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Fig. 1. Our method, termed as NeuralGalerkin, reconstructs surface meshes from point cloud data, using a combination of an adaptive sparse convolutional
neural network and a fully differentiable solver to obtain an optimal implicit surface that fits the input (with optional normals). It is both accurate and scalable,
being able to reconstruct (a) man-made objects (3K input points), (b) highly-detailed human bodies (10K input points), (c) indoor scene scans (100K input
points), and (d) outdoor LiDAR captures (>1M input points), only within a few seconds.

To reconstruct meshes from the widely-available 3D point cloud data, im-
plicit shape representation is among the primary choices as an intermediate
form due to its superior representation power and robustness in topological
optimizations. Although different parameterizations of the implicit fields
have been explored to model the underlying geometry, there is no explicit
mechanism to ensure the fitting tightness of the surface to the input. We
present in response, NeuralGalerkin, a neural Galerkin-method-based solver
designed for reconstructing highly-accurate surfaces from the input point
clouds. NeuralGalerkin internally discretizes the target implicit field as a
linear combination of a set of spatially-varying basis functions inferred by
an adaptive sparse convolution neural network. It then solves differentiably
for a variational problem that incorporates both positional and normal con-
straints from the data in closed form within a single forward pass, highly
respecting the raw input points. The reconstructed surface extracted from
the implicit interpolants is hence very accurate and incorporates useful
inductive biases benefiting from the training data. Extensive evaluations
on various datasets demonstrate our method’s promising reconstruction
performance and scalability.
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1 INTRODUCTION
Reconstructing 3D shapes from point cloud data is a long-standing
problem in Computer Graphics. With its recent wide application
in robotics, AR/VR, and assets digitalization, the problem of recon-
structing highly-accurate geometry in a fast and robust way has at-
tracted unprecedented attention from researchers. However, various
requirements in these applications have posed numerous challenges
to existing algorithms, including data sparsity, noisy measurements
and surface occlusions, etc., making the task of reconstruction still
an open problem.

At the core of an effective reconstruction algorithm is the under-
lying 3D representation. In comparison to staggered voxel grids,
parametric surfaces, or solid geometries, implicit shape representa-
tion has been demonstrated to be very flexible due to its friendliness
to topology changes and strong representation power, and has been
used in many modern reconstruction algorithms. In such a repre-
sentation, the surface S is defined by the level set of a function 𝑓 ,
called an implicit field. Specifically,

S := {𝒑 ∈ R3 | 𝑓 (𝒑) = 𝛿}, 𝑓 : R3 ↦→ R, (1)

where 𝛿 is usually a predefined constant level-set value. Discrete
surface meshes can be easily extracted later using contouring algo-
rithms for further processing.
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Fig. 2. Comparisons of different implicit field fitting strategies. Contour
maps of the field within the pink slices are shown on the right insets, where
red points are the input points, and the black trace shows the extracted
level set. (a) Methods (e.g., [Mescheder et al. 2019]) with strong global
priors can only roughly fit the general structure. (b) Traditional geometry-
based approaches mistakenly interpolate the noisy data, unaware of the
underlying semantics. (c) Our approach reaches an elegant balance between
the two and provides the best and most intuitive fit.

To obtain the optimal function, traditional classic methods (e.g.,
[Calakli and Taubin 2011; Carr et al. 2001]) aim to interpolate the
input data faithfully and incorporate hand-crafted regularizations
to encourage surface smoothness while preserving sharp features.
However, designing such regularizations itself is challenging and
inevitably leads to undesirable artifacts under the presence of large
noise, because no high-level understanding of the input is exploited.
Empowered by deep networks, modern reconstruction methods are
being actively developed: On the one hand, the internal ‘structure
prior’ [Williams et al. 2019] of the network function is utilized, and
a smooth fitting can be achieved by simple overfitting [Gropp et al.
2020], but a long optimization time is needed due to the complexity
of the function. On the other, the networks are instructed to learn
geometric priors from a large corpus of training data [Choy et al.
2016; Mescheder et al. 2019], so that one can achieve direct feed-
forward inference over the input. However, there is no mechanism
ensuring that the learned surface actually ‘respects’ and fits the
input [Tatarchenko et al. 2019] and how accurate the reconstruction
can achieve, being biased by the learned priors.

The above dilemma, visualized in Fig. 2, motivates our approach.
We try to answer the question of how to obtain accurate data fitting
with sufficient tightness while leveraging data-driven inductive
biases effectively. Most similar to our work is [Williams et al. 2021a],
but their use of a dense kernel prevents their method from scaling
to large-scale inputs. Hence our method also aims toward good
scalability that could tackle millions of points.

Specifically, we present NeuralGalerkin, a neural Galerkin-method-
based solver for accurate and scalable 3D reconstruction from point
clouds. We parameterize the implicit field 𝑓 as a linear combination
of a spatially-varying set of bases composed of elementary functions,
following the Galerkin method [Galerkin 1915] (as finite elements).
The proposed method is internally composed of two tightly-coupled
components: the surface fitting solver (§ 3) and the adaptive sparse
convolutional network (§ 4). Given the input, the network applies
sparse convolutions and adaptive structural prediction to generate
a voxelized multi-scale scaffold of the geometry, where the inferred
normal data and the basis functions are stored. The solver part then
tries to solve in the closed form a surface fitting variational problem

that takes both the inferred data and the raw input points into ac-
count, producing the coefficients of the basis functions that finally
compose the target implicit field. The solver is fully differentiable
and our whole pipeline can be trained end-to-end with simple su-
pervision. Different from the meta-learning [Finn et al. 2017] where
nested optimization is also used, our solver only requires solving
a single sparse linear system, hence being much more efficient. A
similar technique that uses the solver is concurrently explored in the
mesh processing community [Aigerman et al. 2022], demonstrating
the wide applicability of such methods. We demonstrate the efficacy
of our algorithm through extensive evaluations on datasets cap-
tured at various scales and show superior performance on different
reconstruction tasks, as visualized in Fig. 1.

In summary, we contribute:
(1) a fully differentiable closed-form surface fitting solver that

solves for an optimal implicit field respecting input points,
(2) an adaptive sparse network producing the multi-scale learned

geometric priors that are injected into the solver, and
(3) thorough experiments conducted on all scales of datasets

showing state-of-the-art performance on reconstruction ac-
curacy.

2 RELATED WORKS
This section reviews both classic and the most recent learning-based
surface reconstruction methods. As the more general ‘Shape-from-
X’ is a large field in Graphics, we only review point-cloud-based
approaches, which is our main focus. Readers are referred to more
systematic surveys as [Jin et al. 2020], [Huang et al. 2022] and [Li
et al. 2022] on surface reconstruction for a more detailed review.

2.1 Non-learned surface reconstruction
One of the earliest and most renowned methods from [Curless
and Levoy 1996] uses an analytic volumetric running mean fusion
scheme to convert scans into 3D models. To gain more robustness
under noisy or corrupted data, [Carr et al. 2001] introduces the
radial basis function interpolant and solves the reconstruction prob-
lem under low-rank smoothness regularizations. MPU [Ohtake et al.
2003] takes a more explicit approach that models the shape by a
union of multiple parametric surfaces fitted using local geometries.
SSD [Calakli and Taubin 2011] approximates the signed distance
field by solving a variational problem with linearly parameterized
families of functions. Our method is inspired by the approach of
Poisson reconstruction [Kazhdan et al. 2006] and its screened ver-
sion [Kazhdan and Hoppe 2013], where PDEs are solved to recover
from Hermite measurements. Such methods are empirically demon-
strated to be well-performing and robust under various conditions
and have been applied in many modern systems, e.g., [Vizzo et al.
2021].

2.2 Learning-based shape modeling
Enabled by the power of deep networks and the unprecedented
growth of large-scale 3D datasets, various learning-based model-
ing approaches are designed to effectively utilize the data prior for
better reconstruction quality. Different 3D representations are ex-
ploited for a stronger representation power. Early works like [Choy
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et al. 2016] use a dense voxel grid to represent occupancy informa-
tion of the shapes. Adaptive voxel grids [Wang et al. 2017] or local
variations inside each voxel [Liao et al. 2018] are later devloped
for higher resolution outputs. [Hanocka et al. 2020] shows that de-
formation over template meshes can lead to good reconstruction
quality by constraining the (self-)priors naturally on the manifold
of surfaces. The most recent implicit representation uses a single
feed-forward network to parameterize the geometry [Mescheder
et al. 2019; Park et al. 2019] and devises novel constraints [Atzmon
and Lipman 2020a; Lipman 2021] to regularize training. These rep-
resentations are further extended to hybrid ones where local details
are preserved, with the help of explicit voxel grids [Peng et al. 2020;
Tang et al. 2021b], point cloud [Erler et al. 2020], or octrees [Tang
et al. 2021a]. Dynamic reconstruction methods [Song et al. 2021] are
also made available thanks to them. Although our representation is
also implicit-function-based, it is instead parameterized by a set of
simple basis functions that admit efficient optimizations.

