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Learning Virtual View Selection for 3D Scene
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Abstract— 2D-3D joint learning is essential and effective for
fundamental 3D vision tasks, such as 3D semantic segmentation,
due to the complementary information these two visual modalities
contain. Most current 3D scene semantic segmentation methods
process 2D images “as they are”, i.e., only real captured 2D
images are used. However, such captured 2D images may be
redundant, with abundant occlusion and/or limited field of view
(FoV), leading to poor performance for the current methods
involving 2D inputs. In this paper, we propose a general learning
framework for joint 2D-3D scene understanding by selecting
informative virtual 2D views of the underlying 3D scene. We then
feed both the 3D geometry and the generated virtual 2D views
into any joint 2D-3D-input or pure 3D-input based deep neu-
ral models for improving 3D scene understanding. Specifically,
we generate virtual 2D views based on an information score map
learned from the current 3D scene semantic segmentation results.
To achieve this, we formalize the learning of the information score
map as a deep reinforcement learning process, which rewards
good predictions using a deep neural network. To obtain a
compact set of virtual 2D views that jointly cover informative
surfaces of the 3D scene as much as possible, we further propose
an efficient greedy virtual view coverage strategy in the normal-
sensitive 6D space, including 3-dimensional point coordinates and
3-dimensional normal. We have validated our proposed frame-
work for various joint 2D-3D-input or pure 3D-input based
deep neural models on two real-world 3D scene datasets, i.e.,
ScanNet v2 and S3DIS, and the results demonstrate that our
method obtains a consistent gain over baseline models and
achieves new top accuracy for joint 2D and 3D scene semantic
segmentation. Code is available at https://github.com/smy-
THU/VirtualViewSelection.

Index Terms— Virtual view selection, 2D-3D joint learning,
deep reinforcement learning, 3D semantic segmentation.

I. INTRODUCTION

3D SCENE semantic segmentation is fundamental and
essential for many applications, including autonomous
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driving, robotics, and beyond. Current designs of intelligent
cars or robots [3] usually equip complementary and hetero-
geneous sensors to guarantee redundant safety. 2D cameras
and 3D range sensors are the two most common kinds of
visual sensors in such systems, which are complementary for
depicting the underlying scene, i.e., 2D cameras capture the
appearance of the scene, and 3D range sensors obtain the 3D
surface representation of the scene.

Although 3D scene semantic segmentation can be achieved
using pure 2D or 3D information, fusing 2D and 3D informa-
tion is clearly beneficial to both 2D and 3D understanding [4],
since features that are inseparable in a low dimensional space
may be separable when mapped into a high dimensional space
or in other dimensions. For example, objects similar in color
and spatially close in the image domain may be far away to
each other in depth; a painting is close to the wall it hangs on,
but we easily separate it from the wall according to different
colors.

The most intuitive way to incorporate 2D information into
3D scene understanding is to predict the semantics for 2D
images from multiple perspectives using deep convolutional
neural networks, and then re-project them back to the cor-
responding surface of the 3D scene via some aggregation
strategies, according to the camera intrinsic parameters and the
pose of each image. For these methods, the 2D view selection
plays a key role in the final performance of 3D scene under-
standing. For the sake of time efficiency, choosing views that
perfectly cover the underlying 3D scene [5], clustering similar
views [4] or just uniformly sampling views from the captured
sequence of 2D images [6] is usually adopted to replace the
strategy of dense prediction on every 2D image. However,
one main drawback for using such originally captured 2D
images is that, due to the lack of freedom for capture paths
and the limitation of device, the captured 2D images may be
redundant, full of occlusion and/or with narrow/limited field
of view (FoV), leading to poor performance for current deep
neural networks.

Recently, Kundu et al. [5] proposed to use virtual views,
which are rendered from the reconstructed 3D scene, to replace
the originally captured 2D images. The advantages of using
virtual views are two-fold: firstly, the FoV can be enlarged
to cover more positional relationship information between
objects; secondly, the virtual views can be controlled to avoid
occlusion. However, the method has some limitations. On the
one hand, the virtual views are directly aggregated for 3D
segmentation without using 3D geometric information; on the
other hand, the virtual view selection is determined without
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clear and quantitative assessment about the quality of selec-
tion, so may result in views that are redundant, uninformative
or even having negative effects.

To overcome these limitations and to further improve the
accuracy of 3D scene understanding, this paper proposes a
general learning framework for joint 2D-3D scene under-
standing by selecting representative virtual 2D views of the
underlying 3D scene. The generated virtual views, together
with the 3D geometry, can be fed into any joint 2D-3D-input or
pure 3D-input based deep neural models for 3D scene semantic
segmentation to make the final prediction. However, directly
predicting all the possible virtual views in the entire 6DoF
(Degree of Freedom) space, i.e., a 3-DoF camera location
and a 3-DoF camera orientation, is prohibitively expensive.
We instead seek to predict regions that are likely to boost
the 3D scene understanding, which will be the focus for
detailed virtual view examination. Specifically, given a 3D
scene understanding task, we generate virtual 2D views based
on a learned information score map, which is estimated based
on the prediction result of the task using a neural network
called score net.

The training of score net is formalized as a deep reinforce-
ment learning process, which rewards good predictions of the
task using a convolutional scoring network. To render virtual
2D views that can jointly cover as many informative surfaces
of the 3D scene as possible with a limited number of views,
we further propose an efficient greedy virtual view coverage
strategy in the normal-sensitive 6D space, i.e., 3-dimensional
point coordinates and 3-dimensional normal. We have con-
ducted experiments on two real-world 3D scene datasets [1],
[2] with various base models to demonstrate the versatility
of our method. The results show that our method obtains
consistent gains over baseline models and achieves new top
accuracy for joint 2D and 3D scene semantic segmentation.

