expressions in Equation (3) yields:
Δ𝒙𝑐 = diag−1 (𝑷⊤𝑨′ (𝑷𝑷⊤𝒙)𝑷)𝑷⊤ (𝒃 −𝑨(𝒙)). (6)

A key insight emerges: explicit computation of 𝒙𝑐 is unnecessary;
we only need the prolongation operator for update calculations. We
observe that replacing the projection-interpolation term 𝑷𝑷⊤𝒙 with
𝒙 not only simplifies the implementation but also improves con-
vergence by preserving fine-scale information. This modification,
while affecting the preconditioner, maintains solution accuracy. The
resulting algorithm for solving Equation (1) is presented in Algo-
rithm 3. For notational clarity, let 𝑯 (𝒙) = ∇2𝜙 (𝒙) where 𝜙 (𝒙) is
the objective function in Equation (1).

ALGORITHM 3: A two-grid FAS v-cycle for 𝒙∗ = arg min𝒙 𝜙 (𝒙)
1 Initial guess 𝒙 = 𝒙0 ;
2 Pre-smooth, update 𝒙 ← 𝒙 − (diag(𝑯 (𝒙)))−1∇𝜙 (𝒙) ;
3 Solve the coarse problem and get the coarse updation

Δ𝒙𝑐 = −(diag(𝑷⊤𝑯 (𝒙)𝑷))−1𝑷⊤ (∇𝜙 (𝒙)) ;
4 Update 𝒙 ← 𝒙 + 𝑷Δ𝒙𝑐 ;
5 Post-smooth, update 𝒙 ← 𝒙 − (diag(𝑯 (𝒙)))−1∇𝜙 (𝒙) ;

Our algorithm offers significant computational advantages over
the standard two-layer V-cycle multigrid method. The primary com-
putations reduce to: the diagonal elements 𝑫𝑐 = diag(𝑷⊤𝑯 (𝒙)𝑷)
and the function residual projection 𝑷⊤∇𝜙 (𝒙). The latter, being
a vector projection, is naturally amenable to parallel implementa-
tion. The computational complexity primarily lies in evaluating 𝑫𝑐 ,
which takes the form:

(𝑫𝑐)𝑖 𝑗 =
{
𝒑⊤𝑖 𝑯 (𝒙)𝒑𝑖 , 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
(7)

For each nonzero diagonal element (𝑫𝑐)𝑖𝑖 , computation requires
collecting matrix elements of 𝑯 (𝒙) associated with coarse element
𝑖 , forming a block 𝑩(𝒙, 𝑖). Given the 𝑖-th row of 𝑷 denoted as 𝒑𝑖 ,
we compute (𝑫𝑐)𝑖𝑖 = 𝒑⊤𝑖 𝑩(𝒙, 𝑖)𝒑𝑖 . This formulation eliminates the
need to construct and store dense coarse-level matrices. The efficient
implementation of this approach is detailed in the following sections.

4 Fast Matrix-Free Smoother

4.1 Choice of Smoother
Block Size Considerations. The choice of block size in multigrid

smoothers involves a fundamental trade-off: larger blocks achieve
better convergence per iteration through comprehensive local infor-
mation exchange but require more computational resources, while

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

Fast Galerkin Multigrid Method for Unstructured Meshes • 179:5

smaller blocks offer lower per-iteration cost but may need more iter-
ations. Modern GPU architectures add complexity to this trade-off,
as different block sizes align with different levels of GPU hierarchy,
making block size selection both a mathematical and hardware-
aware design choice.

A key question is whether we can adopt larger GPU-friendly
blocks similar to MAS [Wu et al. 2022]. However, our approach
differs fundamentally from MAS in design philosophy. While MAS
focuses primarily on accelerating iterative convergence, our method
aims to leverage both faster convergence and the advantages of fre-
quent updates with small time steps. This design difference leads to
distinct update frequency requirements: MAS operates as a precon-
ditioner with relatively static matrix information, while our method
necessitates frequent matrix updates at each level.

Constructing larger blocks at coarse levels would create signifi-
cant overhead, as each coarse node corresponds to many fine-level
nodes, making the assembly process substantially more expensive
than fine-level operations. Our goal is to balance smoother itera-
tion efficiency with frequent update overhead, ensuring multigrid
benefits are not overshadowed by assembly costs.

Our Approach. Base on these considerations, we focus on vertex-
level block selection and demonstrate its advantages in achieving
this balance. We employ a Jacobi gradient descent smoother with
vertex-based blocking inspired by VBD [Chen et al. 2024]. While
standard Jacobi methods utilize scalar diagonal elements, our vertex
block approach processes 3×3 blocks corresponding to vertex de-
grees of freedom, delivering superior convergence with comparable
computational overhead.

0 100 200 300 400 500

Iteration

102

103

104

Er
ro

r(
lo

g
sc

al
e) Block Jacobi: Initial: 1.06e+04, Final: 3.18e+01, Reduction: 99.70%

Diagonal Jacobi: Initial: 1.06e+04, Final: 2.54e+03, Reduction: 75.96%
VBD: Initial: 1.06e+04, Final: 1.51e+01, Reduction: 99.86%

Convergence Comparison
Block Jacobi
Diagonal Jacobi
VBD

0 20 40 60 80 100

Time (s)

102

103

104

Er
ro

r(
lo

g
sc

al
e)

Block Jacobi: Initial: 1.06e+04, Final: 1.23e+02, Reduction: 98.84%
VBD: Initial: 1.06e+04, Final: 7.74e+01, Reduction: 99.27%

Block Jacobi (matrix-free): Initial: 1.06e+04, Final: 2.35e+01, Reduction: 99.78%
VBD (matrix-free): Initial: 1.06e+04, Final: 2.78e+01, Reduction: 99.74%

Time Cost Comparison
Block Jacobi
VBD
Block Jacobi (matrix-free)
VBD (matrix-free)

Fig. 2. Smoother performance comparison on a 100K-element bunny drape
simulation. Left: convergence comparison between diagonal Jacobi, vertex
block Jacobi, and VBD methods. Right: time-to-error comparison between
different smoother implementations. Our matrix-free vertex block Jacobi
method achieves the fastest error reduction, outperforming all alternatives.

We evaluated smoother performance using a 100K-element bunny
drape simulation with 1m/s initial velocity, Young’s modulus of 109

Pa, and fixed step size (𝛼 = 0.7). As shown in Figure 2, our vertex
block Jacobi method demonstrates superior performance in both
convergence rate and computational efficiency.

The left plot in Figure 2 shows that our matrix-free vertex block
Jacobi method achieves faster time-to-solution performance than
matrix-free VBD, despite VBD’s superior per-iteration convergence
rate. This advantage stems from our approach requiring significantly
less computation time per iteration, providing an optimal balance
between mathematical effectiveness and computational efficiency.

The right plot in Figure 2 compares matrix-explicit and matrix-
free variants for both block Jacobi and VBD methods (implementa-
tion details in Section 4.2). Our matrix-free implementations demon-
strate more than an order of magnitude speedup compared to their
matrix-explicit counterparts, highlighting the substantial perfor-
mance advantages of our matrix-free formulation across different
smoother types.

4.2 Matrix-Free Vertex Block Jacobi
In Galerkin methods, fine points connect to multiple coarse parents,
creating overlapping blocks. While computationally lighter than
full coarse matrix assembly, computing diagonal elements (𝑫𝑐)𝑖𝑖 =
𝒑⊤𝑖 𝑩(𝒙, 𝑖)𝒑𝑖 remains expensive. This cost is primarily due to elastic
terms where the tet-to-vertex ratio typically ranges from 5-8x.

Previous work [Chen et al. 2024] proposes a GPU warp-level
gather strategy where each point aggregates contributions from
neighboring elements. This approach enables efficient point col-
oring with minimal color counts and leverages GPU warp-level
synchronization. However, it induces 4x memory reads as each el-
ement is processed four times. To reduce memory overhead, we
adopt an element-wise scatter approach. However, the naive im-
plementation requires computing 12 × 12 matrix per element and
updating 3 × 3 blocks, this proves GPU-inefficient due to thread-
level resource constraints and memory bandwidth limitations when
handling 144-element matrices.