2.3 Learning-based scene-scale reconstruction
While shape-level modeling leverages the global priors defined over
the entire geometry, it is found to be more effective to model local
priors for larger scenes. [Chen et al. 2021; Genova et al. 2020; Jiang
et al. 2020] compose the scene with multiple independent implicit
networks with limited supports. The local representation is further
extended in [Huang et al. 2021] to achieve real-time tracking and
mapping efficiently. To enable information exchange between neigh-
boring voxels, [Chen et al. 2022] uses sparse convolution to enforce
global consistency. [Ummenhofer and Koltun 2021] designs a novel
adaptive convolution scheme that allows for multi-scale implicit
field modeling. The octree network from [Wang et al. 2017] is fur-
ther extended by [Wang et al. 2022] to a dual form that enhances
feature propagation within the large-scale network. Approaches like
[Azinović et al. 2021] exploit differentiable rendering to optimize
the reconstructed geometry. The hashtable encoding strategies used
in [Müller et al. 2022] could complete the optimizations within a few
minutes. Notably, there is a growing interest in unsigned distance
field (UDF) modeling [Chibane et al. 2020b; Ye et al. 2022] because
scene-scale geometries are usually open surfaces. However, a stan-
dard mesh extraction method from UDF is still under-explored [Guil-
lard et al. 2021].

2.4 Neural implicit representations
Parametrizing the shape using neural networks has been extensively
studied in recent literature. On the one hand, the high complexity of
the neural functions renders it necessary to apply appropriate regu-
larizations to make the shape smooth [Gropp et al. 2020], while on
the other hand, biases towards either feature frequencies [Sitzmann
et al. 2020; Tancik et al. 2020] or multi-scales [Martel et al. 2021;
Takikawa et al. 2021] are injected to improve geometric details in
certain regions. Another line of work deals with implicit fields in a
more principled manner: [Williams et al. 2021b] derives a solution
to fit an infinitely-wide network to interpolate point data using
the kernel method. The method is further extended to a learnable
version in [Williams et al. 2021a]. Our method also aims at fitting
an implicit field. Instead of using neural networks directly for the

shape representation, we use a spatially-varying set of basis func-
tions and solve the surface fitting problem in closed form. We show
empirically that the representation power is similar, yet one could
easily obtain an optimal fit without time-consuming optimizations.

3 SURFACE FITTING SOLVER
As an overview, our task of surface reconstruction takes a set of
points P := {𝒑 ∈ R3} as input, and aims at building a continuous
implicit function 𝑓 whose 𝛿-level-set extracted as in Eq (1) well
fits the geometry of P. Mesh can be later built using the standard
marching cubes [Lorensen and Cline 1987] algorithm. Our proposed
method is composed of two tightly-coupled components, working in
synergy: a surface fitting solver and an adaptive sparse convolutional
neural network. As illustrated in Fig. 3, we first feed the point cloud
into a learnable network that predicts useful priors about the input
data. These predictions are then injected into the surface fitting
solver, obtaining the best implicit field possible that respects both
the point measurements and the learned data priors. The pipeline is
fully differentiable that enables end-to-end optimizations.

In this section, we first introduce the differentiable formulation of
the surface fitting solver that acts as the core component in our full
pipeline. Specifically, we present the target energy minimization
problem we want to solve in § 3.1. To tackle the problem in closed-
form, we detail how we discretize the variables and the solution
in § 3.2, and how the discretized linear system is efficiently solved
in § 3.3. Details about the learnable parameters and their training
strategies will be summarized in § 4.

3.1 Energy Formulation
Inspired by SPSR [Kazhdan and Hoppe 2013], we choose to solve
a variational problem 𝑓 ★ := arg min𝑓 𝐸 (𝑓 ) for the best implicit
function that represents the surface, where:

𝐸 (𝑓 ) :=
∭

Ω

∇𝑓 − ®N2

2
d𝑉 + _

∑︁
𝒑∈P
(𝑓 (𝒑) − b (𝒑))2 . (2)

Here, the first term integrates the norm of the difference between
𝑓 ’s derivative ∇𝑓 and a normal field ®N, defined in the 3D domain of
Ω. The second term is a discrete data fitting term (c.f . a screening
term) that encourages 𝑓 to fit some predefined scalar value b (𝒑) at
all input positions in P. The two terms are balanced with a constant
coefficient _ ∈ R+.

In Eq (2), the first term tries to recover the implicit field through
its derivative. As we encourage ®N to produce non-zero values only at
the shape boundary, the recovered field is approximately a smoothed
indicator function. Integrated within the entire domain, the term
provides an overall orientational estimate of the general shape,
strongly regularized by the normal field. In contrast, the second
term explicitly considers input point measurements, strictly push-
ing the surface towards the points if b (𝒑) ≡ 𝛿 . In regions with
complicated geometric details, these point constraints could effec-
tively enforce adequate fitting tightness, so that surface details can
be made clearer. Our formulation could elegantly balance learned
priors and input data fitting. While the former provides informative
guidance to regularize the surface in the sense of orientation, the
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Fig. 3. Pipeline of NeuralGalerkin. The input point cloud is digested by our adaptive sparse convolutional neural network (§ 4), predicting a multi-scale voxel
grid structure as well as the per-voxel and per-point priors (underlined). These learned priors are injected into our surface fitting solver that minimizes the
surface error in closed-form (§ 3). Our pipeline is fully differentiable and is optimized end-to-end. The demo bird shape is from [Vecteezy 2022].

latter introduces surface details and possible generalizability. The
use of b (𝒑) is mainly for denoising by allowing points to be located
outside the surface.

3.2 Implicit Field Discretization
Suppose we are given a set of multi-scale voxel grids enclosing the
target surface S, denoted byV := {V1,V2, ...,V𝑆 } where 𝑆 is the
number of scales. The voxel gridV𝑠 at scale 𝑠 contains a sparse set
of voxels {v𝑠

𝑘
| 𝑘 = 1, 2, ...}, each with a side length of 2𝑠−1𝑏, where 𝑏

is the base voxel size. We constrain that the space covered byV𝑠 is
strictly contained withinV𝑠+1. The multi-scale structure resembles
the adaptive octree used in [Meagher 1982; Wang et al. 2018], except
that the shallow layers up to the root do not exist [Museth 2013].
Given such a scaffold, we adaptively set the integration domain

Ω :=
⋃

𝑠

⋃
v𝑠
𝑘
∈V𝑠 Rgn(v𝑠

𝑘
), where Rgn(v) denotes the enlarged

region spanned by voxel v with a factor of 33. For the normal field
we model it to be piece-wise constant within each voxel:

®N(𝒑) :=
∑︁
𝑠

N𝑠
𝑘
, 𝒑 ∈ v𝑠

𝑘
, where N𝑠

𝑘
∈ R3 . (3)

To allow for an efficient solution to the problem in Eq (2), as
well as maintain a high flexibility for the surface representation, we
define the target implicit function as follows:

𝑓 (𝒑) :=
∑︁
𝑠

∑︁
𝑘

𝛼𝑠
𝑘
B𝑠
𝑘
(𝒑), with B𝑠

𝑘
(𝒑) := 𝐵𝑠

𝑘

(
𝒑 − Cntr(v𝑠

𝑘
)

2𝑠−1𝑏

)
,

(4)
where subscript 𝑘 denotes the sum over all voxels inV𝑠 and Cntr(v)
is the centroid coordinate of voxel v. 𝐵𝑠

𝑘
: R3 ↦→ R is the basis

function that is fixed during energy minimization. It is spatially
varying and, when weighted by the coefficient 𝛼𝑠

𝑘
∈ R, describes

the entire surface.
Following the Euler-Lagrange equation (detailed derivations in

appendix) and the above discretization scheme, we could obtain
the optimal surface fitting using the best possible linear coefficients
𝜶 := [..., 𝛼𝑠

𝑘
, ...]⊤ for the implicit field 𝑓 ★ by solving the equation

in closed-form:

L𝜶 = d,

with L(𝑘,𝑙) =
∭

Ω
∇B⊤

𝑘
∇B𝑙 d𝑉 + _

∑︁
𝒑∈P
B𝑘 (𝒑)B𝑙 (𝒑),

d(𝑘) =
∭

Ω
∇B⊤

𝑘
®N d𝑉 + _

∑︁
𝒑∈P
B𝑘 (𝒑)b (𝒑),

(5)

where the subscripts 𝑘, 𝑙 denote the row and column index of the
matrix. All voxels across all scales are jointly considered here, with
𝑘, 𝑙 indexes into the product of the subscripts 𝑘 and 𝑠 (i.e., B𝑠

𝑘
≡ B𝑘 )

used earlier.
The choice of the basis functions 𝐵(𝒑) (or equivalently B(𝒑))

is vital for the fitting performance, as they act as local geometries
within the finite elements that model the shape. Different from SPSR
where a fixed Bézier tensor basis is used, to inject more learned
priors into the solution, we use a parameterized family of basis
functions, whose parameters are predicted by our upstream network.
This grants the solver more flexibility to reflect the inductive biases
from the learned module.