In summary, this paper makes the following contributions:
• We propose to exploit the information score of prediction

for improving 3D scene semantic segmentation and devise
a general deep reinforcement learning framework to learn
to predict the information score map effectively, which
is applicable to any joint 2D-3D-input or pure 3D-input
based deep neural networks.

• With the learned information score map of current pre-
diction, we propose a greedy virtual 2D view generation
method, which can render views that jointly cover as
many highly informative regions of the 3D scene as
possible, improving the final prediction results.

• We apply our framework to various joint 2D-3D-input or
pure 3D-input based deep neural networks, and the results
on both ScanNet v2 [1] and S3DIS [2] show that our
framework can consistently boost the prediction accuracy
of base models, achieving state-of-the-art performance for
joint 2D and 3D scene semantic segmentation.

II. RELATED WORK

The techniques for 3D scene understanding have seen
significant evolution due to the demands in many real-world
applications such as robotics and autonomous driving, as well
as the release of public 3D scene datasets, such as ScanNet [1].

As it is a broad topic, we only review the most related work
in the following.

A. Joint 2D and 3D Scene Understanding
Techniques for understanding of 2D image content progress

rapidly and we have witnessed a lot of renowned models, such
as DeconvNet [7], ResNet [8], FCN [9], Mask-RCNN [10],
SSMA [11], DeepLab [12], Res2Net [13], PVT2 [14], etc.
A straightforward integration of them into 3D is to map the
semantics learned from 2D to 3D geometry along with a
dense 3D reconstruction process, e.g., SemanticFusion [15],
Semantic Reconstruction [16], PanopticFusion [17], Mask-
Fusion [18], ProgressiveFusion [19] and 2D3DNet [20]. 2D
views are also rendered from 3D representations to train 3D
foundation models [21], [22]. Inspired by PanoContext [23],
our method is most related to virtual multi-view fusion [5]
which simply fuses the unary probability of pixels’ seman-
tic label from virtually rendered 2D views into 3D points.
Concurrently, Rong et al. [24] select virtual views with active
learning to refine the 3D semantic segmentation. However,
these methods only learn the semantics from 2D views without
making full use of the complementary 3D geometry, especially
learning the geometric priors. Rong et al. [24] select the views
based on a hand-crafted information score, which considers the
cross-entropy of 2D semantic predictions, the cross-entropy
of 3D semantic predictions fused from 2D views and the
complexity of region (i.e., its point density). Our method
exploits learning an information score map of current 3D
semantic prediction to guide the virtual view selection, which
is experimentally proved to be more effective than simply
using cross-entropy of the prediction.

PointNet [25] and its variants [26], [27] have inspired the
prosperity of performing semantic segmentation of 3D scenes
directly on the 3D geometry with deep learning techniques.
The key is to define proper convolution operations for different
types of explicit representations, i.e., points [28], [29], [30],
[31], [32], [33], [34], [35], voxels [36], [37], [38], [39],
meshes [40], [41], [42], [43], and their combinations [44].
Special attention is drawn to adapt to the irregular and
unordered properties of point and mesh data, by introducing
transformer-like structure [45], [46], [47], [48], [49], [50].
Considering the sparsity of input high dimensional data,
SparseConvNet [51] and MinkowskiNet [52] exploit sparse
convolutions for efficient computation. Liu et al. [53] com-
bine self-training with active learning for weakly supervised
segmentation to reduce user annotations. Recently, effective
deep neural networks [54], [55], [56], [57], [58] are also
designed to handle large-scale scenes, such as 3D LiDAR
point clouds in autonomous driving scenarios. In principle,
these pure 3D-input based networks can be further improved
with virtual 2D views using our framework, as demonstrated
in our experiments.

Instead of directly fusing 2D semantic labels onto the 3D
surface, recent joint 2D and 3D learning methods [59], [60],
[61] usually first extract features from 2D views, and then
integrate them with 3D features learned from the 3D geometry
or simply feed them as the descriptor for deep geometric
learning. We refer readers to [62], [63], [64], [65], and [66] for
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Fig. 1. The pipeline of our virtual view selection for 3D semantic segmentation. Our method takes both 3D geometry and initial 2D views as inputs and
learns an information score map about the current prediction of the 3D scene using reinforcement learning. During the inference stage, we generate virtual
views based on the information score map only once to refine the prediction.

comprehensive reviews on joint 2D and 3D learning for scene
understanding. For the offline understanding of the whole 3D
scene, MVPNet [6] feeds features extracted from multiple
2D views to PointNet [25]. Hu et al. [4] boost both the 2D
and 3D semantic segmentations by explicitly fusing learned
2D features into 3D, and vice versa, using the bidirectional
projection between 2D image pixels and 3D positions with
the help of known camera intrinsic and extrinsic parameters.
Robert et al. [67] propose a multi-view aggregation model
to select the most relevant 2D features for joint 2D and 3D
learning. LinkNet [68] also uses 2D-3D projection links and
fuses the 2D and 3D features with an RNN (Recurrent Neural
Network) module, making it suitable for online stable semantic
segmentation. SVNet [69] is also designed for the purpose of
online segmentation by defining convolution operations for on-
surface 3D supervoxels and with the help of progressive voxel
clustering. These methods perform 2D and 3D feature fusion
with the originally captured images, which may be redundant,
full of occlusion and/or with narrow/limited FoV, reducing the
semantic segmentation performance of the 3D scene.

B. Deep Reinforcement Learning in Computer Vision

Reinforcement learning originated from the understanding
of human decision-making process. The goal is to enable
agents to determine their behaviors, i.e., taking actions accord-
ing to the observed environment, called states. Different
from traditional machine learning, reinforcement learning is
supervised by the reward of choosing a specific action. Deep
reinforcement learning is a combination of deep learning and
reinforcement learning, which uses deep neural networks to
learn the action space based on current observations.

