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Hierarchical Generation of Human Pose With
Part-Based Layer Representation

Xian Wu , Chen Li, Shi-Min Hu , Senior Member, IEEE, and Yu-Wing Tai , Senior Member, IEEE

Abstract— Human pose transfer has been becoming one of the
emerging research topics in recent years. However, state-of-the-
art results are still far from satisfactory. One main reason is that
these end-to-end methods are often blindly trained without the
semantic understanding of its content. In this paper, we propose a
novel method for human pose transfer with consideration of the
semantic part-based representation of a human. In particular,
we propose to segment the human body into multiple parts,
and each of them represents a semantic region of a human.
With the proposed part-based layer generators, a high-quality
result is guaranteed for each local semantic region. We design a
three-stage hierarchical framework to fuse local representations
into the final result in a coarse-to-fine manner, which pro-
vides adaptive attention for global consistency and local details,
respectively. Via exploiting spatial guidance from 3D human
model through the framework, our method can naturally handle
the ambiguity of self-occlusions which always causes artifacts
in previous methods. With semantic-aware and spatial-aware
representations, our method outperforms previous approaches
quantitatively and qualitatively in better handling self-occlusions,
fine detail preservation/synthesis and a higher resolution result.

Index Terms— Human pose transfer, part-based layer repre-
sentation, self-occlusion, coarse-to-fine generation.

I. INTRODUCTION

SYNTHESIZING human images under specific settings
is an interesting but challenging problem. Owing to the

recent development of deep learning techniques and generative
adversarial networks (GANs) [1], many works have been
dedicated to this area, such as appearance transfer [2], [3],
image completion [4], and novel view synthesis [5], [6].

In this paper, we focus on one of the most important tasks in
human image synthesis, pose transfer, which aims to transfer
the source human image to a certain target pose while pre-
serving one’s identity and appearance properly. Human pose
transfer allows for many industrial applications, for example,
motion video generation. Beyond one’s imagination, everyone
could dance like a pop star or do some actions that he/she
never has done. Moreover, generation of human images in
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different poses can act as a data augmentation method relieving
the time-consuming manual annotations, which speeds up
the development of a wide range of human-centric vision
tasks.

Many previous pose transfer approaches propose to warp
the source image through a spatial transformation module by
replacing the extracted source pose feature with the target pose
feature [7]–[9]. Some other methods [10], [11] reconstruct the
human surface textures and try to inpaint the missing regions
in the target pose. However, the lack of semantic information
and 3D spatial relationship of different body parts makes their
results far from satisfactory, especially where the visibility
changes from source pose to target pose. By considering
the semantic information of the human body, some interior
priors, such as its symmetry, can be exploited more to better
preserve/synthesize local content, e.g., for the missing regions
in target pose. Besides, these methods only represent the target
pose as 2D landmarks and it is difficult to precisely identify the
visibility between body parts in transfer result. Such occlusion
ambiguity further causes unwished artifacts around the self-
occluded regions. Moreover, previous methods are always
formulated in a single holistic framework with limited input
resolution, so high-quality results of local body components
with rich identity and appearance details, e.g. faces, are hard
to be generated.

In order to address these issues, we design a novel three-
stage hierarchical human pose transfer framework by utilizing
the semantic part-based layer representation which is illus-
trated in Fig. 1. We roughly synthesize a coarse transfer
result in the first, then generate local representation with fine
details for each important body component as an intermediate
result, and fuse these results with spatial guidance from 3D
representation and produce the final pose transfer image in
a coarse-to-fine manner. Through the intermediate part-based
layer representation, we individually formulate the synthesis
of important body parts, namely face, arm and leg. The
part-based layer representation, which is aware of semantic
information, not only preserves the facial identity and cloth
textures during the generation but also synthesizes fine details
for each important part regardless of the occlusions. To fuse
these local representations in correct spatial order, we exploit
3D target pose to tackle the limitations in self-occlusion
handling of previous methods with 2D target pose. The target
pose is represented as several informative maps to guide the
entire generation framework to ensure the self-occlusions are
handled properly. Via the sematic-aware and spatial-aware
representations, the generation of high-quality local content
of the human body is guaranteed even when some areas are

1941-0042 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 07,2022 at 16:00:49 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4003-6975
https://orcid.org/0000-0001-7507-6542
https://orcid.org/0000-0002-3148-0380


WU et al.: HIERARCHICAL GENERATION OF HUMAN POSE WITH PART-BASED LAYER REPRESENTATION 7857

Fig. 1. We propose a part-based layer representation, which generates high-quality results for all important body parts individually with an awareness of
their semantic information. Spatial relationships between these local body parts are represented as several informative maps to guide the fusion of these local
representations in correct order to produce the final high-resolution pose transfer image.

missing in the source image and makes it a reality to apply
our method on high-resolution images.