Selecting a correct basis parameterization is challenging: On the
one hand, it should be diverse enough to represent a broad range of
functions, while on the other hand, due to the integration in Eq (5)
it should not be too complicated to hinder runtime performance. As
a fair trade-off we employ:

𝐵𝑠
𝑘
(𝒑) := 𝐵(𝒑;𝒎𝑠

𝑘
) :=

{∏
𝑎∈{𝑥,𝑦,𝑧 } 𝑏

a (𝑎;𝒎𝑠
𝑘
), 𝒑 ∈ Ω𝐵

0, 𝒑 ∉ Ω𝐵

,

𝑏x (𝑥 ;𝒎𝑠
𝑘
) :=

∑︁
𝑢

𝑚x
𝑢𝑞

x
𝑢 (𝑥), 𝑚x

𝑢 ∈ R, 𝑞x
𝑢 : R ↦→ R,

(6)

with 𝒑 = [𝑥,𝑦, 𝑧] and Ω𝐵 := [−1.5, 1.5]3 being the support of
the basis. We define 𝑏y (𝑦), 𝑏z (𝑧) similarly with 𝑏x (𝑥), and in the
following discussions we omit the axes superscript for clarity.
In the above definition, 𝑞𝑢 are predefined elementary functions

that are blended by𝑚𝑢 which varies across voxels. The vectorized
𝒎𝑠
𝑘

:= [...,𝑚𝑢 , ...]⊤ hence parameterizes the continuous function 𝐵𝑠
𝑘
.

We choose the set of elementary functions to be the power functions
𝑞𝑢 (𝑥) ∈ {1, 𝑥, 𝑥2, 𝑥3, ...} that make 𝑏 (𝑥) a polynomial. The piece-
wise definition of𝐵(𝒑) further leads us to the constraint of𝑏 (−1.5) =
𝑏 (1.5) = 0 and 𝜕𝑏

𝜕𝑥 (−1.5) = 𝜕𝑏
𝜕𝑥 (1.5) = 0 for a𝐶1-continuous implicit
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Fig. 4. Basis functions 𝐵 (𝒑) visualized. The first column shows the de-
fault one as initialization. The above row shows the overlayed graph of
𝑏x (𝑥), 𝑏y (𝑦) and 𝑏z (𝑧) , while the bottom row shows in 3D the mean level
set within the region of one basis.

Bézier Tensor Basis
12k voxels of size 0.043

Bézier Tensor Basis
50k voxels of size 0.023

Our Basis
12k voxels of size 0.043

Fig. 5. Improved representation power using our proposed basis functions.
Under the same normal field ®N (left), simply improving the voxel resolutions
is less effective in recovering surface details (middle). Our proposed bases
introduce more flexibility and successfully overfit the statue (right).

field (implying that the effect of the bases should smoothly fade
towards the boundaries), whichwe impose by setting the coefficients
𝒎𝑠
𝑘
to lie within a linear null space of these constraints.

Although the chosen family of bases contains no advanced func-
tions, the ability to represent highly complicated shapes is main-
tained (c.f . Taylor series). Furthermore, to incorporate high-frequency
biases, we introduce sine waves to the set of elementary functions,
i.e., 𝑞𝑢 (𝑥) ∈ {sin( 𝜋𝑛𝑝3 𝑥 − 𝜋𝑛𝑝

2 + 𝜋), 𝑛𝑝 ∈ [1, 𝑁𝑝 ]}. Such a Fourier-
style family is widely adopted both in traditional geometric model-
ing [Zhang 1996] and in modern deep learning [Tancik et al. 2020].
Although this downgrades the 𝐶1-continuity to 𝐶0, empirically it
helps training. Visualizations of randomly sampled basis functions
are shown in Fig. 4.
Performance-wise, customized bases only have little computa-

tional overhead, even with the integral of inner products. This is
because the coefficients 𝒎𝑠

𝑘
can be factored out under our formu-

lation, and the remaining part of the integral related only to the
relative positions of the voxels can be precomputed. Detailed deriva-
tions are in the appendix.

3.3 Differentiable Coarse-to-fine Solver
The multi-scale nature of the linear system in Eq (5) enables us to a
coarse-to-fine linear solver. It works by dividing the linear system

L𝜶 = d into blocks relating to different scales of the voxels, i.e.,
L11 L12 . . . L1𝑆

L21 L22 . . . L2𝑆

.

.

.
.
.
.

. . .
.
.
.

L𝑆1 L𝑆2 . . . L𝑆𝑆



𝜶 1

𝜶 2

.

.

.

𝜶𝑆


=


d1

d2

.

.

.

d𝑆


, (7)

and obtaining the solution 𝜶 in a coarse-to-fine manner. Mathe-
matically equivalent to an upstroke-only V-cycle multigrid solver,
the coarse-to-fine approximation is first proposed in [Kazhdan et al.
2006] and demonstrated to be fast and effective for solving Poisson
systems.
Our fully differentiable pipeline requires us to back-propagate

the gradient through the solver. We hence derive a backpropagation
scheme using the rule of implicit function theorem, so that given
the derivative of the final loss (§ 4.3) w.r.t. the solution 𝜶 , we obtain
its derivative w.r.t. both L and d. The detailed forward and backward
computation of the solver is listed in Alg. 1, with ⊗ denoting the
cross product.

Algorithm 1: Differentiable coarse-to-fine solver for L𝜶 = d.

Forward Pass

Input : {L𝑠𝑠′ } and {d𝑠 }.
Output :Solution {𝜶 𝑠 }.
for 𝑠 ← 1 to 𝑆 do

for 𝑠′ ← 1 to 𝑠 − 1 do
d𝑠 ← d𝑠 − L𝑠𝑠′𝜶 𝑠′ .

Solve for L𝑠𝑠𝜶 𝑠 = d𝑠 .

Backward Pass
Input : {∇𝜶 𝑠 }.
Output : {∇L𝑠𝑠′ } and {∇d𝑠 }.
for 𝑠 ← 1 to 𝑆 do

Solve for (L𝑠𝑠 )⊤∇d𝑠 = ∇𝜶 𝑠 .
∇L𝑠𝑠 ← −∇d𝑠 ⊗ 𝜶 𝑠 .
for 𝑠′ ← 1 to 𝑠 − 1 do
∇L𝑠𝑠′ ← −∇d𝑠 ⊗ 𝜶 𝑠′ .

As the chosen basis functions are compactly-supported (i.e., de-
fined within the domain of 33 voxels), all the linear systems involved
in the algorithm for both forward and backward passes are sparse
and symmetric. This offers a good opportunity for accelerating
the solvers. In practice, we first apply a sparse conjugate gradient
method and check whether the residual diverges (using a threshold
of 10−2 relative residual), in which case we fall back to the sparse
Cholesky factorization approach. The latter leads to a more stable
convergence.

3.4 Discussion
To empirically justify the efficacy of the proposed reconstructor, we
include two baselines under the setting of overfitting a given surface

0 500 1000
# Training Steps

100

101

Lo
ss

Ours
w/o Basis
w/o Solver

with gradient descent, set-
ting both {N𝑠

𝑘
} and {𝒎𝑠

𝑘
}

as learnable parameters:
(1) ‘w/o’ Basis, where
bases of all voxels are
fixed as 𝑏x = 𝑏y =

𝑏z = 𝑏init, and 𝑏init (𝑥) :=
0.146𝑥4 − 0.657𝑥2 + 0.739,
which is a function that
resembles the Bézier basis
as visualized in the first
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column of Fig. 4. (2) ‘w/o Solver’, where the coefficients {𝜶 𝑠
𝑘
} are

treated as a free parameter to optimize instead of being enforced
as L−1d. With the voxel grid structure fixed, the training curves in
the inset (in logarithm coordinates) show a clear advantage of the
proposed method, where both bases and normal fields are being
optimized, with the coefficients being solved through the linear
solver.