Mnih et al. [70] proposed the first deep learning model
supervised by a reinforcement learning method, namely a
Deep Q-Network (DQN) combining a Convolutional Neural

Network (CNN) with deep Q-learning [71], so that agents can
achieve the performance equivalent to the human level in Atari
games. From then on, deep reinforcement learning models
have been applied in various vision tasks in recent years, such
as face recognition in videos [72], video summarization [72],
finding an object instance in videos [73], video action recog-
nition [74], etc. These methods attempt to find the attentive
regions or frames that are most informative to the given tasks,
which are further formalized as a Markov decision process,
and thus a deep reinforcement learning network can be adopted
to learn the attention model to discard unwanted or misleading
regions or frames while retaining the most important ones for
the tasks.

Inspired by the above methods, we, for the first time, apply
deep reinforcement learning to 3D scene semantic segmenta-
tion. In this paper, we regard the process of finding the 3D
informative regions as a Markov decision process, and thus
a deep neural network can be built to learn to predict such
informative regions, which are further used to guide the virtual
view selection to improve the performance of joint 2D and 3D
scene understanding.

III. VIRTUAL VIEW SELECTION USING
REINFORCEMENT LEARNING

A. Overview

The general framework of our virtual view selection for
joint 2D and 3D scene understanding is illustrated in Fig. 1.
The main modules include the base model, the score network,
the reward and the virtual view selection module.

Starting from the 3D geometry and an initial set of 2D
image views of the scene as input, the base model, which can
be any joint 2D and 3D scene semantic segmentation network,
outputs an initial semantic segmentation prediction about the
underlying 3D scene. Our framework is also applicable to
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methods that only take 3D geometry information as input.
In this case, the selected virtual views are treated as the input
of an added 2D semantic segmentation network, which outputs
the probabilities for each pixel to belong to different semantic
labels, thus providing additional 2D predictions. The fused
predictions from virtual 2D views and the base 3D model
will be further used to calculate the reward. However, current
joint 2D and 3D scene semantic segmentation methods usually
directly adopt the original 2D views, which may be redundant,
uninformative, or even have negative effects.

To select more informative 2D views to improve the current
predictions, the score network is adopted to learn an informa-
tion score map, indicating the quality of the current prediction
of the base model. Actions, i.e., the selected virtual views,
will be generated based on the information score map and
fed back to the base model to produce new predictions. This
score net is trained using reinforcement learning with the aim
of maximizing the reward computed from the current and last
predictions of the base model. During the inference, the 2D
virtual view selection module renders virtual views of selected
informative regions with poor prediction results implied by
the learned score map. We then feed these virtual views into
the base model for better prediction. This inference process is
performed only once to save computational cost, as repeating
this process does not give significant benefits in practice.

These core modules will be introduced in detail in the
following subsections.

B. Score Network for Information Score Prediction
The base model can be any joint 2D and 3D neural network

for 3D semantic segmentation, which takes the 3D geometry
and the associated 2D views of the scene as input, such as
BPNet [4] and MVPNet [6].

For those pure 3D methods such as VMNet [44], we intro-
duce an extra 2D segmentation network and an extra 2D-3D
fusion stage to get the final prediction. In this way, the whole
method can still be viewed as a joint 2D and 3D learning
process.

Given current 2D views and the 3D geometry, a typical base
model for 3D semantic segmentation will first extract per-voxel
features from the input and produce a probability of each voxel
belonging to different classes with a classifier, e.g., in the form
of a fully-connected layer followed by softmax activation. As
our method is flexible with base models, for simplicity and
fair evaluation, the base models we choose will be trained
according to the settings reported in their original published
papers, but the 2D feature extractors of the base models will
be trained with rendered virtual views instead of the originally
captured views. The parameters of the base models are fixed
while training the score net.

Due to the limited FoV of ordinary cameras and use of a
small set of 2D views during traditional 3D reconstruction,
the original 2D views cannot perfectly cover the whole 3D
scene from informative angles, leading to poor or even wrong
predictions for uncovered regions. Although the input 3D
geometry is complementary to 2D views, an informative
selection of 2D views is still crucial for the final prediction,
especially for those regions previously predicted poorly. Our

method seeks to find the regions currently informative for the
semantic prediction network. The philosophy of this idea is
similar to the attention mechanism widely used in existing
deep neural networks, but here the attentive regions are those
with poor or even wrong predictions.

An intuitive way to find those poor predictions is to estimate
their confidence by computing the entropy of the predicted
probability of the semantic labels. Usually, one can assume the
prediction is reliable when the confidence is high. However,
there exist regions that are confidently predicted with wrong
semantics, especially for those observed with few 2D views.
Another way is to directly generate the information map using
the cross-entropy between ground truth and predicted results;
however, the ground truth labels are not available in real-world
tests. We thus propose to learn a more indicative information
score by encouraging correct and confident predictions, and
penalizing wrong predictions.

We formulate this process as a reinforcement learning
problem, as depicted in Fig. 1. Specifically, the agent, i.e.,
score net, learns by maximizing the total expected reward to
generate the information score map for the current prediction,
which is further used to select virtual views, updating the state
and providing the reward. Next, we will give details about
the core modules of the reinforcement learning for our task.
We refer readers to [71] for a technical description about deep
reinforcement learning in general.

State: The state here is the concatenation of the per-voxel
features and the per-voxel semantic prediction of the 3D scene
generated by the base model. These two components are
complementary: the features contain the visual and geometric
information about the 3D scene, and the predicted probability
of the semantic segmentation provides an initial guess about
the results. More specifically, we compute the entropy for each
3D voxel from its probability of semantic labels, instead of the
probability itself, to provide an initial information score for the
agent.