To overcome the computational bottlenecks, we present an effi-
cient matrix-free formulation for computing (𝑫𝑐)𝑖𝑖 . Our approach
builds upon the Hessian formulation of the stable neo-Hookean
model [Kim and Eberle 2020]:

𝜕2Ψ

𝜕𝒙2 =

(
𝜕𝑭

𝜕𝒙

)⊤
𝜕2Ψ

𝜕𝑭 2
𝜕𝑭

𝜕𝒙
, (8)

where Ψ denotes the strain energy density function, 𝑭 represents
the deformation gradient, and 𝒙 contains the nodal positions of
the tetrahedral mesh. The key computation involves the diagonal
contribution from a fine element to its associated coarse parent 𝑖:

(𝑫𝑐)𝑖 = 𝒑⊤𝑖
𝜕2Ψ

𝜕𝒙2 𝒑𝑖 = 𝒑⊤𝑖

(
𝜕𝑭

𝜕𝒙

)⊤
𝜕2Ψ

𝜕𝑭 2
𝜕𝑭

𝜕𝒙
𝒑𝑖 . (9)

The prolongation operator 𝒑𝑖 ∈ R12×3 takes the form:

©­­­«
𝑤0𝑰3
𝑤1𝑰3
𝑤2𝑰3
𝑤3𝑰3

ª®®®¬ . (10)

Here, 𝑰3 represents the 3× 3 identity matrix, and the scalars 𝑤𝑘 ∈ R
(𝑘 = 0, 1, 2, 3) encode the interpolation weights between the vertices
of a fine tetrahedron and a coarse vertex. These weights are dis-
tinct from the barycentric weights used in standard prolongation
operations—𝑤𝑘 quantifies the interpolation relationship between
coarse vertex 𝑖 and the 𝑘-th vertex of the fine tetrahedron, vanishing
(𝑤𝑘 = 0) when no connection exists between the vertices.

Following [Kim and Eberle 2020], 𝜕𝑭
𝜕𝒙 is a 9 × 12 matrix of 𝑎𝑰3

blocks, where 𝑎 corresponds to elements of matrix 𝑩. The product

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

179:6 • Jia-Ming Lu, Tailing Yuan, Zhe-Han Mo, and Shi-Min Hu

of 𝜕𝑭
𝜕𝒙 and 𝒑𝑖 yields:

𝑼 =
𝜕𝑭

𝜕𝒙
𝒑𝑖 =

©­«
𝑢0𝑰3
𝑢1𝑰3
𝑢2𝑰3

ª®¬ , (11)

with coefficients:
𝑢0 = (𝑤1 −𝑤0)𝑩00 + (𝑤2 −𝑤0)𝑩10 + (𝑤3 −𝑤0)𝑩20

𝑢1 = (𝑤1 −𝑤0)𝑩01 + (𝑤2 −𝑤0)𝑩11 + (𝑤3 −𝑤0)𝑩21

𝑢2 = (𝑤1 −𝑤0)𝑩02 + (𝑤2 −𝑤0)𝑩12 + (𝑤3 −𝑤0)𝑩22 .

(12)

For the stable neo-Hookean model, 𝜕2Ψ
𝜕𝑭 2 consists of:

𝜕2Ψ

𝜕𝑭 2 = 𝜇𝑰9 + (𝜆(𝐽 − 1) − 𝜇)𝑯volume + 𝜆𝒈̂𝒈̂⊤, (13)

where 𝜇 and 𝜆 are Lamé parameters, 𝐽 is the determinant of 𝑭 , 𝒈̂
is the flattened vector of 𝜕𝐽

𝜕𝑭 , and 𝑯volume is constructed from cross
matrices of 𝑭 ’s columns 𝒇0,𝒇1,𝒇2. We can get a vector 𝒛 by:

𝒛 = 𝒈̂⊤𝑼 = 𝑢0 (𝒇1 × 𝒇2) + 𝑢1 (𝒇2 × 𝒇0) + 𝑢2 (𝒇0 × 𝒇1) . (14)

Substituting these terms into Equation (9) yields an simplified
element contribution:

(𝑫𝑐)𝑖 = 𝒑⊤𝑖
𝜕2Ψ

𝜕𝒙2 𝒑𝑖 = 𝜇 (𝑢2
0 + 𝑢2

1 + 𝑢2
2)𝑰3 + 𝜆𝒛𝒛⊤ . (15)

A notable observation is that the 𝑯volume contribution vanishes due
to its specialized structure as a cross matrix of cross matrices. The
gradient computation follows a similar simplification, here vec is a
function which flatten a matrix:

(𝒃𝑐)𝑖 = 𝒑⊤𝑖
𝜕Ψ

𝜕𝒙
= 𝒑⊤𝑖 (

𝜕𝑭

𝜕𝒙
)⊤vec(𝜕Ψ

𝜕𝑭
)

= 𝜇 (𝑢0𝒇0 + 𝑢1𝒇1 + 𝑢2𝒇2) + (𝜆(𝐽 − 1) − 𝜇)𝒛 .
(16)

This matrix-free formulation dramatically reduces computational
overhead by replacing the traditional 12 × 12 matrix operations
with efficient 3 × 1 vector operations per tetrahedral element. With
precomputed 𝑢0, 𝑢1, 𝑢2, the runtime complexity reduces to comput-
ing the deformation gradient 𝑭 followed by a series of lightweight
vector operations. Each element requires this computation for its
associated coarse elements—typically four to five times per element,
corresponding to cases where a fine element either resides within
a coarse element (four times) or intersects a face between two ele-
ments (five times). While we derived this formulation for the stable
neo-Hookean model, the matrix-free approach generalizes to other
constitutive models, offering similar computational benefits.

5 Multigrid Method Implementation
Our method employs geometric approaches for hierarchy construc-
tion and Galerkin operator computation. We present two distinct
formulations: piece-wise constant and piece-wise linear, each with
unique characteristics and performance profiles. Our comprehen-
sive evaluations demonstrate that the piece-wise constant Galerkin
method delivers superior GPU performance due to significantly
reduced computational requirements in coarse layers. While we
present both approaches for completeness, readers should note that
our constant Galerkin implementation represents the recommended
configuration for practical applications. The linear Galerkin method
is included as an alternative formulation to illustrate the design

space, though it does not achieve the same computational efficiency
in our GPU-oriented implementation.

5.1 Hierarchy Construction
Our hierarchy construction leverages the algorithmic framework
established in Section 3, implementing two distinct approaches for
different computational trade-offs.

5.1.1 Piece-wise Constant Approach. We formulate the hierarchy
construction as a graph clustering problem, establishing non-overlapping
tetrahedral partitions with a piece-to-one mapping between fine
points and coarse parents. Unlike classical multigrid algorithms
that construct hierarchies sequentially, our method builds different
layers independently, which we found yields optimal convergence.

Specifically, we adopt the strategy from [Mahmoud et al. 2021] to
construct equally-sized tetrahedral pieces, employing a coarsening
ratio of 8 to scale piece sizes between levels. This approach aligns
with prior works such as SGM and MAS, which employ similar
piece-wise constant formulations through their respective "piece-
wise constant matrix" and "selection matrix."

Fig. 3. Illustration of piece-wise
constant discretization on a tri-
angulated domain. The blue region
represents a single piece, where dark
blue triangles indicate boundary el-
ements requiring force term calcula-
tions. Light blue triangles represent
internal elements that can be ignored
in coarse layers since their net forces
sum to zero.

A key optimization en-
abled by this coarse struc-
ture construction is that
during subsequent multi-
grid operations, coarse lay-
ers need not process all
tetrahedra, as internal tetra-
hedra do not influence the
final result when applying
coarsening operators. As il-
lustrated in Figure 3, only
boundary elements subject
to external forces need to
be processed during re-
striction and prolongation
operations, which signif-
icantly reduces computa-
tional overhead in coarse
layers.

5.1.2 Piece-wise Linear Approach. For our piece-wise linear ap-
proach, we discretize the object using a hierarchy of tetrahedra,
where each coarse layer employs elements twice the size of its pre-
decessor, yielding an approximate 8:1 reduction in vertex count
between successive levels. This approach requires processing the
complete set of finest elements across hierarchy levels.

We extend the coarse tetrahedral mesh to maximize coverage
of fine tetrahedra, with special handling for boundary cases. For
regions falling outside the coarse domain, we remove negative
barycentric weights and renormalize. While this approximation
could theoretically affect convergence, our experiments show these
edge cases are rare and effectively addressed by finer resolution
levels in our hierarchical solver structure.

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

Fast Galerkin Multigrid Method for Unstructured Meshes • 179:7

Fig. 4. Hierarchy visualization of our multigrid structure on the Stanford
bunny model. Left: finest layer with individual points. Middle: layer 1 with
initial patch merging. Right: layer 2 with larger consolidated patches. The
gold region indicates fixed boundary constraints.