Furthermore, we show in Fig. 5 that the introduction of spatially-
varying basis functions could largely enhance the representation
power of the implicit field. Under the same ®N, compared to naïvely
increasing the resolution of the voxel grids, the learnable bases en-
dow the recovered geometry with more details and more appealing
looks.

4 NETWORK AND TRAINING
With our core surface fitting solver defined, in this section, we detail
how it is used in conjunction with the neural network and learn
useful priors from the data. We first define the learning task by
summarizing the attributes that the network needs to predict in
§ 4.1. Then we present in § 4.2 the detailed neural network architec-
ture. The whole pipeline is eventually trained end-to-end with the
strategies and loss functions proposed in § 4.3.

4.1 The Learning Task
There are four key attributes the network needs to predict for the
surface fitting solver: (1) The multi-scale voxel grid structure {V𝑠 }
to form Ω. Such a structure is defined by predicting the 3-category
status of the voxels, as detailed in § 4.2. For each of the existing
voxels v𝑠

𝑘
, we need (2) its normal data N𝑠

𝑘
and (3) the blending

coefficients for its basis function 𝒎𝑠
𝑘
. Finally for each point 𝒑 in P,

we learn (4) the target scalar b (𝒑) in Eq (2) for denoising. The above
attributes, as underlined in Fig. 3, will be used to compute the linear
system in Eq (5) and assemble the desired implicit field 𝑓 via Eq (4).

Note that the predictions are conditioned on the network weights
which are the only learnable parameters in our framework. While
the network models in a local manner the geometric prior of both
surface orientations (2) and local volumetric shapes (1,3,4), the
closed-form solver in § 3 helps generate a globally coherent and
faithful reconstruction.

4.2 Network Architecture
Our network is an adaptive sparse convolutional neural network,
as illustrated in Fig. 6. It leverages the sparsity of geometric data to
gain scalability and is ‘adaptive’ in that the output sparse structure is
multi-scale to recover details at different levels. Generally speaking,
the network follows the Convolutional U-Net encoder-decoder struc-
ture with skip connections, which gradually summarizes low-level
features of the input points into rich high-level semantics where in-
formation is exchanged. The sliding-window nature and translation-
equivariant property of the convolutional operators make it appli-
cable to data of arbitrary scales.

4.2.1 Encoder. The encoder branch is adopted from [Peng et al.
2020], but tailored to a sparsified version, with the same voxel size
as the one used in § 3 and 𝑆 layers. Specifically, the input points P
are first distributed into voxels, where a PointNet [Qi et al. 2017]

Per-voxel
basis function & 

normal data

Per-point
target scalar

MLP([             ])

PointNet

Sparse convolution

Max pooling

Upsampling

Structural pred.

Encoder Decoder

Fig. 6. Illustration of a 3-layer sparse convolutional neural network. Taking
the raw point cloud as input, the network infers both per-point and per-
voxel information. Here the skip links are omitted for clarity.

is used to pool all points within each voxel into features. We then
perform convolution and pooling operations layer-by-layer over
the feature grid to extract deep features, similar to a traditional
U-Net. As the feature grid is sparsely allocated in space, we use the
sub-manifold [Graham et al. 2018] versions of the operators above
for efficiency.

4.2.2 Decoder. The decoder branch is borrowed from the adaptive
convolutional network of [Wang et al. 2018]. It generates the voxel
gridsV that defines the domain of the solver, and the number of
layers is the same as the number of scales 𝑆 . Given the upsampled
voxel grid from the coarser layer, a structural prediction branch is
used to classify each voxel into three categories: voxels that should
be ‘deleted’, ‘subdivided’ or ‘kept-as-is’. The rules follow that all
voxels that are not ‘deleted’ will form the voxel grid V𝑠 of the
current layer/scale 𝑠 , while only voxels that are ‘subdivided’ would
be kept for the finer layer 𝑠 − 1, in consideration for being included
inV𝑠−1. Such a structure prediction naturally satisfies the recursive
containing requirement from the surface fitting solver. To prevent
empty layers, we additionally impose that voxels at scale 𝑠 > 𝑀

will not be ‘kept as-is’. Here,𝑀 could be dubbed as the maximum
adaptive depths, as voxels with 𝑠 > 𝑀 could never become leaf
nodes.

4.2.3 Point prediction. For the per-point prediction b (𝒑), we lever-
age the trilinear-interpolated feature concatenated from all scales
of voxels that contain 𝒑, a way similar to [Chibane et al. 2020a]. We
additionally note that only the relative coordinates to the voxel are
used in both the encoding and decoding stage of the points, making
predictions translation-invariant.

4.3 Training
The full training process of our pipeline is divided into two phases.
In the first phase, we only train the normal and structural prediction
branch, supervised by Lp1 := 𝜔vnLvn + 𝜔structLstruct, where

Lvn :=
∑︁
𝑠,𝑘

��N𝑠
𝑘
− (N𝑠

𝑘
)gt

�� , Lstruct :=
∑︁
𝑠,𝑘

CE
(
𝑐𝑠
𝑘
, (𝑐𝑠

𝑘
)gt

)
, (8)

with a fully supervised L1 loss on voxel normal and a cross-entropy
(denoted by CE) between the predicted 3-category voxel state 𝑐𝑠

𝑘
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(see § 4.2 decoder) and the ground-truth one (𝑐𝑠
𝑘
)gt. Here, (𝑐𝑠𝑘 )gt is

computed by inspecting whether the corresponding voxel v𝑠
𝑘
or its

children exist in the ground-truth voxel grids. Due to the different
geometric properties of the datasets we use, detailed specifications
of such supervision are postponed to the respective experiment
sections.
The ground-truth normal defined on the voxel is computed by

distributing the point normal into its nearest voxels using trilinear
weights, with proper normalizations:

(N𝑠
𝑘
)gt := 8−𝑠+1

∑︁
𝒑∈Pgt

1
𝑍𝒑
·𝑤 (𝒑, v𝑠

𝑘
) · 𝒏𝒑, (9)

with 𝒏𝒑 being the ground-truth normal of 𝒑. The factor 𝑍𝒑 is the
point density estimated as in [Kazhdan et al. 2006], which normalizes
the scales to make N𝑠

𝑘
invariant to point density or voxel sizes.

𝑤 (𝒑, v) is the normalized trilinear weight of 𝒑 w.r.t. the 8 nearby
voxels to allow for sub-node precision. This term evaluates to a
non-zero value only if the point belongs to scale 𝑠 .

In the second phase of training, we set the supervision as Lp2 :=
𝜔structLstruct + 𝜔surfLsurf + 𝜔normLnorm, and

Lsurf :=
∑︁

𝒑∈Pgt

(𝑓 (𝒑) − 𝛿)2 , Lnorm :=
∑︁

𝒑∈Pgt

(
1 − 𝒏⊤𝒑

∇𝒑 𝑓
∥∇𝒑 𝑓 ∥

)
. (10)

Such two terms force both the predicted implicit function and
its first-order derivative ∇𝒑 𝑓 ∈ R3 to fit the surface. Thanks to the
well-defined subspace of the variational solution, we do not need
to impose further constraints over positions away from the surface
like, e.g., [Sitzmann et al. 2020]. To compute the derivative ∇𝒑 𝑓 , one
only has to evaluate the derivative of the elementary basis functions.
This is in contrast to neural surfaces [Gropp et al. 2020] where a
back-propagation through the network is needed.
In total, we need three supervisions for training: (1) per-voxel

structural state (𝑐𝑠
𝑘
)gt, (2) per-voxel normal (N𝑠

𝑘
)gt, and (3) sampled

surface points/normals from Pgt. We manually initialize the basis
prediction branch to produce 𝑏init for all axes within each voxel
for a more stable training. Empirically, we have found that training
the network from scratch without the 2-phase-strategy or the basis
initialization also leads to converged results without an apparent
decrease in performance. However, the proposed approach achieves
the fastest convergence and takes less time to train as the first
training phase does not back-propagate through the solver.

5 EXPERIMENTS
In this section, we first introduce the detailed parameters and set-
tings used (§ 5.1). Our method is evaluated on multiple different
datasets with different scales, i.e., object-level shapes (§ 5.2), human
body scans (§ 5.3), room-level scenes (§ 5.4), and qualitative results
on driving scenes from LiDAR scans (§ 5.5). The design choices are
then thoroughly validated in § 5.6, and timing and memory analysis
is in § 5.7.