Agent: The agent makes decisions based on the reward.
It is estimated via a 3D-UNet [75], followed by a Multi-Layer
Perceptron (MLP). We choose a 3D-UNet architecture because
we aim to predict the score for each nonempty voxel, and
therefore the output should have the same spatial resolution as
the input. 3D-UNet ensures details at the voxel level are better
reserved, and is also compatible with sparse 3D convolution to
better cope with the sparsity of the input (i.e., only available
for voxels on the surface of the 3D scene). The 3D-UNet takes
the state as input and produces a 64-dimensional feature fi
for each voxel i . To produce an information score in [0, 1]

for each nonempty voxel, we apply a shared MLP on each
fi . This information score also serves as the action selection
probability Pa

i for each voxel i .
Action: We define two types of actions for indicating the

selection of each voxel: “discarding” and “keeping”. Unlike
the action recognition of a video sequence, where the action
can be performed on each frame, discarding or keeping one
voxel is not informative enough to determine a virtual view.
The regions matter. We thus perform the action selection
on regions. We first cluster voxels into K regions with the
k-means clustering algorithm in the normal-sensitive space,
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i.e., a 6-dimensional space consisting of a 3-dimensional
position q and a 3-dimensional normal n, to ensure that voxels
in each cluster are sharing similar normals, so that we can
render views that are frontally facing the surface of informative
regions for better 2D feature extraction. Formally, the distance
between voxel v1 = (q1, v1) and v2 = (q2, v2) is defined as
d(v1, v2) = ||q1−q2||2+wn ·||n1−n2||2, where wn controls the
weight of normal similarity. K is determined proportional to
the area of the underlying scene Ascene with a ratio of rcluster
as K = min(20, rcluster · Ascene), ensuring at least 20 clusters.
Then we compute the average information score P̂a

j ∈ [0, 1]

for each region j , representing the probability of choosing
action “keeping” for the region. More specifically, we keep or
discard a region by Bernoulli sampling:

a j ∼ Bernoulli(P̂a
j ) (1)

where a j = 1 (with probability P̂a
j ) means that region j is

kept, and otherwise region j is discarded. We then render
virtual views for each kept region (details will be given later)
to update the state and provide reward for the agent.

Reward: Once the action for each region is determined,
we feed the new virtual views of the selected region into the
base model and obtain a new prediction p1 for the 3D scene.
The reward is used to evaluate how good the selected actions
are and guide the training of the agent. Denoting the initial
prediction as p0, we define the reward r for each voxel i as:

r(i) = pc
1(i) − pc

0(i) (2)

where c is the ground truth label of voxel i and pc(i) is the
probability of choosing label c for voxel i .

To encourage the action selections that turn the prediction
from incorrect to correct and to penalize those selections that
turn the prediction from correct to incorrect, we give a large
reward or penalty, respectively, as:

R(i) =


A, turning incorrect to correct
−A, turning correct to incorrect
r(i), otherwise

(3)

The final reward R is the sum of the rewards of all voxels:

R =

∑
i

R(i) (4)

Training: Since we have K regions for a 3D scene, the size
of the action set is exponential, making it too computationally
expensive for DQN [71]. Inspired by [74], we train the agent
with the policy gradient method. Similar to [74], we ran
the agent on the same 3D scene for N = 10 episodes to
approximate the gradient of expected reward by taking the
average among episodes, and normalize the reward for easier
convergence by subtracting the reward with a fixed baseline
b, which was simply computed as the moving average of the
rewards expected so far for the 3D scene. We refer readers
to [74] for the details of training the agent.

C. Virtual View Generation

With the predicted information score map available for
current 3D geometry and input 2D views, we can now gen-
erate virtual 2D views to improve the final prediction at the

Algorithm 1 Virtual View Generation at Inference Stage

inference stage. Our goal is to render as few 2D views as
possible that can cover as many regions of high information
as possible. This is the classical camera placement problem,
usually formulated as the Set Covering Problem (SCP), which
is an NP-complete problem.

For training, we keep or discard each region by Bernoulli
sampling described in the previous section to get the reward,
train our score net, and generate virtual views for all the kept
regions. At the inference stage, we only select as few regions
as possible to cover as many regions of high information as
possible. This SCP problem can be approximately solved by
a greedy method. Specifically, we first sort the clusters of
voxels in a descending order according to the total information
score of voxels in the cluster. Then we find the minimal k,
such that the regions covered by the top k clusters surpass
a given covering threshold τ . Finally, we render a virtual
view for each of the top k clusters by setting the fixation
direction as the opposite of the average normal of the region,
with an FoV just covering the whole region. In practice, due
to the noise in real-world scans and the reconstruction error
on the 3D scene, instead of using the opposite normal view,
we render nviews virtual views for each region with the fixation
directions evenly surrounding the average normal of the region
and at an angle of 30◦ to the normal. We also perform the
virtual view generation only for voxels whose information
score is larger than a threshold τ0, for the consideration of
efficiency and focusing on informative regions. The above
process of generating virtual 2D views is also listed in
Algorithm 1.

Fig. 2(a) demonstrates several virtual views rendered for
selected locations indicated by the information score map.
The segmentation results in both the red box and cyan
box of Fig. 2(b) show that after performing the prediction
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Fig. 2. (a) Virtual views rendered for highly informative regions in the scene, indicated by the yellow boxes. (b) the input 3D geometry, the groundtruth
semantic segmentation, the prediction without virtual views (baseline), and the prediction with selected virtual views (ours). Note that we only present parts
of the virtual views for clarity. Regions where significant improvements are achieved with our method are highlighted using colored boxes.

with selected virtual views, the segmentation performance of
regions with high information scores is improved.

IV. EXPERIMENTS

In this section, we first demonstrate that our method can
serve as a general framework for joint 2D and 3D scene
understanding (and for pure 3D methods by introducing a
2D semantic segmentation branch and 2D-3D fusion) by
evaluating it with different base models and datasets. Then,
we will justify the parameters of our method with ablation
studies.