5.2 Prolongation and Restriction Operators
5.2.1 Constant Galerkin Formulation. For a cluster of tetrahedra
with a residual function, the restriction operator in our piece-wise
constant formulation is:

𝒇𝑐 (𝒙) = 𝑷⊤𝒇 (𝒙) = 𝑷⊤𝑴 (𝒙 − 𝒙̂) + 𝑷⊤
∑︁
𝑖∈𝑆
∇𝐸𝑖 (𝒙) . (17)

The piece-wise constant operator aggregates forces across ele-
ments, exploiting the principle that internal forces sum to zero. By
ignoring internal elements and retaining only boundary elements,
we achieve computational efficiency in coarse layers. However, this
optimization may result in slower convergence compared to linear
interpolation, potentially requiring additional iterations.

While piece-wise constant coefficients can be used with skin-
ning space coordinates as in SGM, the introduced terms prevent us
from ignoring internal elements, thus negating the computational
advantages.

5.2.2 Linear Galerkin Formulation. The prolongation operator is
constructed via barycentric interpolation between the finest layer
and each coarse layer. To optimize the computational complexity
inherent in managing four coarse parents per vertex and four ver-
tices per tetrahedron, we implement a precomputation and merging
strategy for element coarse parents.

5.3 Method Component Analysis
5.3.1 Hierarchy Configuration. Our hierarchy construction estab-
lishes direct connections between the finest layer and each coarse
layer. While traditional 3D problems typically use a coarsening
factor of 8, our experiments demonstrate that a scale factor of 32
provides an optimal balance between computational efficiency and
solution accuracy. We therefore adopt 32 as our standard scaling
factor across most experiments.

Figure 4 illustrates this hierarchy structure using a 50K vertex
Stanford bunny model decomposed into three distinct layers. The
left image shows the finest layer where each point is individually
represented. The middle image displays the first coarsened layer
(layer 1), where points are merged into small patches. The right-
most image presents the second coarsened layer (layer 2), featuring
larger consolidated patches. The gold-colored region in each image
indicates the fixed boundary constraints of the model.

5.3.2 Multigrid Cycle Strategies. Our formulation enables straight-
forward implementation of traditional cycle patterns (V-cycle, F-
cycle, W-cycle) since each coarse layer computes directly from the
finest layer. However, our experiments demonstrate that a simple
coarse-to-fine progression yields the best efficiency. This finding
aligns with optimization principles where smaller, more frequent
steps typically outperform fewer, larger steps. We achieve better re-
sults by increasing the number of sub-timesteps, each with a single
coarse-to-fine pass, rather than using complex cycle patterns.

5.3.3 Smoothing Pass Optimization. Following similar reasoning
to our cycle strategy, we found that multiple pre-smooth or post-
smooth passes within each level effectively function as additional
iterations. Our experiments confirm that single smoothing passes
with more frequent sub-timesteps achieve lower error with equiva-
lent computational cost.

5.4 Complete Algorithm
Here, we present our complete multigrid algorithm. Algorithm 4
outlines our full multigrid method with full grid hierarchy and FAS
formulation. Our method is notably concise, requiring only a simple
coarse-to-fine loop to process the multilevel grid hierarchy. This
simplicity stems from our direct FAS design that connects the finest
grid directly to each coarse grid, eliminating the need for complex
intergrid transfers found in traditional multigrid approaches.

ALGORITHM 4: Full Multigrid FAS with Vertex Block Jacobi
1 Initialize multigrid hierarchy ;
2 Initialize restriction and prologation weights 𝑷𝑙 for every layer 𝑙 ;
3 for each frame do
4 for 𝑠 = 1 to sub-timesteps do
5 Initial guess 𝒙 = 𝒙𝑛 + 𝒗𝑛Δ𝑡 + 𝒈Δ𝑡2, here 𝒙𝑛 and 𝒗𝑛 are

position and velocity of last sub-timestep ;
6 if Is collision pass then
7 Collect collision pairs ;
8 for layer = coarse to fine do
9 for each valid element 𝑒 do
10 for related coarse point 𝑖 to element 𝑒 do
11 Compute the diagonal Hessian blocks 𝑯𝑐,𝑖 and

gradients 𝒈𝑐,𝑖 with our matrix-free method ;
12 Add the 𝑯𝑐,𝑖 and 𝒈𝑐,𝑖 to point 𝑖 ;

13 Solve coarse problem Δ𝒙𝑐 ← −(diag(𝑯𝑐)−1𝒈𝑐 ;
14 Apply correction 𝒙 ← 𝒙 + 𝑷𝑙Δ𝒙𝑐 ;
15 Update new positions 𝒙𝑛+1 = 𝒙 and velocities 𝒗𝑛+1 =

𝒙−𝒙𝑛
Δ𝑡 ;

6 Evaluation
This section presents a comprehensive evaluation of our method.
We begin by describing our evaluation methodology and rationale
to ensure clarity and reproducibility. Our experimental results are
organized as follows: First, we directly compare our approach with
state-of-the-art methods to demonstrate its efficacy. Second, we pro-
vide detailed single-threaded CPU comparisons to analyze the com-
putational complexity of different approaches. Finally, we subject

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

179:8 • Jia-Ming Lu, Tailing Yuan, Zhe-Han Mo, and Shi-Min Hu

our method to extreme test cases and diverse scene configurations
to validate its stability and versatility across a wide range of simula-
tion scenarios. Detailed simulation parameters and computational
costs are presented in Table 1.

Termination Error. Traditional approaches to measuring conver-
gence typically employ relative energy or residual errors. However,
these metrics inadequately capture the full complexity of simula-
tion accuracy. They overlook cumulative errors during simulation,
particularly in implementations with fixed iteration counts, and fail
to reflect the accumulation of simulation errors that affect visual
accuracy. We therefore adopt an absolute error metric:

𝜖 (𝒙) = 1
√
𝑁
| (𝒙 − 𝒙̂) +𝑴−1Δ𝑡2∇𝐸 (𝒙) |, (18)

where 𝑁 represents the number of points.

Performance Measurement Methodology. Performance measure-
ment, particularly computational cost evaluation, is critical for fair
comparisons. Since implementation details (especially in GPU par-
allel implementations) can significantly influence results, we fol-
lowed specific principles to ensure fairness. For GPU comparisons,
which are most relevant to real-world applications, we compared
our optimized GPU implementation against previously released op-
timized versions of existing methods to demonstrate efficiency gains.
Additionally, we conducted single-threaded CPU comparisons to
eliminate parallelism variables and provide a clearer assessment of
the fundamental computational requirements of each method.

Time Step Selection. Timestep selection proves crucial for overall
solver performance. Our experiments corroborate the findings in
[Macklin et al. 2019], showing that converting iterations to sub-
timesteps yields superior accuracy. For standard Newton methods
requiring explicit Hessian matrix construction and linear system
solutions, larger timesteps remain computationally advantageous
due to the high cost of matrix assembly. However, our matrix-free
approach fundamentally alters this trade-off. Without the overhead
of explicit matrix construction, smaller timesteps consistently out-
perform larger ones. Our experiments with fixed termination error
criteria reveal an optimal timestep selection for the smoother, as
illustrated in Figure 5. In our experiments, we use small time steps
to achieve best performance.

6.1 Performance Evaluation with Previous Methods
We conducted comprehensive comparisons with publicly available
implementations of state-of-the-art methods, specifically SGM [Xian
et al. 2019] and VBD [Chen et al. 2024], to ensure a fair and rigorous
validation of our approach. Due to compatibility constraints, we
compared with SGM using an NVIDIA RTX 2070 GPU (as SGM’s
code requires CUDA 10, incompatible with newer GPUs), while
VBD comparisons were performed on an RTX 4090 GPU using their
CUDA 11.8 implementation. In the following sections, we present
separate evaluations against both SGM and VBD to demonstrate our
method’s effectiveness. An important note regarding methodology:
although all three methods (ours, SGM, and VBD) can benefit from
Chebyshev acceleration, we deliberately disabled this optimization

0 20 40 60 80 100

Number of Substeps

0

10

20

30

40

50

60

Co
m

pu
ta

tio
n

Ti
m

e
(s)

Computation Time vs. Substeps
Newton
VBD
Vertex Jacobi

Fig. 5. Impact of timestep selection on solver performance. The hor-
izontal axis represents the number of sub-timesteps per frame, while the
vertical axis shows the average computation time (in seconds) needed to sim-
ulate one frame. The V-shaped curve reveals an optimal sub-timestep count
that balances computational efficiency: increasing sub-timesteps initially
improves performance dramatically, but beyond the optimal point, addi-
tional sub-timesteps lead to gradually increasing computational costs. This
demonstrates the trade-off between convergence rate and sub-timesteps
count in our matrix-free framework. We use a bunny drape scene with 20K
particles to test the effect of time step selection.

in all implementations to eliminate any potential bias from param-
eter selection, ensuring a more equitable comparison of the core
algorithms. Our test scenario is illustrated in Figure 6.