5.1 Implementation Details
Our implementation is based on a customized version of [Tang
et al. 2022] (that internally uses a Cuckoo hashtable [Pagh and
Rodler 2004]) for fast neighborhood queries and cuBLAS/cuSOLVER

for solving sparse linear problems. The adaptive sparse convolu-
tional network is instructed to share its neighborhood map with
the solver. For both of our training phases, we use an AMSGrad
optimizer [Reddi et al. 2019] with a standard learning rate of 10−3

and a batch size of 2. We empirically set _ = 64.0, 𝑁𝑝 = 3, 𝜔vn =

25.0, 𝜔struct = 1.0, 𝜔surf = 20.0 and 𝜔norm = 200.0, with 𝑆 = 4 layers
of voxel grids and varying𝑀 for different datasets. The level set 𝛿 is
fixed to be 0.1 as an initial approximation of the integration of Eq (9)
along the surface normal. Some of these choices will be validated in
our ablation study. For all the datasets we train on, 100K points are
used for supervision. Our experiments are conducted on an NVIDIA
GeForce RTX 3090 graphics card with 24GiB of video memory and
an Intel i9-10900K CPU.

5.2 Single Shape Reconstruction
For object-level evaluations we leverage ShapeNet [Chang et al.
2015], a large-scale repository containing over 50k unique 3D mod-
els for deep learning. We follow the common practice in the liter-
ature and use the training-validation-test split from [Choy et al.
2016], containing 13 categories of objects. In total, 8751 unseen ob-
jects from all these categories are used for benchmarking. Same as
[Mescheder et al. 2019], virtually-fused watertight meshes are cre-
ated as ground-truth instead of the original (possibly) non-manifold
raw meshes. All meshes are uniformly scaled to fit a unit cube. We
explore three settings in our experiment, i.e., ‘No noise, 1K points’,
‘Small noise, 3K points’ and ‘Large noise, 3K points’, where small
noise and large noise refer to Gaussian noises with standard devi-
ations of 0.005 and 0.025 respectively added onto the input points.
For the metrics, we use F-score, chamfer distances, and normal con-
sistency: F-score (%) ranges from 0 to 100, and balances surface
precision and recall (completeness), both with a distance threshold
of 0.01. Chamfer distance (scaled by 103, using 𝐿1-norm) measures
the fitting tightness between the predicted surfaces and the ground
truth. Normal consistency (%, abbreviated as ‘Normal C.’) reflects
how the normals of the two surfaces agree.
As the geometric variations in the ShapeNet objects are approx-

imately uniformly-distributed, with few areas containing less de-
tailed surfaces such as planes, we find it unnecessary to use an
adaptive voxel grid structure in this case. Hence we set the maxi-
mum adaptive depth 𝑀 to 1, i.e., all voxels at scales 𝑠 > 1 cannot
be ‘kept-as-is’. In our structural supervision (𝑐𝑠

𝑘
)gt, we build the

ground-truth voxel grid such that every point on the ground-truth
surface is covered by a voxel for all scales. A voxel size of 𝑏 = 0.02
is found enough to model the shapes accurately.

Regarding the baselines we choose the screened Poisson surface
reconstruction (SPSR) in [Kazhdan and Hoppe 2013], neural splines
(NS) in [Williams et al. 2021b], the most recent local implicit grid ap-
proach DI-Fusion from [Huang et al. 2021], convolutional occupancy
networks (ConvONet) from [Peng et al. 2020], shape-as-points (SAP)
from [Peng et al. 2021] and IMLSNet [Liu et al. 2021]. All learnable
baselines are re-trained from scratch except for [Huang et al. 2021]
where strict local modeling is ensured. For a fair comparison we
train two versions of our method, with and without (w/o) point nor-
mal. For the version with normal, the point normal is concatenated
as extra input channels to the network’s encoder, while the normal
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Fig. 7. Results on ShapeNet [Chang et al. 2015] dataset under the 3 settings. Methods marked with ‘*’ use point normal while others do not. Note that our
method can faithfully recover fine geometric details (such as the wheels of the plane and the engine of the boat) and thin structures.

Table 1. Quantitatve comparisons on ShapeNet [Chang et al. 2015]. The three methods above the middle bar require normal input, while the rest (including
ours) do not. The ‘mean’ and ‘std.’ (standard deviation) statistics are reported across the 13 categories. ↑/↓: The higher/lower the better.

No noise, 1K points Small noise, 3K points Large noise, 3K points

F-Score ↑ Chamfer ↓ Normal C. ↑ F-Score ↑ Chamfer ↓ Normal C. ↑ F-Score ↑ Chamfer ↓ Normal C. ↑
mean std. mean std. mean std. mean std. mean std. mean std. mean std. mean std. mean std.

with
Normal

SPSR [Kazhdan and Hoppe 2013] 84.3 8.50 6.26 2.13 89.4 3.45 95.8 2.84 3.84 0.95 92.1 2.27 55.5 12.7 10.7 1.99 81.9 4.54
NS [Williams et al. 2021b] 90.6 3.13 4.74 0.95 91.9 2.51 95.8 2.22 3.78 0.78 93.5 2.25 49.9 8.80 12.0 1.81 82.8 4.90
DI-Fusion [Huang et al. 2021] 88.9 6.13 4.97 1.34 88.4 3.66 91.8 5.07 4.43 1.28 86.7 4.19 39.5 2.40 15.1 0.78 61.8 3.29
Ours 98.9 1.01 2.47 0.65 96.3 1.85 99.5 0.55 2.51 0.53 96.4 1.75 95.8 2.42 3.93 0.71 94.4 2.43

w/o
Normal

ConvONet [Peng et al. 2020] 89.3 5.17 6.07 1.64 92.4 3.04 94.2 4.09 4.35 1.40 93.8 2.63 82.3 7.30 7.31 2.00 91.1 3.36
SAP [Peng et al. 2021] 96.2 2.47 3.44 0.86 93.8 2.61 97.5 1.90 3.30 0.77 94.5 2.42 89.5 4.40 5.34 1.16 91.7 3.22
IMLSNet [Liu et al. 2021] 96.8 2.40 3.15 0.75 93.9 2.70 98.2 1.55 3.08 0.58 94.4 2.52 82.0 5.09 6.58 0.95 89.5 3.77
Ours 97.4 1.92 2.91 0.84 95.0 2.28 98.6 1.12 2.89 0.60 95.2 2.17 90.2 4.03 5.06 0.89 92.0 2.99

data for the surface fitting solver is still predicted by the network.
The comparisons are shown in Tab. 1, and visualized in Fig. 7.

Without learnable modules SPSR and NS fail to recover geometric
details with points as few as 1K, and suffer from the noise in the in-
put, producing bulging geometries. DI-Fusion shows an even worse
performance with large noise because the local implicit grid used is

unaware of the full shape structure. Our reconstruction accuracy
surpasses ConvONet and IMLSNet (except for some cross-category
variations), where the implicit fields / IMLS points are directly in-
ferred with no fitness guarantees. Notably, our voxel grid resolution
is close to ConvONet, where neural-network-parameterized local
implicit fields are used. Yet, we could reach a better performance
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Fig. 8. Domain generalization to Thingi10k [Zhou and Jacobson 2016]
dataset using our model with normal. Insets show the normal maps.

with a higher f-score of ∼8%. This echoes that our elementary-
function-based bases indeed possess strong representation power.
SAP solves an un-screened version of the Poisson equation and can
only use a discrete dense grid, while our representation is implicit
and sparse, leading to our more detailed and faithful modeling of
the shapes.
We additionally offer qualitative results of reconstructions on

selected shapes from Thingi10k [Zhou and Jacobson 2016] in Fig. 8
to show the strong generalizability of our model. We use the version
with input point normal becausewe find such information effectively
helps disambiguate surface orientations for novel shapes. Trained
only on ShapeNet, we could recover highly-detailed geometries
such as the clothes, wrinkles, and sharp edges of unseen categories
and scales. We attribute the generalizability to a synergy of the
network and our surface fitting solver, which naturally incorporates
informative point constraints with orientational predictions.

5.3 Human Body Reconstruction
Compared to man-made objects, human bodies’ geometries exhibit
finer details that are more challenging to recover. To demonstrate
our applicability, we utilize D-FAUST [Bogo et al. 2017] dataset.
It contains raw 4D recordings of 10 subjects performing different
actions. We choose eight subjects, subsample each sequence every
four frames, and randomly split the frames into training, validation,
and test set. For a better description, the above test set is denoted
as the ‘orig.’ (original) subset. The remaining two subjects (50025,
50027) are used in a separate held-out test set that contains novel

Table 2. Comparisons on D-FAUST [Bogo et al. 2017] dataset. The two
columns (‘orig.’ and ‘novel’) are results of different test subsets.