A. Implementation Details
1) Datasets: We train and evaluate our method on two pub-

lic real-world datasets, i.e., ScanNet v2 [1] and the Stanford
3D Indoor Scene Dataset (S3DIS) dataset [2].

ScanNet v2 is built with manually recorded RGB-D video
sequences and uses BundleFusion [76] to reconstruct 3D
scenes with both voxel and triangular mesh representations.
ScanNet v2 contains both 2D and 3D data, including about
2.5 million RGB-D images and 1,513 reconstructed 3D indoor
scenes. The camera poses and camera intrinsic parameters of
all RGB-D images are also annotated. The 1,513 scenarios are
divided into 1,045 as the training set, 156 as the validation set,
and 312 as the hidden test set.

S3DIS contains 6 reconstructed large-scale indoor areas
from 271 different scans. The reconstructed 3D textured
meshes and colored point clouds are generated based on
RGB-D images collected by a Matterport camera. The point
clouds are annotated with 13 semantic labels. We follow
previous works which use Fold-1 split with Area5 as the test
set.

2) Metric: We use the mean of class-wise intersection
over union (mIoU) to evaluate the accuracy of 3D semantic
segmentation, which is computed as the mean of 20 class IoUs
for the ScanNet v2 dataset and the mean of 13 class IoUs for
S3DIS dataset.

3) Other Details: The virtual 2D views are rendered using
Python’s Open3D module [77] with the scene’s mesh model
provided by the datasets. Since our method performs 3D
semantic segmentation using virtual views, our 2D-3D joint
base models also need to be trained with rendered virtual
views. So, we sample one frame from every 20 frames and
render virtual views with the same camera parameters as the
original frames to re-train the base model (It takes 104 minutes
and 26 minutes to render these virtual views for ScanNet v2
and S3DIS, respectively). This ensures that the base model
is consistent with our method where virtual views are used.
As we can later see in Table I, our re-trained base model
performs almost the same as the original one trained with real
views, showing that virtual views also work well for semantic
segmentation.

The MLP for information score prediction has one hidden
layer with the size of 16, and the size of the output layer is
set to 1, ending with a sigmoid activation function. A is set
to 10 to give a large reward or penalty. During the training of
the score net, points in each scene need to be clustered into
K groups. To achieve this, we first randomly down-sample
the point cloud of each scan to 10,000 points for efficiency,
and then cluster the down-sampled points into K groups using
the k-means algorithm based on the Euclidean distance in the
6-dimensional space combining the coordinates and normal
vectors of the points. Since the clustering is independent of
the training process, this is pre-computed only once for each
scene. It takes 42 seconds and 57 seconds on average to
down-sample and cluster a scene in ScanNet v2 and S3DIS,
respectively.

The training, rendering, and inference of the method
described in this paper were all carried out in a Ubuntu server
environment equipped with 8 Titan RTX GPUs.

B. Case Study
In this section, we conduct both qualitative and quantita-

tive experiments by combining our virtual view generation
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TABLE I
THE QUANTITATIVE SEMANTIC SEGMENTATION ACCURACY ON THE SCANNET V2 VALIDATION SET. “PT” REFERS TO THE PRETRAINED CHECKPOINT

ON REAL SCANS PROVIDED BY THE ORIGINAL PAPER; “W/ VV” REFERS TO THE RETRAINED MODEL USING VIRTUAL VIEWS RENDERED
WITH THE SAME CAMERA PARAMETERS AS ORIGINAL REAL SCANS; * INDICATES THE REPORTED SCORES FROM ORIGINAL PAPERS.

+ INDICATES THE RETRAINED MODEL ON REAL SCANS USING THE CODE PROVIDED BY THE ORIGINAL PAPER

technique with different state-of-the-art joint 2D-3D learning
models (such as BPNet [4], MVPNet [6], and Deep-
ViewAgg [67]) or pure 3D-input-based models (such as
VMNet [44] and StratifiedFormer [48]) as the base model,
to demonstrate that our proposed method can serve as a general
framework to improve the 3D scene understanding with better
2D view selection. All results are obtained by performing the
inference stage only once.

1) BPNet: To train the score network for BPNet [4] on a
real scanned dataset, i.e., ScanNet v2, we first train BPNet
for 100 epochs with point clouds and virtual views from
the training set of the ScanNet v2 dataset. The 2D encoder
network is initialized using the weights of ResNet34 [8]
pretrained on ImageNet [78], and the 3D part is trained from
scratch. In the BPNet training process, we set the voxel size
as 0.05m and use the Stochastic Gradient Descent (SGD)
optimizer with a momentum of 0.9 and an initial learning rate
of 0.01. The learning rate decays according to the Polynomial
Learning Rate Policy with a power of 0.9. The resulting
base model is referred to as “BPNet w/ VV”, where “VV”
means Virtual Views. We then train the score network with
the policy gradient method on the training split of ScanNet
v2 for 80 epochs. We use the Adam optimizer with a learning
rate of 0.002, β1 of 0.9, β2 of 0.999 and ϵ of 1e-8.

Table I shows the quantitative comparison results of the
baseline method BPNet and our method on the validation split
of the ScanNet v2 dataset. We also list the result of BPNet
produced by running the pre-trained checkpoint model1 on
real scans provided by the author (referred to as “BPNet PT”)
and the one reported in their original paper (referred to as
“BPNet*”). As we can see, “BPNet PT” and “BPNet w/ VV”
perform very similarly, demonstrating that the rendered virtual
views and real scans with the same camera parameters are
almost identical for learning. Our full method improves the
IoU of most classes compared with the baseline model “BPNet
w/ VV”, and the improvement is more significant for objects
like curtains, pictures, walls and windows whose 3D shapes
are not particularly obvious, but their 2D texture features are
comparatively distinct. Overall, our framework improves the

1https://github.com/wbhu/BPNet

performance of the base model “BPNet w/ VV” by 2% mIoU.
Fig. 3 shows more qualitative comparison results between our
method and the base model, demonstrating that the virtual
views selected by our method help to correct the semantics
of regions, such as the tables and curtains, that are previously
wrongly predicted.