Fig. 6. The bunny drape test scene (200K vertices) used in our performance
evaluations, shown at frames 0, 10, and 20 to illustrate the simulation
dynamics.

Comparisonwith VBD. To thoroughly evaluate our method against
VBD, we conducted two distinct experiments: one focusing on con-
vergence analysis within a single sub-timestep across multiple it-
erations, and another examining performance efficiency during
practical simulation using fixed small steps with just one iteration
per sub-timestep.

For our convergence analysis, we used the bunny drape scene
to observe the behavior during the first sub-timestep. Figure 7a
presents both the error-iterations relationship (left) and the error-
time performance (right), clearly demonstrating that our method per-
forms better than VBD. As shown in the plots, our method achieves
lower error values with fewer iterations and reaches convergence
more rapidly in terms of computational time.

For our efficiency evaluation, we implemented both methods us-
ing 100 sub-timesteps with a single iteration per sub-timestep, and
monitored their performance throughout the entire simulation. Fig-
ure 7c illustrates the computational cost (right) and error metrics

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

Fast Galerkin Multigrid Method for Unstructured Meshes • 179:9

Table 1. Simulation Parameters and Performance. Parameters and computation time for various test scenes. #Points and #Tets represent mesh resolution
in number of vertices and tetrahedral elements. 𝐸 is Young’s modulus (Pa) indicating material stiffness, with 𝜈 being Poisson’s ratio and 𝜌 the material density
(kg/m3). Damping coefficient controls energy dissipation rate. Contact parameters 𝑘𝑐 (stiffness, Pa) and 𝜇𝑐 (friction coefficient) govern collision response.
𝑠layer |𝑁layer indicates scale between layers and number of layers. Substeps show time step subdivisions per frame, while Iterations represent solver iterations
per sub-timestep. Time Per Frame shows computation time for each frame with 1/60s time clip. Dashes ("-") indicate parameters varying across experiments as
detailed in the corresponding sections or not used. Frames shows the total frames number of simulation, and the precision shows the float number precision
we use during simulation.

Scene #Points #Tets 𝐸 𝜈 𝜌 Damping 𝑘𝑐 𝜇𝑐 𝑠layer |𝑁layer Sub-timesteps Iterations Precision Time Per Frame Frames
Bunny Drape (200K Points) 205K 1.27M 106 0.4 1 0 - - 8 | full - - float - -

Bunny Stretch 44K 266K 106 0.4 2600 2−5 - - 32 | full 100 1 double 0.13 s 120
Cube 26K 162K 106 0.4 2600 2 × 10−5 - - 32 | full 100 1 double 0.068 s 60

Teapot 22K 88K 106 0.4 2600 8 × 10−6 - - 32 | full 20 1 double 0.008 s 120
Armardillo Flat 15K 55K 106 0.4 2600 8 × 10−6 - - 32 | full 100 1 double 0.032 s 120
Beam Stretch 537 1.7K 106 - 2600 2 × 10−5 - - 32 | full 100 1 double 0.002 s 120

Buddha 163K 920K 108 0.4 2600 10−8 - - 32 | full 800 1 double 3.1 s 120
Many Armardillos 142K 574K 106 0.4 2600 2 × 10−7 106 0.3 32 | full 200 1 double 2.5 s 600

Squishy Ball 352K 1.04M 106 0.4 2600 2 × 10−7 106 0.3 32 | 2 400 1 double 1.41 s 600
Dragon Drop (1M Points) 1.15M 4.88M 106 0.4 2600 10−7 106 0.3 32 | full 400 1 float 1.15 s 100
Bunny Drape (1M Points) 1.19M 7.52M 106 0.4 2600 10−8 - - 32 | full 400 1 float 1.6 s 600

250 500 750 1000 1250 1500 1750 2000

Iteration Number

101

102

Er
ro

r(
lo

g
sc

al
e)

Ours (Constant Galerkin)
VBD

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Simulation Time

101

102

Er
ro

r(
lo

g
sc

al
e)

Ours (Constant Galerkin)
VBD

(a) VBD: Single-substep convergence analysis

0 250 500 750 1000 1250 1500 1750 2000

Iteration Number

101

102

103

104

Er
ro

r(
lo

g
sc

al
e)

Ours (Constant Galerkin)
SGM

0 2 4 6 8 10

Simulation Time

101

102

103

104

Er
ro

r(
lo

g
sc

al
e)

Ours (Constant Galerkin)
SGM

(b) SGM: Single-substep convergence analysis

0 100 200 300 400 500 600

Data Index

10−6

2× 10−6

3× 10−6

4× 10−6

Er
ro

r(
lo

g
sc

al
e)

Ours (Constant Galerkin)
VBD

0 100 200 300 400 500 600

Data Index

0.00

0.05

0.10

0.15

0.20

Si
m

ul
at

io
n

Ti
m

e

Ours (Constant Galerkin)
VBD

(c) VBD: Multi-frame performance comparison

0 100 200 300 400 500

Data Index

10−4

10−3

Er
ro

r(
lo

g
sc

al
e)

Ours (Constant Galerkin)
SGM

0 100 200 300 400 500

Data Index

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Si
m

ul
at

io
n

Ti
m

e

Ours (Constant Galerkin)
SGM

(d) SGM: Multi-frame performance comparison

Fig. 7. Comprehensive performance comparison with VBD and SGM methods. (a) VBD single-substep convergence showing our method achieves lower error
with fewer iterations and faster computational time. (b) SGM single-substep convergence analysis demonstrating baseline performance metrics. (c) VBD
multi-frame performance comparison showing our method maintains consistently lower error values and reduced computational overhead throughout the
simulation. (d) SGM multi-frame performance using 300 sub-timesteps for our method, demonstrating approximately 50% lower error while requiring only
half the computational resources compared to SGM.

(left) for all sub-timesteps across the simulation timeline, showing
that the error and time cost are both better than VBD. The con-
sistently lower error values and reduced computational overhead
demonstrate our method’s superior efficiency in practical simulation
scenarios.

Comparison with SGM. We evaluated SGM’s implementation us-
ing identical scene configurations and simulation parameters. Simi-
lar to our VBD comparison, we conducted two types of experiments:
single-substep convergence analysis and practical simulation with
small steps.

In the single-substep convergence analysis shown in Figure 7b,
SGM demonstrates superior performance in terms of both conver-
gence rate and computational efficiency. However, several important

factors influence these results. First, our method was specifically
optimized for RTX 4090 GPUs but run without adaptation on the
RTX 2070 used in this comparison. In contrast, the original SGM
implementation leverages CUDA 10.0’s cuBLAS libraries, which are
specifically optimized for the Turing architecture of the RTX 2070.
Despite these architectural advantages for SGM, our method still
achieves better performance in practical multi-frame simulations,
as shown in the second experiment, even without platform-specific
optimizations.

For our practical efficiency evaluation, we configured SGM with
100 sub-timesteps per frame and one multigrid iteration per sub-
timestep as a baseline. Our analysis revealed that one iteration of

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

179:10 • Jia-Ming Lu, Tailing Yuan, Zhe-Han Mo, and Shi-Min Hu

our constant Galerkin multigrid method is substantially less compu-
tationally intensive than SGM’s iteration, which enables our method
to benefit more from smaller time steps. We examined a 300 sub-
timestep configuration for our method (Figure 7d), which reduced
the error by approximately 50% compared to SGM while requiring
only half the computational resources. This clearly demonstrates
that our method outperforms SGM in realistic application scenarios,
offering a superior balance between accuracy and computational
efficiency.