F-Score+ ↑ Chamfer ↓ Normal C. ↑
orig. novel orig. novel orig. novel

with
Normal

IGR [Gropp et al. 2020] 51.5 54.1 24.7 22.7 88.3 87.8
SALD [Atzmon and Lipman 2020b] 58.6 62.0 2.73 2.63 97.3 97.0
ConvONet [Peng et al. 2020] 80.8 83.2 2.71 2.09 96.6 96.3
SPSR [Kazhdan and Hoppe 2013] 93.4 93.6 1.36 1.58 98.2 97.5
Ours 95.3 97.0 1.12 1.05 98.7 98.6

w/o
Normal

ConvONet [Peng et al. 2020] 71.7 73.6 2.78 2.21 96.2 95.9
SAP [Peng et al. 2021] 86.0 88.8 1.55 1.46 97.4 97.2
Ours 95.2 96.8 1.13 1.06 98.6 98.5

geometries to evaluate our generalizability, which we call the ‘novel’
subset. All baseline methods take 10K uniformly sampled points as
input. The metrics are the same as the ones in § 5.2, except that we
change the threshold of the F-score to 0.002 (which we denote as
‘F-Score+’) for clearer comparisons.

Different from the dense one used in ShapeNet, we employ differ-
ent structural supervision (𝑐𝑠

𝑘
)gt. This is because the human body is

inherently multi-scale, as more geometric variations are focused on,
e.g., faces or fingers. Specifically, we adopt the subdivision-based
policy proposed in [Tang et al. 2021a] to build the ground-truth
structure, where the geometric variation within each voxel is evalu-
ated as:

𝑄𝑠
𝑘

:=
∑︁

axis∈{𝑥,𝑦,𝑧 }
std.

({
(𝒏𝒑)axis

}
𝒑∈v𝑠

𝑘

)
, (11)

where the standard deviations of the point normals within the voxel
are summed over all axes. Starting from the coarsest layerV𝑆 , each
voxel v𝑠

𝑘
is determined to be ‘subdivided’ if 𝑄𝑠

𝑘
> 0.02, otherwise it

should be either ‘deleted’ or ‘kept-as-is’ based on whether there is
ground-truth geometry within that voxel. We empirically set the
maximum adaptive depths𝑀 to 2, and the voxel size 𝑏 to a value of
5 × 10−3.
Similar to ShapeNet, we provide two versions (with & without

normal) of our model. For the version with normal, we addition-
ally compare to single-MLP-parametrized IGR [Gropp et al. 2020]
and SALD [Atzmon and Lipman 2020b]. Results are compared in
Tab. 2. We find SPSR to be a rather strong baseline that surpasses the
learnable ConvONet. While our method employs a similar energy
formulation as SPSR, inferred priors from the networks are effec-
tively merged into the solver, and we are hence able to recover more
details. Our method outperforms the baselines by a large margin
and shows good generalizability to the novel subjects. As visualized
in Fig. 9 quantitatively, although IGR could generate more details on
the faces and skins than SAP, it spawns a large number of spurious
planes away from the input and takes ∼2 minutes to optimize the
latent vector for a single shape. On the other hand, SALD generates
smooth shapes with a single forward pass, but it suffers from a
large systematic misalignment that does not respect input poses,
resulting in a large quantitative error. Our method, in contrast, can
reconstruct the most details faithfully and accurately while taking
only ∼1 second to compute (without the meshing operation).
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SALD

SAP

Ours

IGR

Fig. 9. Results on D-FAUST [Bogo et al. 2017] dataset. Our method is compared to IGR [Gropp et al. 2020], SALD [Atzmon and Lipman 2020b] (using the
version with normal) and SAP [Peng et al. 2021] (using the version without normal), all digesting 10K points. We could recover sharp facial and hand details,
without spurious surfaces or costly test-time optimization (∼2min for IGR). The upper row shows subjects from the ‘orig.’ subset, while the lower row is from
the ‘novel’ subset (containing novel unseen subjects).

5.4 Room-level Scene Reconstruction
The scalability of our method is further tested using Matterport3D
[Chang et al. 2017] dataset consisting of real-world scans of indoor
rooms using a panoramic depth camera. The dataset contains 90
buildings in total. We follow the official train/test split and further
divide each building into individual rooms, with each room being
reconstructed and evaluated separately. The test set contains 399
rooms. The same strategy in § 5.3 is used to generate the structures
used for supervision, producing voxels at a larger scale in planar
regions such as walls and grounds. We set𝑀 = 2 and 𝑏 = 0.012.

Critically, the indoor scans are all single-sided surfaces, yet due to
the nature of our solver to produce watertight geometries, excessive
floaters will be presented at the domain boundary. Thanks to the
truncated domain Ω used, the floaters are small in area and never
appear undesirably at places far from the surface. In our experiment,
we employ a k-NN approach to trim the vertices on the generated
mesh that are too far away from the input points. To enable a fair
comparison, we report both our untrimmed and trimmed versions,
using the additional metrics that incorporate the uni-direction per-
formance irrespective of excessive geometries (i.e., uni-directional
chamfer and normal consistency from the ground-truth to the pre-
dictions, and the surface recall rate).
For quantitative comparisons, we follow the standard practices

and subsample the input point cloud to 10K. We compare SPSR,
DI-Fusion (without re-training), ConvONet and SAP, also on two
versions with and without input normals. For SAP we try to increase
the resolution of the FFT solver from 256 to 512 but find the higher
resolution is hard to converge, resulting in noisy particles around
the surface. SAP also suffers from memory issues due to its cubic
algorithm complexity.

Table 3. Results on Matterport [Chang et al. 2017] dataset. ‘⇆’ indicates the
original bi-directional metrics, while ‘←’ is the uni-directional version (for
f-score this corresponds to surface recall) that disregards excessive floaters.

F-Score ↑ Chamfer ↓ Normal C. ↑
⇆ ← ⇆ ← ⇆ ←

with
Normal

SPSR [Kazhdan and Hoppe 2013] 87.0 96.9 10.4 3.65 92.3 93.6
DI-Fusion [Huang et al. 2021] 90.1 93.3 5.13 4.34 90.1 90.9
ConvONet [Peng et al. 2020] 92.8 98.7 4.80 3.98 94.9 94.8
Ours 92.7 99.7 4.10 2.60 95.6 97.1
Ours (trimmed) 97.8 99.7 2.87 2.48 96.8 97.1

w/o
Normal

ConvONet [Peng et al. 2020] 88.9 91.8 6.21 5.79 92.3 92.0
SAP [Peng et al. 2021] 91.2 94.5 4.17 4.12 91.4 91.4
Ours 93.5 99.3 3.93 2.72 94.1 95.6
Ours (trimmed) 97.3 99.3 3.04 2.63 95.3 95.7

The results are compared in Tab. 3 and Fig. 10. Our method per-
forms favorably over all the baselines even without trimming, intro-
ducing nice and smooth complete room-level reconstructions with
abundant geometric details. The fitting accuracy is more distinct
with the uni-directional metrics, where we could achieve a nearly
29% and 34% reduction in chamfer distances compared to the closest
counterpart. Moreover, our method enjoys an intuitive property that
the reconstruction accuracy improves with more points as input,
without fine-tuning the network. We note that such a property is not
guaranteed in many learning-based approaches, such as ConvONet.
This is illustrated in Fig. 11, the details on the furniture/plants can
be faithfully recovered with 50K input, while under the same setting,
ConvONet exhibits holes and noise.
We additionally compare to two overfitting-based methods, i.e.

SIREN [Sitzmann et al. 2020] and ACORN [Martel et al. 2021] in
Fig. 12. As both of the methods require first-order optimizations,
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Fig. 10. Comparisons on Matterport [Chang et al. 2017] dataset with 10K
input points. Yellow dashed boxes indicate our method.

they are inherently slow in time. For SIREN, a one-minute run is
not enough for proper convergence, leaving blurred surfaces and
floating chunks in the scene. Fully converged SIREN that takes
an hour of optimization could reach a comparable quality to our
method that runs only for a few seconds, while the ACORN model
falsely introduces noisy surfaces possibly due to its weakness in
regularizing geometries. As the optimality of our method is obtained
through the closed-form Euler-Lagrange formulation that requires
only a linear solve, we could reconstruct the scenes both fast and
accurately.

5.5 Large-scale Driving Scene
To further demonstrate our scalability and generalizability to large
scales, we apply our method to KITTI dataset [Geiger et al. 2012], us-
ing the pre-trained weights fromMatterport. We take our input from
the LiDAR scans in the odometry subset. They are transformed into
world coordinates using the provided camera trajectories. Ground-
truth semantic annotations from [Behley et al. 2019] are used to
prune dynamic objects and distracting vegetation from the LiDAR
points. Due to the differences in point distributions, instead of us-
ing the predicted voxel grid structure, we opt to replace it with a
hand-crafted one based on point density, similar to [Kazhdan et al.
2006]. To accelerate processing, the full scene is divided into 51.2m3

blocks, and points within each block are down-sampled using 5cm3

voxels. Our method is executed sequentially on each block, and the
final meshes are blended.