2) MVPNet: Similarly, we first train MVPNet [6] on Scan-
Net v2 training split with pre-processed virtual views and then
train the score network with the deep reinforcement learning
method. We first train its 2D CNN part with virtual views
(the resulting base model is referred to as “MVPNet w/ VV”)
for 80,000 iterations with a batch size of 64. We employ
the SGD optimizer with a learning rate of 0.005 and weight
decay of 1e-4. Then, the weights of the 2D feature extractor
network are frozen, while the 3D part of MVPNet is trained
for another 40,000 iterations using the Adam optimizer with a
learning rate of 0.02 and other hyper-parameters the same as
BPNet. The process of training the score network of MVPNet
is identical to BPNet.

The quantitative evaluation of MVPNet baseline “MVPNet
w/ VV” and ours is listed in Table I. We also list the reported
result of MVPNet in their original paper (referred to as “MVP-
Net*”) and the retrained result on real scans using the code2

provided by the original paper (referred to as “MVPNet+”)
here. Again, we can see that “MVPNet+” and “BPNet w/ VV”
perform very similarly, and our framework improves over the
baseline model “MVPNet w/ VV” for almost all classes, with
the mIoU increased by 2.2%.

More qualitative comparison results between our method
and MVPNet base model are shown in Fig. 3, demonstrating
that the virtual views selected by our method help to correct
the semantics of regions that are previously wrongly predicted,
such as the tables and curtains.

3) VMNet: VMNet [44] is a network architecture that
operates on the voxel and mesh representations leveraging both
Euclidean and geodesic information. It is a pure 3D-input-
based method. To make it compatible with our framework,
we introduce a 2D segmentation network CMX [79] and use
the fusion of VMNet and CMX predictions as our final result.

2https://github.com/maxjaritz/mvpnet
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Fig. 3. More qualitative results of our method on the ScanNet v2 validation set. Our method improves semantic segmentation results of the base models
(“+VV” means trained with virtual views). For each scene (column), please note the regions indicated by black boxes.

CMX is a vision-transformer-based cross-modal fusion method
for RGB-X semantic segmentation. CMX uses an RGB image
and another X modal image as input.

To train CMX on ScanNet v2, we render virtual views
with the same camera pose as the original scan images.
Then, we calculate the correspondence of pixels and voxels
with the camera parameters. For each pixel, we record the
corresponding xyz coordinates. The xyz-coordinates, together

with the depth of each pixel, form the other modalities of the
CMX network.

We train the 2D semantic segmentation network with ren-
dered virtual views. We use MiT-B5 [80] as the backbone
and use 1/20 of frames of rendered views as the training set.
We train VMNet as the base model for 200 epochs with scenes
of the ScanNet v2 dataset. In the training process, we keep the
same settings as the VMNet paper. Input meshes are voxelized
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TABLE II
THE QUANTITATIVE 3D SEMANTIC SEGMENTATION RESULTS ON

SCANNET V2 HIDDEN TEST SET

at a resolution of 2 cm with data augmentation. The network is
trained end-to-end by minimizing the cross entropy loss using
Momentum SGD with Poly scheduler decaying from learning
rate 0.1.

During the fusion of 2D prediction results and 3D results,
each voxel can be projected to pixels of several virtual views.
However, some of these views are not suitable for predicting
the semantic label of the voxel, e.g., when the corresponding
pixel is located at the edge of the view, or the view from
that perspective is difficult to identify the classification of the
object the voxel belongs to. So, for each voxel, we need to
select some of the views that can better predict the label of
its corresponding pixels.

Specifically, for each voxel, we calculate the cross entropy
of all the 2D prediction label probabilities of its corresponding
pixels and select the top 5 of those pixels (or views). After
averaging the top 5 result probability vectors, we perform the
fusion between the 2D averaged label probability vector and
3D semantic segmentation label probability vector by a 2-layer
MLP.

Finally, we train the score net for baseline VMNet with the
policy gradient method on the training split of ScanNet v2 for
100 epochs. We use the Adam optimizer with a learning rate
of 0.002.

Table I shows the quantitative comparison results of the
baseline method VMNet and our method on the validation
split of the ScanNet v2 dataset. Our method again boosts the
base model by 1.3% for mIoU.

4) Comparison With Other Methods: We also compare our
method with other methods using different types of convolu-
tions, including point-based convolutions [25], [30], [32], [46],
[47], [48], pure 3D convolutions [37], [38], [39], [44], [52],
[81], 2D convolutions [5] and joint 2D-3D convolutions [4],
[6], [69], [82], on the ScanNet v2 hidden test set. Some
results are directly drawn from [5] and [69], and listed in
Table II. As we can see, our method improves the mIoU of
the base model VMNet by 1.5%. The performance of our

method based on VMNet exceeds most of other methods
except Mix3D, a data augmentation method mixing scenes
to train a base model. Our method is currently incompatible
with Mix3D because of the low quality of virtual views
rendered from 2 overlapped scenes. Our method achieves
comparable performance as two other pure 3D methods, i.e.,
O-CNN [37] and OccuSeg [38] (the semantic segmentation
version of the implementation is unavailable), which could be
further improved with our virtual views. Although the results
of BPNet and MVPNet base models re-trained with virtual
views are below their reported scores in their original papers
on the validation set of ScanNet v2, on the hidden test set of
ScanNet v2, our framework improves BPNet and MVPNet by
0.8 and 2.3 percent mIoU, respectively.