6.2 Performance Evaluation on Single-Threaded CPU
In the last section, we compared GPU performance between differ-
ent methods. Here, we evaluate single-threaded CPU performance
to demonstrate that our approach not only excels in parallel envi-
ronments but also reduces overall computational cost and achieves
superior performance in sequential implementations. For fair com-
parison, we use straightforward implementations for all methods.
We compare the performance of six methods:
• Jacobi-PreconditionedConjugateGradient (PCG):A stan-

dard iterative solver widely adopted in previous works like
SGM, MAS, and AMG. We configure it with adaptive New-
ton iterations and a fixed relative error tolerance of 5 × 10−3,
matching the settings used in AMG [Tamstorf et al. 2015] for
fair comparison.
• AMGCL: An algebraic multigrid library representing tradi-

tional multigrid implementations, providing a benchmark
against established frameworks.
• Matrix-Free VBD: VBD [Chen et al. 2024] method enhanced

with our matrix-free optimization to accelerate matrix com-
putations.
• Matrix-Free Jacobi (Our Smoother):Our baseline smoother

implementation described in Section 4, demonstrating the fun-
damental performance benefits of the matrix-free approach.
• Piecewise Constant Multigrid (Our Method): Our imple-

mentation of the piecewise constant Galerkin formulation
detailed in Section 5.
• Piecewise Linear Multigrid (Our Method): Our imple-

mentation featuring piecewise linear Galerkin formulation
from Section 5.

6.2.1 Performance on Different Resolution. A critical measure of
multigrid method effectiveness is its scalability across different res-
olutions. Our comparative analysis examines performance metrics
with detailed results shown in Figure 8.

As demonstrated in the left plot, our multigrid methods signifi-
cantly outperform traditional approaches in CPU computation time
across all resolutions. The constant Galerkin variant achieves the
lowest computation time among all methods, with the performance
gap widening as resolution increases. At 1M elements, our method
demonstrates more than 6x speedup over Jacobi-PCG. The middle
plot reveals an important convergence behavior: while the Jacobi
smoother requires increasingly more sub-timesteps at higher resolu-
tions, our multigrid methods maintain nearly constant sub-timestep
counts regardless of resolution. This stability is crucial for handling
complex, high-resolution meshes efficiently. The iteration count
comparison (right plot) further illustrates our method’s efficiency.

Both Jacobi-PCG and AMGCL require significantly more inner iter-
ations, with their counts growing rapidly at higher resolutions. In
contrast, our multigrid approach maintains relatively stable iteration
requirements across all test cases.

Table 2 quantifies these improvements, showing our constant
Galerkin multigrid achieves speedups ranging from 2.15x to 6.90x
over the baseline Jacobi-PCG. Notably, our method’s advantage
becomes more pronounced at higher resolutions, reaching a 6.90x
speedup for meshes with 1M elements.

Table 2. Performance comparison across different mesh resolutions,
with Jacobi-PCG as the baseline. Our multigrid method demonstrates
consistent speedup across all resolutions, achieving particularly significant
improvements for high-resolution simulations. At 1M vertices, our method
achieves a 6.90x speedup over the baseline, highlighting its efficiency for
large-scale simulations.

Resolution 2K 10K 20K 100K 200K 500K 1M
Jacobi-PCG 1.0 1.0 1.0 1.0 1.0 1.0 1.0

AMGCL 0.47 0.65 0.50 0.69 0.69 0.60 0.88
VBD 1.43 1.66 1.70 1.82 1.92 1.95 3.89

Jacobi-Smoother 1.73 1.74 2.02 2.56 2.57 1.52 3.74
Ours (Constant) 2.15 2.49 2.71 4.25 4.28 3.36 6.90

Ours (Linear) 1.71 2.15 2.46 3.72 4.68 2.82 5.46

6.2.2 Performance Across Stiffness Ranges. Figure 9 presents our
performance analysis across varying stiffness values from 103 to
108. As shown in the left plot, our methods consistently achieve the
lowest computation times across all stiffness ranges. The middle
plot reveals that while all methods require more sub-timesteps as
stiffness increases, our multigrid approaches maintain the lowest
sub-timestep counts across the spectrum. The right plot demon-
strates that our methods require significantly fewer inner iterations
than both Jacobi-PCG and AMGCL across all stiffness values.

Table 3 quantifies these improvements, showing our constant
Galerkin formulation achieves up to 6.19x speedup over the baseline
at low stiffness, while maintaining robust 2.45x-2.86x improvements
even at the highest stiffness values. This consistent performance
advantage across diverse material properties demonstrates the ver-
satility and efficiency of our approach.

Table 3. Performance comparison across varying material stiffness
values, with Jacobi-PCG as the baseline. Experiments conducted on the
bunny drape scene with 200K vertices. Our multigrid methods demonstrate
superior performance across all stiffness ranges. At lower stiffness, our
constant formulation achieves up to 6.19x speedup, while at extreme stiffness
(108), both formulations maintain robust performance advantages.

Stiffness 103 104 105 106 107 108

Jacobi-PCG 1.0 1.0 1.0 1.0 1.0 1.0
AMGCL 0.86 0.73 0.51 0.69 0.72 0.39

VBD 3.00 2.63 2.30 1.82 1.83 1.70
Jacobi-Smoother 4.75 3.91 3.02 2.56 1.85 2.17
Ours (Constant) 6.19 5.30 4.09 4.25 2.57 2.45

Ours (Linear) 3.18 2.29 3.57 2.79 2.68 2.86

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

Fast Galerkin Multigrid Method for Unstructured Meshes • 179:11

103 104 105 106

Number of Points

10−1

100

101

102

103

Si
m

ul
at

io
n

Ti
m

e
(s)

Jacobi-PCG
AMGCL
VBD
Jacobi-Smoother
Ours (Constant)
Ours (Linear)

103 104 105 106

Number of Points

101

102

Su
bs

te
ps

Jacobi-PCG
AMGCL
vbd
Jacobi-Smoother
Ours (Constant)
Ours (Linear)

103 104 105 106

Number of Points

102

103

In
ne

rI
te

ra
tio

ns

Jacobi-PCG
AMGCL
vbd
Jacobi-Smoother
Ours (Constant)
Ours (Linear)

Fig. 8. Performance analysis across differentmesh resolutionswithmaterial stiffness of 1×106. Left: CPU computation time comparison, demonstrating
substantial speedups achieved by our multigrid method over traditional approaches. Middle: Required sub-timestep counts across resolutions, highlighting
our multigrid method’s ability to maintain consistent sub-timestep numbers while the Jacobi smoother exhibits increasing requirements at higher resolutions.
Right: Per-frame inner iteration counts, showing our matrix-free multigrid approach requires significantly fewer iterations than both Jacobi-PCG and AMGCL,
with superior scaling at high resolutions.

103 104 105 106 107 108

Sti�ness (Pa)

101

102

Si
m

ul
at

io
n

Ti
m

e
(s)

Jacobi-PCG
AMGCL
vbd
Jacobi-Smoother
Ours (Constant)
Ours (Linear)

103 104 105 106 107 108

Sti�ness (Pa)

101

102

Su
bs

te
ps

Jacobi-PCG
AMGCL
vbd
Jacobi-Smoother
Ours (Constant)
Ours (Linear)

103 104 105 106 107 108

Sti�ness (Pa)

101

102

103

104

In
ne

rI
te

ra
tio

ns

Jacobi-PCG
AMGCL
vbd
Jacobi-Smoother
Ours (Constant)
Ours (Linear)

Fig. 9. Performance comparison across material stiffness values ranging from 103 to 108. Left: CPU computation time comparison, demonstrating
that our multigrid methods (constant-weight and linear-weight) significantly outperform traditional approaches, with the constant-weight variant showing
particular efficiency at higher stiffness values. Middle: Sub-timestep requirements across stiffness values, illustrating that while the Jacobi smoother requires
increasingly more iterations at high stiffness, our multigrid method maintains consistent performance. Right: Inner iteration counts per frame, where our
methods demonstrate superior efficiency compared to Jacobi-PCG and AMGCL. Although our constant-weight variant requires more iterations than its
linear-weight counterpart, it achieves better overall performance through reduced per-iteration computational cost. At extreme stiffness (108), the robustness
of our approach becomes particularly evident as AMGCL’s performance degrades under default parameters.

6.3 Demonstration Cases
Having validated our method through comparative analysis and
extreme scenario testing, we present additional examples demon-
strating its stability across varying material properties, complex
collision scenarios, and large-scale simulations with up to one mil-
lion vertices.

Materials with Varying Poisson Ratios. Our method naturally ac-
commodates different Poisson ratios by simply adjusting the corre-
sponding parameter in the Stable Neo-Hookean model. Figure 10
demonstrates this through a beam stretching experiment with Pois-
son ratios of 0.1, 0.2, 0.4, and 0.49, handled stably without parameter
tuning.