As shown in Fig. 13, our method successfully generalizes to large-
scale scenes, achieving visual-appealing reconstructions with suf-
ficient details. This is further confirmed by back-projecting color
images onto our geometry and observing the well-aligned textures.
Thanks to the sparsified domain Ω, no broad-scale trimming is
needed. Moreover, our multi-scale voxel grids naturally enable a
multi-scale mesh extraction mechanism [Shekhar et al. 1996], as
illustrated in Fig. 14, to reduce the number of triangles.

Table 4. Comparison of different noise handling strategies. ‘mean’ and ‘std.’
(standard deviation) are measured at instance level.

𝐿2-Chamfer ↓ F-Score ↑ Normal C. ↑
mean std. mean std. mean std.

No handling 1.84 1.37 98.2 2.88 95.2 3.42
𝐸alter (𝑓 ) 1.99 1.53 98.0 2.85 95.2 3.29

𝐸 (𝑓 ) (Ours) 1.69 1.21 98.4 2.55 95.6 3.25

5.6 Ablation Studies
Our ablation studies are conducted over ShapeNet and Matterport
datasets. For ShapeNet, we use the ‘Small noise, 3K points’ setting
and choose its chair subset for training, validation, and testing in
the following experiments. Under the same parameter setting, our
model trained only on the subset could perform similarly to the
model trained on the full dataset (F-score 98.4 vs. 98.6). Apart from
the F-score and normal consistency metrics, we change the chamfer
distance from 𝐿1-norm to 𝐿2-norm (denoted by ‘𝐿2-Chamfer’ below)
to show clearer differences due to its outlier-sensitivity. The 𝐿2
distance is scaled by 105 for better display.

5.6.1 Energy formulation. The balancing factor _ in Eq (5) controls
how close the fitted surface should snap to input point observations.
In the extreme case where _ = 0, the formulation falls back to a
simple Poisson solution as in [Kazhdan et al. 2006], focusing only
on ®N which is predicted by the network in our case. As shown in
Fig. 15, all metrics improve with a growing _, especially 𝐿2-Chamfer
distance. Such an observation confirms the merit of respecting the
input points. The worsened performance with a small _ reveals that
the network alone could not generate a surface with high precision.
Note that the predicted normal data is equally important by offering
informative guidance of the surface orientation, and our solver will
not converge without the first term in Eq (5) (i.e., when _ →∞).

5.6.2 Point noise handling. A common way of handling input noise
is to predict the weight of each point, as done in previous works
such as [Ben-Shabat and Gould 2020; Williams et al. 2021a]. Being
an intuitive alternative, we also implement such a scheme by min-
imizing the following energy function in replacement of 𝐸 (𝑓 ) in
Eq (2):

𝐸alter (𝑓 ) :=
∭

Ω

∇𝑓 − ®N2

2
d𝑉 + _

∑︁
𝒑∈P

b (𝒑) (𝑓 (𝒑) − 𝛿)2 , (12)

where the per-point target scalar prediction b (𝒑) acts instead as
a varying weight of the second data fitting term. The strategies
are compared in Tab. 4, with an additional ‘No handling’ baseline
setting both _ and b as constant. By explicitly treating the predicted
scalars as constraints within the implicit field, our strategy enables
a more detailed depiction of the point noise, using the information
from all the points. Predicting per-point weight is less effective in
our case, producing ill-posed fitting behaviors when all points are
falsely down-weighed, hindering the learning process.

5.6.3 Adaptive structure and number of scales. We show in Tab. 5
the effect of the number of scales 𝑆 (that equals the number of layers
in our network) and the maximum adaptive depth𝑀 , using the Mat-
terport dataset adopting the same metrics as in § 5.4. With deeper
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Fig. 11. Reconstruction results on Matterport [Chang et al. 2017] with increasing number of points. Both ConvONet and our method are trained only with
10K points, while only our method shows a gradually improving geometry thanks to the surface fitting formulation. The blue and orange crops are taken from
the regions annotated in the rightmost figure, where our colored geometry is generated by setting the vertex color as the average of nearby input points.

SIREN (1 minute) ACORN (~60 minutes)SIREN (~60 minutes) Ours (<2 seconds) Ours (Colored)

Fig. 12. Surface quality and run time comparison with SIREN [Sitzmann et al. 2020] and ACORN [Martel et al. 2021], using 50K oriented points as input. We
reach comparable reconstruction quality with these overfitting-based methods, while being significantly faster.

networks and more scales, the surface could be more accurately
fitted. The bi-directional metric decreases drastically with growing
𝑀 due to the increased surface area of un-trimmed floaters. Regard-
ing the fitting precision reflected by the single-directional metrics,
we find similar or even better performance with a larger𝑀 . It also

enables fair speed boosts by reducing the number of voxels involved
in the solver.

5.6.4 Learnable basis functions. We observe similar behaviors in
the learning-based setting as in overfitting (Fig. 5), that using our
proposed spatially-varying bases composed of elementary functions
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Fig. 13. Results on KITTI [Geiger et al. 2012] odometry dataset (Sequence 00, frame 3000 to 4000). Normal maps along with the rendered mesh are used for
visualization to highlight geometric details. Zoomed-in insets correspond to the locations marked on the full map, with the same dashed boundary color.

Input Point CloudMulti-scale Mesh (Ours)

Fig. 14. Our method enables extracting multi-scale meshes thanks to the
adaptive voxel grid structure built. Note the coarsened triangulations on
the top-right corner where input points are sparse.
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Fig. 15. Effect of the data fitting term in Eq (5). We show the fitting perfor-
mance using different weights _ (all networks are re-trained from scratch).
Black arrows indicate our chosen _ = 64.

Table 5. Effect of different number of scales 𝑆 and maximum adaptive depth
𝑀 . ‘⇆’ is the bi-directional metric and ‘←’ only considers single direction.

F-Score ↑ Chamfer ↓ Normal C. ↑
𝑆 𝑀 ⇆ ← ⇆ ← ⇆ ←

4 1 95.7 96.8 3.52 3.24 92.4 92.6
4 2 93.5 99.3 3.93 2.72 94.1 95.6
4 3 82.3 99.0 8.47 3.07 92.5 95.4
3 1 96.3 97.8 3.35 3.00 93.0 93.4
3 2 90.4 98.5 4.63 2.97 92.5 94.2
2 1 93.8 96.4 3.89 3.40 88.5 89.5

Table 6. Effect of different basis functions. ‘Order’ means the order of the
polynomials. ‘+ Sine’ indicates whether sine waves are added to the function.

Order + Sine 𝐿2-Chamfer ↓ F-Score ↑ Normal C. ↑

Bézier 1.75 97.8 94.2

0 ✓ 1.70 97.7 93.8
5 1.74 97.6 94.2
6 1.70 97.9 94.8
6 ✓ 1.69 98.4 95.6
7 1.67 98.2 95.0
7 ✓ 1.66 98.5 95.1

improves the representation power of the implicit field and leads
to better surface fitting accuracy. Listed in Tab. 6, in comparison to
the fixed Bézier tensor basis, the learnable ones all reach a better
surface fitting accuracy. As the bases are essentially local geometric
priors, introducing higher-frequency sine waves could effectively
help enlarge the solution space of the implicit function and en-
courage more variations in the generated shapes. Interestingly, the
performance does not grow monotonically as the basis functions
become more complex, which could be partially attributed to the
instability in the training process caused by an increased number
of parameters. Regarding the computation overhead brought by
the additional bases, we observe no apparent decrease in runtime
efficiency: Compared to the Bézier basis, using the most complicated
7th-order polynomial with sine waves only adds < 1% additional
test time. We additionally tested the DSIF basis from [Genova et al.
2019], but due to the instability of their integral formulation, this
led to training divergence.

5.6.5 Loss functions. As shown in [Peng et al. 2021], the supervision
over the entire implicit field could lead to better convergence. We
hence design a similar loss that writes:

Lfield :=
∬

Ω

���𝑓 − ˆ𝑓gt
��� d𝑉 , ˆ𝑓gt (𝒑) := Sigmoid

(
𝑑 (𝒑,Sgt)

)
, (13)
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(a) (b) (c)
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Fig. 16. Qualitative comparisons of different noise handling strategies (a-c)
and different loss functions (d-f). Please refer to the text for more explana-
tions.