Different from ours, Virtual MVFusion selects denser virtual
views (typically 100∼200 views per scene) to fully cover the
scene in a heuristic manner, while ours can still achieve more
accurate segmentation results by only covering 60% of the
highly informative voxels (with information score larger than
0.6). Moreover, our framework surpasses Virtual MVFusion
by 1.5 percent mIoU on the test set, despite being dropped by
1.8 percent mIoU on the validation set, demonstrating that our
virtual view selection based on learned information score can
consistently improve joint 2D and 3D semantic segmentation.

5) Comparison on S3DIS Dataset: To further verify the
effectiveness of our method, we tested our proposed frame-
work on another real-world 3D scene dataset S3DIS [2]. Most
of the hyper-parameters in Section IV-C for S3DIS are the
same as ScanNet v2 dataset.

Similarly, we first generate virtual images for each scan
according to the pose of RGB-D images. Then we train BPNet
and MVPNet using the rendered virtual views and obtain the
baseline models, referred to as “BPNet w/ VV” and “MVPNet
w/ VV”. For pure 3D-input method VMNet [44], we train the
base model using the mesh and our version of VMNet with
additional virtual views. The agent is trained on this dataset
with deep reinforcement learning, so that at the inference
stage, we can get the desired virtual views according to the
information score map produced by the score network. We
also applied our framework to new state-of-the-art models,
including DeepViewAgg [67] and StratifiedFormer [48].

The quantitative comparison results on Area5 are listed
in Table III, showing that our framework can also con-
sistently boost (+2.7/+2.1/+1.5/+1.2/1.0 mIoU) the perfor-
mance of the base models (MVPNet/BPNet/DeepViewAgg/
VMNet/StratifiedFormer) for large-scale 3D scenes. We also
compare our method with other state-of-the-art methods using
point-based convolutions [25], [28], [32], [35], [46], 3D con-
volutions [39], [52], and 2D convolutions [5]. Our framework
using StratifiedFormer [48] as the base model outperforms
all other competitors and achieves new top accuracy for
joint 2D and 3D scene semantic segmentation on S3DIS. We
believe Retro-FPN [35] (a pure 3D-input-based model) can
also benefit from our framework.3

3Retro-FPN [35] is not open-sourced yet by the submission time of our
work.
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TABLE III
THE QUANTITATIVE SEMANTIC SEGMENTATION ACCURACY ON THE

S3DIS TEST SET (AREA 5). FOR EACH CLASS, THE IOU IS REPORTED
AND THE NUMBERS IN BOLDFACE INDICATE THE BEST PERFOR-

MANCE.CONV CATEGORY: (I) POINT-BASED CONVOLUTION,
(II) 3D CONVOLUTION, (III) 2D CONVOLUTION, (IV) JOINT

2D AND 3D CONVOLUTION

C. Ablation Studies

During inference, several parameters affect the performance
of our method. The virtual view selection policy determines
how and where to render the virtual views; the threshold
τ0 controls the total number of voxels to be covered by the
virtual views; the covering threshold τ influences the actual
amount of 2D virtual views to be integrated with 3D. The
parameters of voxel clustering and the number of virtual views
per region affect the generated virtual views. The number of
inference cycles affects the accuracy and efficiency of the
method. To justify the choice of these parameters, we perform
ablation studies on the ScanNet v2 validation set with the base
model set as VMNet [44].

1) The Effect of Virtual View Selection Policy: To verify
the effectiveness of selecting virtual views according to the
information scores predicted by our method, a comparative
experiment is designed. We compare our selection policy
with three other view selection policies. The first one is to
randomly select regions to render virtual views. The second
one is to select views according to the information entropy of
the prediction vectors provided by the base model. The last
one is to use real scans instead of virtual views. Specifically,
for each selected region, we choose nviews real scans which
cover the most part of the region instead of generating nviews
virtual views. The quantitative comparison results are shown
in Table IV, and the qualitative comparison between different
virtual view selection policies is illustrated in Fig. 4. As we
can see, the policy that randomly selects regions for virtual
view rendering has a poor performance, and the segmentation
performance of entropy policy is lower than the result of
virtual view generation according to the information scores.
Thus, the score network trained by reinforcement learning
in this paper does play a significant role in improving the
semantic segmentation performance. Using real scans is still
inferior to our virtual views due to the incapability of covering
many regions of high information caused by the limited FoV of

TABLE IV
THE QUANTITATIVE ACCURACY COMPARISON BETWEEN DIFFERENT

VIRTUAL VIEW SELECTION POLICIES ON THE
SCANNET V2 VALIDATION SET

Fig. 4. The comparison of different virtual view selection policies. In this
scene, the virtual views generated by our method help to correct the semantic
segmentation on the door and the table. Note the regions indicated by the
black and golden boxes.

real scans. Compared to the simple entropy-based baseline, the
increase in training time and memory mainly comes from the
score net. Taking BPNet as an example, the training time per
epoch on ScanNet v2 for the baseline model is 1,713 seconds,
and the extra training time for our score net is 954 seconds.
The training memory is 9,236MB and 4,682MB, respectively.
For MVPNet, the training time per epoch for the baseline
model on ScanNet dataset is 1,472 seconds, and the extra
training time for our score net is 897s. The training memory
is 7,582MB and 3,894MB respectively. Since our work is
not an online method, it is worthwhile to take extra training
time to achieve a better segmentation performance, which is
essential for further applications, such as robot grasping and
manipulation.