High-Stiffness Materials. We simulate a tilted Buddha model (163K
vertices) dropping onto a rigid surface using highly stiff material pa-
rameters (E = 108 Pa, 𝜈 = 0.4) and an initial 20-degree tilt. Our solver

Fig. 10. Beam stretch experiment with varying Poisson ratios (0.1, 0.2, 0.4,
0.49). Left: initial configuration; Right: stretched state showing different
lateral contractions corresponding to the Poisson ratios.

maintains stability using 800 sub-timesteps with only 1 multigrid
iteration per step (Figure 11), highlighting our method’s efficiency
with high-stiffness materials and impact dynamics.

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

179:12 • Jia-Ming Lu, Tailing Yuan, Zhe-Han Mo, and Shi-Min Hu

Fig. 11. Buddha. Simulation sequence of a Buddha model (E = 108 Pa)
dropping and impacting a rigid surface, stable with 800 sub-timesteps and
1 multigrid iteration per step.

Inter-object Collision. We simulate eight Armadillo models (142K
total vertices) dropping into a confined box, each using our multi-
grid method within a unified collision detection framework. The
simulation uses 200 sub-timesteps with E = 106 Pa. Figure 12 shows
our method effectively handling multiple deformable objects with
extensive collision interactions.

Self-collision Handling. We test self-collision handling with a
highly deformable squishy ball impacting a rigid surface. Figure 13
shows the ball’s considerable deformation creating numerous self-
contact regions that our method resolves efficiently and stably. This
example also demonstrates our method’s capability to handle non-
uniform tessellations, as the tetrahedral elements in the fur region
have significantly different sizes compared to those in the ball inte-
rior, showcasing the robustness of our multigrid approach across
varying element scales.

Dragon Drop with 1M points. We simulate a million-vertex elastic
dragon (E = 107 Pa) impacting a rigid surface from a 1m/s initial
velocity. Our method requires only 200 sub-timesteps with just 1
iteration per sub-timestep to achieve stable and visually plausible
results, as shown in Figure 14.

Bunny Drape with 1M points. We simulate a bunny model with
its right ear fixed (E = 106 Pa). For the million-vertex case, our
constant Galerkin multigrid method achieves visually accurate re-
sults with 400 sub-timesteps and only 1 iteration per sub-timestep,
demonstrating the scalability of our approach.

7 Conclusion
We present an efficient multigrid solver that combines the Full Ap-
proximation Scheme with Galerkin formulation for unstructured
tetrahedral meshes. Our approach introduces a matrix-free vertex
block Jacobi smoother that overcomes the previously prohibitive
computational costs of dense coarse matrices in Galerkin methods.
This framework achieves up to 6.9× speedup over standard Jacobi-
PCG approaches and outperforms recent state-of-the-art methods
including SGM and VBD across various metrics. Our implementa-
tion supports both piecewise constant and piecewise linear Galerkin
formulations, with the constant variant providing optimal perfor-
mance for most scenarios. Comprehensive experiments demonstrate
our method’s robustness across diverse challenges: extreme defor-
mations exceeding 2000% stretching, severely distorted initial con-
figurations, materials with varying Poisson ratios (0.1-0.49), high-
stiffness materials (up to 108 Pa), and complex collision interactions.

Our GPU-optimized implementation achieves performance of ap-
proximately one second per frame for simulations involving one
million tetrahedral vertices, making high-fidelity physics simulation
practical for graphics applications.

7.1 Limitations and Future Work
A key limitation in our current implementation concerns the selec-
tion of Jacobi relaxation parameters. While we explored both fixed-
step and line search strategies, our GPU implementation revealed
that line search operations introduce reduction and synchronization
overhead that impacts performance. To maximize computational
efficiency, we opted for fixed step lengths–0.25 for coarse layers
and 0.5 for fine layers. Although this approach ensures stability
across our experiments, it may not achieve optimal convergence
rates. Our line search experiments indicate that coarse layer step
lengths often benefit from significantly larger values, sometimes
reaching 2.0 or 4.0. This suggests promising directions for future
research in developing adaptive step length selection methods that
maintain GPU efficiency while accelerating convergence.

Additionally, while collision handling was not the primary focus
of this work, our current implementation employs a simplified colli-
sion resolution strategy. Future work will explore the integration
of more sophisticated collision handling techniques to enhance the
robustness and accuracy of dynamic simulations. Another limitation
stems from the inherent characteristics of multigrid methods when
applied to non-manifold geometries. Since multigrid approaches
generally exhibit reduced effectiveness on non-manifold structures,
our method similarly faces challenges in handling such complex
topologies.

Several other areas present opportunities for improvement. The
convergence rate of our Jacobi smoother could be enhanced through
alternative smoothers that better utilize local information, poten-
tially outperforming our current Jacobi-preconditioned gradient
descent approach. Given the heuristic nature of our graph cluster-
ing algorithm, more sophisticated clustering approaches could yield
better domain decomposition and improve overall performance.

References
Mridul Aanjaneya, Ming Gao, Haixiang Liu, Christopher Batty, and Eftychios Sifakis.

2017. Power diagrams and sparse paged grids for high resolution adaptive liquids.
ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–12.

David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings
of ACM SIGGRAPH 1998. 43–54.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective dynamics. ACM Transactions on Graphics 33, 4 (2014), 1–11.

Achi Brandt. 1977. Multi-level adaptive solutions to boundary-value problems. Mathe-
matics of computation 31, 138 (1977), 333–390.

Anka He Chen, Ziheng Liu, Yin Yang, and Cem Yuksel. 2024. Vertex Block Descent.
ACM Transactions on Graphics (TOG) 43, 4 (2024), 1–16.

Nuttapong Chentanez and Matthias Müller. 2011. Real-time Eulerian water simulation
using a restricted tall cell grid. In ACM Siggraph 2011 Papers. 1–10.

Christian Dick, Marcus Rogowsky, and Rüdiger Westermann. 2015. Solving the fluid
pressure Poisson equation using multigrid—evaluation and improvements. IEEE
transactions on visualization and computer graphics 22, 11 (2015), 2480–2492.

Florian Ferstl, Rüdiger Westermann, and Christian Dick. 2014. Large-scale liquid
simulation on adaptive hexahedral grids. IEEE transactions on visualization and
computer graphics 20, 10 (2014), 1405–1417.

Theodore F Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M
Teran. 2015. Optimization integrator for large time steps. IEEE transactions on
visualization and computer graphics 21, 10 (2015), 1103–1115.

Joachim Georgii and Rüdiger Westermann. 2006. A multigrid framework for real-time
simulation of deformable bodies. Computers & Graphics 30, 3 (2006), 408–415.

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

Fast Galerkin Multigrid Method for Unstructured Meshes • 179:13

Fig. 12. Armadillo Drop. Eight Armadillo models (142K vertices) interacting in a confined box, showing initial configuration, mid-fall interactions, and final
settling state with E = 106 Pa.

Fig. 13. Squishy Ball. A deformable ball impacting a rigid surface, showing initial descent, impact deformation, maximum compression, and final rest state.

Fig. 14. Dragon Drop. Million-vertex dragon impacting a rigid surface, showing initial state, impact deformation, and rebound with 200 sub-timesteps and 1
iteration per sub-timestep.

Fig. 15. Bunny Drape with 1M points. Fixed-ear bunny deforming under gravity, showing initial state, early deformation, mid-simulation, and equilibrium,
using 400 sub-timesteps and 1 iteration per sub-timestep.

Markus Hegland and Paul E Saylor. 1992. Block jacobi preconditioning of the conjugate
gradient method on a vector processor. International journal of computer mathematics

44, 1-4 (1992), 71–89.

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

179:14 • Jia-Ming Lu, Tailing Yuan, Zhe-Han Mo, and Shi-Min Hu

Inyong Jeon, Kwang-Jin Choi, Tae-Yong Kim, Bong-Ouk Choi, and Hyeong-Seok Ko.
2013. Constrainable multigrid for cloth. In Computer Graphics Forum, Vol. 32. Wiley
Online Library, 31–39.

Theodore Kim and David Eberle. 2020. Dynamic deformables: implementation and
production practicalities. In ACM SIGGRAPH 2020 Courses. 1–182.

Yongjoon Lee, Sung-eui Yoon, Seungwoo Oh, Duksu Kim, and Sunghee Choi. 2010.
Multi-resolution cloth simulation. InComputer Graphics Forum, Vol. 29. Wiley Online
Library, 2225–2232.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy R Langlois, Denis Zorin,
Daniele Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020. Incremental po-
tential contact: intersection-and inversion-free, large-deformation dynamics. ACM
Trans. Graph. 39, 4 (2020), 49.