Extensive experiments show that our method outper-
forms previous state-of-the-art human pose transfer techniques
[9], [12], [13] qualitatively and quantitatively. Our major
contributions are summarized as three folds:

• to the best of our knowledge, we are the first to introduce
part-based layer representation for generating different
body components individually to address the human pose
transfer problem;

• we apply the semantic-aware and spatial-aware represen-
tation into this task, which can be adapted to various 3D
models, such as SMPL [14] and 3D volume;

• we propose a three-stage hierarchical generative frame-
work for fusing the local body parts to compose the final
result with fine details in a high-resolution.

II. RELATED WORK

A. Human Pose Transfer

The purpose of this task is to transfer the input human
into the target pose while keeping the appearance consis-
tent. Recently, many deep learning based methods have been
proposed to solve this problem. Ma et al. [15] present a
two-stage coarse-to-fine method for pose-guided human syn-
thesis. Si et al. [16] introduce the multi-stage adversarial
loss to synthesize both the foreground and the background.
Esser et al. [17] combine a U-Net generator and a variational
autoencoder to encode the shape and the appearance, respec-
tively. Ma et al. [18] disentangle the pose, appearance and
background to synthesize the human image arbitrarily. Several
methods apply geometric transformations to the local features
for fine details based on masks of body subparts [9], [19]
or human parsing [7]. Besides that, some methods [20]–[25]
focus on generating human motion video by the guidance
of 2D pose sequence. Neverova et al. [11] first use the
DensePose [26] to guide the human synthesis, which pro-

vides the dense correspondence between the image and the
3D human surface. Grigorev et al. [10] improve this method
by inpainting the coordinates of the textures instead of the
colors for smoother generated results. Liu et al. [27] leverage
a textured 3D character model to render the human actor
video. However, this method needs to train the character
model for each person and the 3D motion data is hard
to acquire. Li et al. [8] use 2D keypoints to predict the
dense appearance flow for human pose transfer but cannot
solve the ambiguity caused by the lack of 3D information.
Liquid Warping GAN [12] utilizes HMR [28] to construct
the SMPL model [14] for the source and the target images,
and then calculate the transformation flow based on the
two correspondence maps, which achieves impressive results.
However, the 2D correspondence map cannot well-define the
self-occluded areas between different body parts, while our
method can solve it by semantic-aware and spatial-aware part-
based representation.

B. 3D Human Reconstruction

3D human model has shown to be an advantageous repre-
sentation and with much potential in human synthesis tech-
niques [3], [12], [29]. Reconstructing 3D human shape from
the image is a challenging task. Most previous works use
parametric body models to represent the 3D human shape,
such as the SMPL [14] model, and then predict the parameters
of the model. SMPLify [30] estimates the body shape repre-
sented by the approximate capsules through minimizing the
distance between the projected SMPL [14] model joints and
the detected 2D joints. HMR [28] proposes an end-to-end deep
learning method to directly predict the SMPL parameters from
a single image by optimizing the objective function, which
is a combination of the 2D joints error, the 3D joints error,
the 3D parameters error and the adversarial loss. Recently,
BodyNet [31] and DeepHuman [32] leverage the 3D volume
to represent the human body shape without using a parametric
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Fig. 2. The pipeline of proposed three-stage hierarchical human pose transfer framework. We use three intermediate part-based layer representations to ensure
the high-quality synthesis results for important body components and exploit informative maps from 3D target pose as guidance for coarse-scale generation
stage and fine-scale fusion stage to handle the self-occlusion problem properly.

model and demonstrate that the volumetric body shape can be
predicted straightforward. We demonstrate that our framework
is general to various 3D human representations, including
parametric SMPL [14] and 3d volume.

C. Local Generator and Discriminator

Many GAN-based synthesis methods [33], [34] are applying
local generators or discriminators to refine the local details.
Li and Wand [35] propose the Patch-GAN which determines
the local patch to be fake or real for texture synthesis. Several
works [13], [36], [37] apply the Patch-GAN for the image-
to-image translation task. Iizuka et al. [38] and Li et al. [39]
introduce the local discriminator in the inpainted region for
the image completion task to achieve local and global con-
sistency. LADN [40] presents multiple local style discrim-
inators specialized for different facial landmarks to address
the facial makeup and de-makeup issue. Chan et al. [22] and
Wu et al. [4] use face GAN to refine the facial areas after the
human synthesis process. Our experiments have shown that
our diverse part-based generators and discriminators are able
to produce fine local details and deal with the self-occlusions
through the hierarchical generation.