2) The Effect of Information Score Threshold τ0: The output
of our agent (score net) serves as the action selection probabil-
ity. During the inference stage, when generating virtual views,
we only consider those having an information value larger
than the given threshold τ0. Fig. 5 shows the performance
of different values of τ0 in [0.0, 1.0] with a step of 0.1.
As we can see, when a small value is set for τ0, the selected
virtual views might not be precisely targeted at the voxels of
high information, which will reduce the semantic segmentation
performance. On the other hand, when the threshold is too
high, the proportion of highly informative voxels covered by
virtual views will be small, which also limits the potential of
the method. Finally, we achieve a trade-off by selecting τ0
as 0.6.

3) The Effect of the Covering Threshold τ : At the inference
stage, we select regions with high total information scores,
which contain sufficient numbers of voxels that surpass a
given covering threshold τ , to generate virtual views. The
total actual number of virtual views for each scan is thus
determined by this parameter. Since the virtual views are
rendered during the inference period and will be used as
the input to the baseline model, each additional region will
increase the prediction time and space consumed. Fig. 6 shows
the relationship between the covering rate τ and the accuracy
of segmentation prediction results. As we can see, the mIoU
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Fig. 5. The quantitative accuracy of our method on the ScanNet v2 validation
set w.r.t. different τ0 values.

Fig. 6. The semantic segmentation mIOU w.r.t. the covering rate τ on
ScanNet val set.

of the prediction increases as the covering rate rises. However,
when the rate τ surpasses 0.6, the rate of performance gain in
the prediction becomes much slower. This is because a larger
covering rate leads to a higher proportion of regions covered
by virtual views, and when the covered regions are large
enough, most inaccurate segmentation regions will be asso-
ciated with enough 2D information. So, further increasing the
number of virtual views, equivalently increasing the covering
rate, will not bring new and useful information to the network,
even introducing redundant and contradictory information,
and causing performance degradation. Therefore, we set the
covering rate as 0.6 to obtain the final 3D segmentation results,
making a balance between accuracy and efficiency. As a result,
our method usually selects 6 regions to render virtual views
for most scenes.

4) The Effect of the Clustering Parameters: During the
virtual view selection, we cluster the entire scene into K
parts. The number of clusters is linearly proportional to the
area of the scene Ascene (measured in m2) with ratio rcluster .
Specifically, the number of clusters K equals rcluster · Ascene,
and if it is worked out as less than 20, K is set to 20. The
mIoUs of our method w.r.t. different values of rcluster are
shown in Fig. 7. We set rcluster = 0.30m−2 to ensure clustered
regions are sufficiently fine-grained but not overly fragmented
to facilitate virtual view selection.

We perform the voxel clustering in the normal-sensitive
space (a 3-dimensional position and a 3-dimensional normal),
where the weight of the normal similarity is controlled by wn .
The position parameter is the xyz-coordinates of each voxel
using meters as the unit, and the normal vector is normalized

Fig. 7. The semantic segmentation accuracy w.r.t. rcluster .

Fig. 8. The semantic segmentation accuracy w.r.t. the weight of normal
similarity wn .

to a unit vector. Different wn will affect the clustering quality
and further influence the final semantic segmentation result,
as shown in Fig. 8. As we can see, as wn increases, the
clustered region indeed has more consistent normals, helping
generate good virtual views. However, when wn gets too large,
the clustered region would be cluttered voxels, making the
generated virtual views less informative. To ensure each cluster
covered by one virtual view, voxels in one cluster should be
close and share similar normal directions. To achieve this,
we choose a relatively large value for the weight of normal
similarity as 16.

5) The Effect of the Number of Virtual Views: For each
region, a proper number of virtual views should be gener-
ated to cover it. The virtual views need to provide enough
information while avoiding redundancy. Different numbers of
views for each region nviews can affect the final segmentation
result, as shown in Fig. 9. As we can see, the performance
increases evidently when nviews is below 4 and is almost
constant when nviews is above 4. To balance the performance
and efficiency, we choose 4 virtual views for each selected
region, resulting in 24 views for most scenes. Although
original base methods usually require 3-5 images, their per-
formance would not increase when fed with more real scans.
Besides, our method still requires fewer images than Virtual
MVFusion [5].

6) The Number of Inference Cycles and Timings: Our infer-
ence process could be repeated by iteratively selecting virtual
views to update the model. The extra computational cost of
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Fig. 9. The semantic segmentation accuracy w.r.t. nviews .

TABLE V
THE TIMINGS AND ACCURACY W.R.T. THE NUMBER OF INFERNCE CYCLES

repeating the inference cycles consists of the running of the
extra round of the base model (plus the 2D semantic network
for pure 3D-input models), the score net, and the rendering of
virtual views. We perform the inference stage with different
numbers of cycles and list the number of network parameters,
average inference time per scene, and the mIoU of semantic
segmentation results in Table V. As we can see, the mIoU
is almost unchanged. This is because most highly informative
regions have been covered with virtual views after the first
cycle of inference. To balance the performance and efficiency,
we perform the inference stage only once.

V. CONCLUSION

In this paper, we introduce a general framework to select
virtual views for 3D semantic segmentation. Compared to orig-
inally captured images, virtual views are free of FoV limitation
and occlusion, which helps to associate more informative 2D
features for 3D semantic segmentation. Deep reinforcement
learning has been employed to train a score network to predict
the information map of the scene, guiding the selection of
virtual views with a greedy strategy. Comprehensive experi-
ments on two real-world datasets, i.e., ScanNet v2 and S3DIS
datasets show that our method can consistently boost the
performance of different base models and achieves the best
result in 3D semantic segmentation compared to other 2D-3D
joint or pure 3D learning methods.

One limitation of our method is that it does not work well
for sparse point clouds. In this case, the rendered virtual view
would be filled with many holes, leading to poor 2D feature
extraction. One possible solution is to complete the sparse
point cloud before rendering virtual views.

We believe the region selection policy based on information
score maps can be applied to the 3D domain to achieve
better performance in scene understanding. In future, we plan
to further introduce our module to another important scene
understanding task, i.e., 3D instance segmentation.
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