Hsueh-Ti Derek Liu, Jiayi Eris Zhang, Mirela Ben-Chen, and Alec Jacobson. 2021.
Surface multigrid via intrinsic prolongation. ACM Transactions on Graphics 40, 4
(2021), 13 pages.

Tiantian Liu, Adam W Bargteil, James F O’Brien, and Ladislav Kavan. 2013. Fast
simulation of mass-spring systems. ACM Transactions on Graphics (TOG) 32, 6
(2013), 1–7.

Miles Macklin, Kier Storey, Michelle Lu, Pierre Terdiman, Nuttapong Chentanez, Stefan
Jeschke, and Matthias Müller. 2019. Small steps in physics simulation. In Proceedings
of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
1–7.

Ahmed H Mahmoud, Serban D Porumbescu, and John D Owens. 2021. RXMesh: a GPU
mesh data structure. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–16.

Aleka McAdams, Eftychios Sifakis, and Joseph Teran. 2010. A Parallel Multigrid Poisson
Solver for Fluids Simulation on Large Grids.. In Symposium on Computer Animation,
Vol. 65. 74.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph
Teran, and Eftychios Sifakis. 2011. Efficient elasticity for character skinning with
contact and collisions. In ACM SIGGRAPH 2011 papers. 1–12.

Alexandre Mercier-Aubin and Paul G Kry. 2024. A Multi-layer Solver for XPBD. In
Computer Graphics Forum. Wiley Online Library, e15186.

Matthias Müller. 2015. Hierarchical position-based dynamics. (03 2015).
Maxim Naumov, Marat Arsaev, Patrice Castonguay, Jonathan Cohen, Julien Demouth,

Joe Eaton, Simon Layton, Nikolay Markovskiy, István Reguly, Nikolai Sakharnykh,
et al. 2015. AmgX: A library for GPU accelerated algebraic multigrid and pre-
conditioned iterative methods. SIAM Journal on Scientific Computing 37, 5 (2015),
S602–S626.

Miguel A Otaduy, Daniel Germann, Stephane Redon, and Markus Gross. 2007. Adap-
tive deformations with fast tight bounds. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. 181–190.

Liangwang Ruan, Bin Wang, Tiantian Liu, and Baoquan Chen. 2024. Minnie: a mixed
multigrid method for real-time simulation of nonlinear near-incompressible elastics.
ACM Transactions on Graphics (TOG) 43, 6 (2024), 1–15.

Han Shao, Libo Huang, and Dominik L Michels. 2022. A fast unsmoothed aggregation
algebraic multigrid framework for the large-scale simulation of incompressible flow.
ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–18.

Frédéric Sicot, Guillaume Puigt, and Marc Montagnac. 2008. Block-Jacobi implicit
algorithms for the time spectral method. AIAA journal 46, 12 (2008), 3080–3089.

Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable neo-hookean
flesh simulation. ACM Transactions on Graphics (TOG) 37, 2 (2018), 1–15.

Rasmus Tamstorf, Toby Jones, and Stephen F McCormick. 2015. Smoothed aggregation
multigrid for cloth simulation. ACM Transactions on Graphics (TOG) 34, 6 (2015),
1–13.

Ty Trusty, Danny Kaufman, and David IW Levin. 2022. Mixed variational finite elements
for implicit simulation of deformables. In SIGGRAPH Asia 2022 Conference Papers.
1–8.

Huamin Wang. 2015. A Chebyshev Semi-Iterative Approach for Accelerating Projective
and Position-based Dynamics. ACM Transactions on Graphics 34 (10 2015), 1–9.
doi:10.1145/2816795.2818063

Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on the
GPU. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1–10.

Xinlei Wang, Minchen Li, Yu Fang, Xinxin Zhang, Ming Gao, Min Tang, Danny M
Kaufman, and Chenfanfu Jiang. 2020. Hierarchical optimization time integration
for cfl-rate mpm stepping. ACM Transactions on Graphics (TOG) 39, 3 (2020), 1–16.

Xiaokun Wang, Yanrui Xu, Sinuo Liu, Bo Ren, Jirí Kosinka, Alexandru C Telea, Ji-
amin Wang, Chongming Song, Jian Chang, Chenfeng Li, et al. 2024. Physics-based
fluid simulation in computer graphics: Survey, research trends, and challenges.
Computational Visual Media 10, 5 (2024), 803–858.

Zhendong Wang, Longhua Wu, Marco Fratarcangeli, Min Tang, and Huamin Wang.
2018. Parallel multigrid for nonlinear cloth simulation. In Computer Graphics Forum,
Vol. 37. Wiley Online Library, 131–141.

Daniel Weber, Johannes Mueller-Roemer, André Stork, and Dieter Fellner. 2015. A
Cut-Cell Geometric Multigrid Poisson Solver for Fluid Simulation. In Computer
Graphics Forum, Vol. 34. Wiley Online Library, 481–491.

Botao Wu, Zhendong Wang, and Huamin Wang. 2022. A GPU-based multilevel additive
schwarz preconditioner for cloth and deformable body simulation. ACMTransactions
on Graphics (TOG) 41, 4 (2022), 1–14.

Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A scalable galerkin multigrid
method for real-time simulation of deformable objects. ACM Transactions on Graph-
ics (TOG) 38, 6 (2019), 1–13.

Jiayi Eris Zhang, Jérémie Dumas, Yun Fei, Alec Jacobson, Doug L James, and Danny M
Kaufman. 2022. Progressive simulation for cloth quasistatics. ACM Transactions on
Graphics (TOG) 41, 6 (2022), 1–16.

Jiayi Eris Zhang, Jérémie Dumas, Yun Fei, Alec Jacobson, Doug L James, and Danny M
Kaufman. 2023. Progressive Shell Qasistatics for Unstructured Meshes. ACM
Transactions on Graphics (TOG) 42, 6 (2023), 1–17.

Jiayi Eris Zhang, Doug James, and Danny M Kaufman. 2024. Progressive Dynamics for
Cloth and Shell Animation. ACM Transactions on Graphics (TOG) 43, 4 (2024), 1–18.

Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An efficient multi-
grid method for the simulation of high-resolution elastic solids. ACM Transactions
on Graphics (TOG) 29, 2 (2010), 1–18.

A Other Terms for Deformable Simulation
Self Collision. We handle collisions by incorporating a collision

force term into our solving Equation (1). The collision force is de-
rived from the potential

Ψcol (𝒙) =
1
2𝜅𝑑

2, 𝑑 = max(0, (𝒙𝑎 − 𝒙𝑏) · 𝒏̂), (19)

where 𝜅 denotes the collision stiffness, 𝒏̂ is the normal vector of
collison surface, and 𝒙𝑎 and 𝒙𝑏 represent the collision points. By em-
ploying a common simplification that assumes a constant direction
𝒏̂, we derive the gradient and Hessian for 𝒙𝑎 as

∇𝑎Ψcol (𝒙) = 𝜅𝑑 𝒏̂, ∇2
𝑎Ψcol (𝒙) = 𝜅𝒏̂𝒏̂⊤ . (20)

For the stencil vertices 𝒙0, 𝒙1, 𝒙2, 𝒙3, both 𝒙𝑎 and 𝒙𝑏 can be
expressed as linear combinations of these vertices. Maintaining
our assumption of constant linear weights, we express the Hessian
matrix as:

∇Ψcol (𝒙) = 𝝈 ⊗ (𝜅𝑑 𝒏̂), ∇2Ψcol = (𝝈𝝈⊤) ⊗ (𝜅𝒏̂𝒏̂⊤). (21)
Here, 𝝈 represents the weight vector derived from the linear combi-
nation weights of 𝒙𝑎 and 𝒙𝑏 .
• For vertex-face pairs, 𝒙𝑎 corresponds to 𝒙0, and with barycen-

tric weights (1 − 𝑢 − 𝑣,𝑢, 𝑣) for 𝒙𝑏 , we have 𝝈 = (1, 𝑢 + 𝑣 −
1,−𝑢,−𝑣),
• For edge-edge pairs, with barycentric weights (1 − 𝑠, 𝑠) for
𝒙𝑎 and (1 − 𝑡, 𝑡) for 𝒙𝑏 , we have 𝝈 = (1 − 𝑠, 𝑠, 1 − 𝑡, 𝑡).