Table 7. Comparison of different loss functions. ‘mean’ and ‘std.’ (standard
deviation) are measured at instance level. Ours is at the last row.

Lfield Lsurf Lnorm
𝐿2-Chamfer ↓ F-Score ↑ Normal C. ↑
mean std. mean std. mean std.

✓ 4.14 14.7† 97.4 3.54 93.8 3.69
✓ ✓ 2.32 3.06 97.9 3.14 95.5 3.30

✓ 9.51 2.60 73.0 4.55 63.3 5.05
✓ ✓ 1.69 1.21 98.4 2.55 95.6 3.25

† : Due to some severe failure cases.

where 𝑑 (𝒑,S) measures the signed distance from the point 𝒑 to the
surface S (inner values are positive). In the above loss, the pseudo-
ground-truth field ˆ𝑓gt is approximated as a smoothed indicator field,
and directly supervises the predicted implicit function 𝑓 . However,
as shown in Tab. 7, such an approximation leads to inferior results.
Fig. 16 (d) further highlights the gridded artifact introduced. We
now point out that the optimal 𝑓 ★ produced by the solver is not
a simple indicator or occupancy function of the geometry. Rather,
the solution lies in the null space of our variational energy where
the geometric bias is more intricately defined, especially with our
customized varying bases where the solution space is intractable to
define.

The surface normal loss Lnorm, is found to be vital in the learning
process. It helps guide correct surface orientations and prevents
the optimization from falling to a trivial solution where 𝑓 ≡ 𝛿 . The
recovered surface is completely corrupted without such a loss, as
shown in Tab. 7 and Fig. 16 (e).

5.7 Timing and Memory
The most time-consuming operations in our pipeline are divided
into four parts, whose detailed breakdown is shown in the inset
figure. Here, ‘Network’ is the feed-forward time of our adaptive
sparse convolutional network, ‘Terms’ refer to the computation

of the integrals in Eq (5), ‘Linear solve’ is the time of our linear
solver, and ‘Mesh’ includes the time to densely evaluate function
values over a uniform voxel grid and to perform marching cubes.

Network

Terms

Linear solve
(~350ms)

Mesh

On average, the test time for a single sam-
ple/chunk is ∼0.6s/1.0s/1.0s/6.5s for ShapeNet,
D-FAUST, Matterport, and KITTI, respectively,
using the default setting. Among all the com-
ponents, the main bottleneck is the linear
solver (taking up ∼60% time), which we wish
to further optimize in the future.

The runtime memory fluctuates around 6-7GiB during inference.
Note that we have not made a heavy code-level optimization, and
the statistics may include the overhead of the deep learning library.
Possible speed-ups and memory reduction can be achieved using
meta-operators [Hu et al. 2020] or low-level languages.

6 CONCLUSION
Despite the promising performance as demonstrated, it suffers from
the following main limitations: (1) Time and memory cost of the
solver is still high. Although we use sparse structures throughout
our pipeline, the overheads of hashtable manipulations and the
linear solver contribute a non-negligible constant to the algorithm
complexity. (2) The reconstruction is not transformation equivariant.
This is not only due to the convolutional operations we use in our
network, but also due to the chosen family of basis functions. For
ease of computation, we perform axis-aligned factorizations, which
inevitably introduce anisotropic bias. (3) The heavy reliance on point
cloud data makes it challenging to apply our method to high-level
semantic tasks such as shape completion. The solution given by the
solver prefers empty regions where no input point exists even if the
network predicts correct scaffolds. This could be partially solved by
allowing the network to ‘hallucinate’ novel points, which we leave
as future works.

In this paper, we propose NeuralGalerkin for accurate surface re-
construction from point cloud data. By effectively combining priors
generated by the network and the raw point measurements using
a closed-form surface fitting solver, we can strike a nice balance
between the fidelity of the point fitting and the respect to learned
inductive biases. Such a formulation also enables higher-definition
outputs and a good generalization to unseen data, as demonstrated
in the various datasets we have tested upon. In the future, we hope
to explore more possible families of basis functions and to develop
more efficient ways to optimize the fitting energy.
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A OPTIMAL SOLUTION TO THE SURFACE FITTING
VARIATIONAL PROBLEM

The energy in Eq (2) could be transformed as:

𝐸 (𝑓 ) :=
∭

Ω

©«
∇𝑓 − ®N2

2
+ _

∑︁
𝒑∈P
(𝑓 (𝒑) − b (𝒑))2 1(𝒙 − 𝒑)ª®¬ d𝒙,

(14)
where 1(·) is the Dirac delta function satisfying

∭
Ω 1(𝒙)d𝒙 = 1

and ∀𝒙 ≠ 0,1(𝒙) = 0.
Taking the multi-dimensional extension of Euler-Lagrange equa-

tion, we could find the stationary point of 𝐸 satisfies:

Δ𝑓 − ∇ · ®N + _
∑︁
𝒑∈P
(𝑓 (𝒑) − b (𝒑))1(𝒙 − 𝒑) = 0. (15)

As a differentiable functional is always stationary at its local
extrema, the quasi-convexity of the above problem would generate
almost surely the optimal solution to the surface fitting energy,
solved by our NGS.
Per Galerkin method, converting the strong form in Eq (15) to a

weak form by introducing the test function 𝜔 leads to:

∀𝜔,
∭

Ω
𝜔

(
Δ𝑓 − ∇ · ®N

)
d𝒙 + _

∑︁
𝒑∈P

𝜔 (𝒑) (𝑓 (𝒑) − b (𝒑)) . (16)

The first integrand could be simplified using integration by parts
𝜔Δ𝑓 = ∇ · (𝜔∇𝑓 ) − ∇𝑓 · ∇𝜔 , and stokes theorem that exploits the
boundary conditions over Ω. We further replace the arbitrary test
functions with the basis functions, along with 𝑓 (𝒑) = ∑

𝑘 𝛼𝑘B𝑘 (𝒑)
using the product subscript, obtaining the following discretization:

∀𝑘,
∑̄︁
𝑙

𝛼𝑙

∭
Ω
∇B⊤

𝑘
∇B𝑙 d𝑉 + _

∑̄︁
𝑙

𝛼𝑙

∑︁
𝒑∈P
B𝑘 (𝒑)B𝑙 (𝒑)

=

∭
Ω
∇B⊤

𝑘
®N d𝑉 + _

∑︁
𝒑∈P
B𝑘 (𝒑)b (𝒑),

(17)

giving the exact same form L𝜶 = d as in Eq (5).

B EFFICIENT COMPUTATION OF THE INTEGRAL
As B(𝒑) only applies simple translation and uniform scaling to
𝐵(𝒑), it could be similarly decomposed axis-wise into three compo-
nents composed of elementary functions. With the form B𝑘 (𝒑) =∑
𝑢𝑚

x
𝑢,𝑘

𝑞x
𝑢,𝑘
(𝑥) ·∑𝑢𝑚

y
𝑢,𝑘

𝑞
y
𝑢,𝑘
(𝑦) ·∑𝑢𝑚

z
𝑢,𝑘

𝑞z
𝑢,𝑘
(𝑧) (we omit the zero

branch in Eq (6) for clarity), the integral in L can be factored out as:∭
Ω
∇B⊤

𝑘
∇B𝑙 d𝑉 = ¤\𝑥\𝑦\𝑧 + \𝑥 ¤\𝑦\𝑧 + \𝑥\𝑦 ¤\𝑧 , (18)

where
\𝑎 =
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𝑢
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¤\𝑎 =
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·
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𝑣,𝑙

𝜕𝑎
d𝑎,

𝑎 ∈ {𝑥,𝑦, 𝑧}.

(19)

Here, in both \𝑎 and ¤\𝑎 all integrals are axis-aligned and one-
dimensional. As these integrals do not contain the variables {𝑚𝑢 }
predicted by the network, they could be pre-computed either by
hand or via automatic symbolic packages (in our implementation
as a pre-processing step), as 𝑞𝑢 are all elementary functions.

Similarly, the terms in d can be factored out as:∭
Ω
∇B⊤

𝑘
®N d𝑉 =

∑︁
v𝑙 ∈Rgn(v�̄� )

N⊤
𝑙
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𝜌𝑥𝜌𝑦 ¤𝜌𝑧

 , (20)

where
𝜌𝑎 =
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𝑢,𝑘

∫
𝑎∈Rgn(v�̄� )
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d𝑎,

𝑎 ∈ {𝑥,𝑦, 𝑧}.

(21)

With the pre-computed terms, the evaluation of the 3-dimensional
integral could be reduced to simple multiplications and additions
that are readily parallelizable.
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