Given the restriction operator 𝒑𝑖 from Equation (10), the stencil
gradient and Hessian contributions for coarse point 𝑖 are:

(𝒃𝑐)𝑖 = (𝝈 ·𝒘)𝜅𝑑 𝒏̂,
(𝑯𝑐)𝑖 = (𝝈 ·𝒘)2𝜅𝒏̂𝒏̂⊤ .

(22)

While these terms are computationally efficient, they differ from
neo-Hookean energy in that we cannot precompute weights𝒘 for all
coarse parents due to unknown collision pairs during initialization.
However, since collision essentially acts as a boundary condition,
we can precompute and sort the parent indices for each surface edge
and face, then merge corresponding weights through index-sorted
combination.

Friction. We implement the friction scheme described in [Chen
et al. 2024; Li et al. 2020]. For identified collision pairs, we compute
the relative collision velocity as 𝒗𝑐 = (𝒙𝑎 − 𝒙𝑡𝑎) − (𝒙𝑏 − 𝒙𝑡𝑏), where
𝒙𝑡𝑎 and 𝒙𝑡

𝑏
denote positions from the previous time step. Using a

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

Fast Galerkin Multigrid Method for Unstructured Meshes • 179:15

transformation matrix 𝑻𝑐 , we project 𝒗𝑐 onto the tangential collision
plane to obtain 𝒖𝑐 = 𝑻⊤𝑐 𝒗𝑐 . Utilizing the 𝝈 vector from our collision
formulation, we express the friction terms as:

∇Ψfriction (𝒙) = 𝝈 ⊗ (−𝜇𝑐𝜆𝑐,𝑖𝑻𝑐𝒇1 (∥𝒖𝑐 ∥)
𝒖𝑐
∥𝒖𝑐 ∥
),

∇2Ψfriction (𝒙) = (𝝈𝝈⊤) ⊗ (𝜇𝑐𝜆𝑐,𝑖𝑻𝑐𝒇1 (∥𝒖𝑐 ∥)𝑻⊤𝑐) .
(23)

Here, 𝜇𝑐 represents the friction coefficient, and 𝜆𝑐,𝑖 =
𝜕𝐸𝑐
𝜕𝒙𝑖

denotes
the signed magnitude for each position 𝒙𝑖 . The smooth transition
function 𝑓1 is defined as:

𝑓1 (𝑢) =
{

2(𝑢
Δ𝑡𝜖𝑣
) − (𝑢

Δ𝑡𝜖𝑣
)2, 𝑢 < Δ𝑡𝜖𝑣,

1, 𝑢 ≥ Δ𝑡𝜖𝑣,
(24)

where 𝜖𝑣 controls the threshold between static and dynamic friction.
The corresponding gradient and Hessian contributions are:

(𝒃𝑐)𝑖 = −(𝝈 ·𝒘)𝜇𝑐𝜆𝑐, 𝑖𝑻𝑐 𝑓1 (∥𝒖𝑐 ∥)
𝒖𝑐
∥𝒖𝑐 ∥

,

(𝑯𝑐)𝑖 = (𝝈 ·𝒘)2𝜇𝑐𝜆𝑐, 𝑖𝑻𝑐 𝑓1 (∥𝒖𝑐 ∥)𝑻⊤𝑐 .

(25)

Manual Damping. We incorporate Rayleigh damping as described
in [Chen et al. 2024] for controlled energy dissipation. This formu-
lation seamlessly integrates with our gradient and Hessian compu-
tations.

B Larger-Scale Experiments
We tested our method on models with up to 1M vertices in Sec-
tion 6. To further investigate whether our approach provides greater
speedup ratios on larger-scale problems, we conducted additional
experiments with 5M vertices. At this scale, GPU memory became
insufficient, and several CPU methods also failed due to memory
limitations. Through storage optimizations that trade time for space,
we successfully ran 5M vertex bunny drape simulations on CPU,
comparing Jacobi PCG and our Constant Galerkin method.

Due to the computational demands at this scale, we adjusted
the simulation duration from 1/60s to 1/2400s to keep experiments
tractable. Results showed that Jacobi PCG required 11623 s while
our method needed only 1403 s, achieving a 8.3x speedup. This
demonstrates that our multigrid approach maintains strong acceler-
ation at larger scales. However, the additional memory management
overhead introduces computational costs that do not purely reflect
algorithmic performance, so we include these results in the appendix
as reference data.

C Extreme Test Cases
Extreme Stretching. We tested the bunny model under three chal-

lenging stretching scenarios, where the model was elongated to
more than 20 times its original length in Figure 16. The first sce-
nario involved gradually stretching the bunny, the second initialized
the model with stretch points and allowed it to deform back to rest
state, and the third initialized with fixed stretch points, forcing
the bunny to deform to the corresponding stretched configuration.
These experiments demonstrate the stability of our method under
extreme deformation conditions.

Fig. 16. Extreme stretching test on the bunny model showing frames from
the simulation with progressive deformation, demonstrating our method’s
ability to handle extreme stretching conditions while maintaining stability.

Severely Distorted Initial Configurations. We conducted three types
of tests with severely distorted initial configurations as shown
in Figure 17. The first test replicated the expanded cube experiment
from [Smith et al. 2018], but with initial vertex positions random-
ized within a volume twice the size of the rest shape. The second
test, inspired by [Chen et al. 2024], randomly initialized the Utah
teapot model with vertices positioned on a sphere surface. The third
test flattened the armadillo model onto a surface as its initial con-
figuration. All cases successfully recovered their intended shapes,
validating our method’s robust convergence properties even under
highly challenging initial conditions.

D GPU Implementation
Our multigrid approach requires traversing full-resolution elements
and summing their contributions to layer points for each layer.
While element traversal naturally parallelizes, optimizing the reduce
operator is crucial for GPU performance, particularly for higher
layers where the small number of coarse points presents unique
parallel efficiency challenges.

The reduction process accumulates both gradient vectors (3 com-
ponents) and symmetric block Hessian matrices (6 unique compo-
nents) per vertex. At the finest level, atomic operations are efficient

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

179:16 • Jia-Ming Lu, Tailing Yuan, Zhe-Han Mo, and Shi-Min Hu

Fig. 17. Recovery from severely distorted initial configurations. Top row:
cube with randomized vertices at twice the rest volume size. Middle row:
teapot with vertices randomly placed on a sphere. Bottom row: armadillo
model flattened to a surface. Columns show the initial configuration (left),
intermediate state (middle), and final recovered shape (right).

due to balanced element-to-vertex ratios and minimal write conflicts.
However, coarser levels experience significant thread contention
due to increasing element-to-vertex ratios, rendering atomic opera-
tions inefficient.

We propose several optimization strategies, focusing on general
approaches applicable across different hardware architectures rather
than device-specific optimizations.

Morton Sorting. Our implementation assigns one tetrahedral el-
ement per thread. At the GPU block level, different elements can
share points, allowing for efficient gathering operations using warp
operators or shared memory, which significantly outperform global
memory operations. To maximize block-level gathering, elements
must be divided into blocks that share as many points as possible.
While graph clustering algorithms like Lloyd k-means (discussed
in Section 5) could achieve this, they struggle to maintain fixed
patch sizes necessary for optimal GPU utilization. Instead, we em-
ploy Morton sorting, similar to [Wu et al. 2022]’s approach for
multilevel preconditioner construction. This method sorts elements
by spatial position and divides them into GPU blocks based on
sorted indices. Common indices within blocks are processed using
shared memory, with results written to global memory only after
block operations complete. This strategy reduces global operations
to 10-20% compared to individual element processing.

Grid Reduction. For coarse layers, atomic operations on global
memory remain costly due to increased conflicts from fewer coarse

points relative to block numbers. We address this by introducing in-
termediate global memory to store per-block point terms, followed
by a separate kernel for grid reduction. The reduction patterns re-
main static throughout simulation, allowing pre-computation of
parallel execution structures. Layer-specific optimizations are im-
plemented: finer layers benefit from warp-level reduction due to
fewer terms, while coarser layers require block-level reduction. We
utilize the CUB library for these operations.

Spatial Hashing. GPU collision handling employs efficient spatial
hashing through a two-phase approach: a broad phase detecting
AABB bounding box intersected surface triangle pairs, and a nar-
row phase identifying vertex-face or edge-edge stencil intersections.
Given our method’s small timesteps, updating spatial hash struc-
tures every timestep would dominate elastic computation costs. We
optimize by updating spatial hash every 10-20 timesteps, balancing
computational efficiency with collision precision.

ACM Trans. Graph., Vol. 44, No. 6, Article 179. Publication date: December 2025.