III. APPROACH

Our goal is to transfer a high-resolution human image
into the target pose while preserving the human identity
and body appearance with fine-scale details. To achieve such
pleasant results, we propose the semantic part-based layer
representation for each body component to better preserve and
generate the detail textures. A three-stage hierarchical genera-
tion framework is designed in a coarse-to-fine manner to fuse
all the part-based representations into a final high-resolution,
1024 × 1024, result. Through guiding the framework with
an existing 3D human model, such as 3D volume [31] or
SMPL [14], our method handles the self-occlusion problem
better than previous approaches.

A. Overview

We formulate the pose transfer problem as an image-
to-image translation task [13], [36], [37] and illustrate the
pipeline of our hierarchical human pose transfer network in
Fig. 2. Our method takes one source human image Is in
1024 × 1024 resolution and one target 3D pose Pt as inputs.
Through existing 3D human modeling representations, such as
3D volume or SMPL [14], we represent the target 3D pose
as three corresponding informative maps, namely a human
parsing map St , a depth map Dt , and 2D pose heatmaps Ht .

In the first coarse-scale generation stage, we concatenate
the source image Is with three informative maps, St , Dt ,
Ht , together to generate a coarse-scale transfer result Ĩt in
512 × 512 resolution. After the coarse generation, three part-
based layer generators are individually applied to produce
high-quality results {In

t }n=1,...,5 for all the important body
components, namely one face, two arms and two legs, respec-
tively. This layer generation stage synthesizes the complete
body parts without considering the occlusions appearing in
target pose, and its results {In

t } preserve the facial identity
and cloth textures for the source person. Finally, we employ
a fine-scale fusion stage to fuse the five part-based human
layers {In

t } with the coarse result Ĩt to achieve the whole body
consistency and generate a 1024 × 1024 high-resolution pose
transfer result It in the hierarchical coarse-to-fine manner.

The Gaussian keypoint heatmaps Ht are directly converted
from the input 3D target pose Pt for ensuring our network
captures the pose spatial information effectively [9], [15], [19].
We apply two different human body models, SMPL [14] and
3D volume, to obtain the semantic parsing St and depth
map Dt . An ablation study about these two representations and
more implementation details are included in Sec. IV. We fol-
low the 7 body component annotations used in BodyNet [31],
namely the head, left/right arm, left/right leg, the torso and the
background. We conduct a weak-perspective camera projec-
tion, an affine transformation, to project the 3D human model
and body annotations onto the 2D image.
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B. 3D Human Representation

In order to obtain the informative maps to guide the
following generation stages, we reconstruct the 3D human
model of the source image Is in the target pose Pt at first.
To demonstrate the generalization of our method, we apply
two types of human model representations in our experiments,
namely SMPL [14] and 3D volume.

For the SMPL [14] representation, we first use HMR [28]
to reconstruct 3D human model from the source image Is with
SMPL [14] parameters. We then replace its pose parameters
by the 3D target pose Pt . Therefore, we can build the target
3D human model with the source shape and the target pose.
By projecting 3D meshes of the SMPL [14] model for each
body part onto the image coordinate, we can obtain 7 part
masks St as well as a depth map Dt .

For the 3D volume representation, we reconstruct a 3D
segmented volume by a volume generation network. The
volume generation network takes the source human image Is

and the target pose Pt as input, then predicts a segmentation
map with 7 labels on a voxel grid. Similarly, we can project the
3D segmented volume to obtain St and Dt . Following recent
3D human shape reconstruction works [31], [41], we adopt
the stacked hourglass networks [42] as our volume generation
network. It first encodes the source image Is and target 3D
pose Pt independently and then concatenates the extracted
features as the input of two stacked hourglass networks to
decode a 3D segmented volume. We found a narrow depth
resolution along z-axis does not affect the final result so much,
so we set the voxel grid resolution as 256 × 256 × 64 to
accelerate the training. We apply the cross-entropy loss to train
the volume generation network.

C. Part-Based Layer Representation

The key to a pleasant pose transfer result is handling the
visibility ambiguity between body parts correctly as well as
preserving local details properly. We propose to formulate the
synthesis of important human parts, namely faces, arms and
legs individually via a part-based layer representation. These
regions always contain informative content, especially faces,
and their visibility changes easily from source pose to target
pose. While noticing the symmetry of human body, we let the
left parts and right parts share the same generator. Specifically,
we apply three part-based layer generators to handle the
generation of important human body parts (face, arm, and leg)
more precisely. These generators are critical to a high-quality
result in both preserving the texture details in source pose
and synthesizing missing regions in target pose. To better
leverage the body symmetry, we let the layer generators for
arm and leg also take the images of the other side as an extra
input. The extra body part may provide valuable appearance
information, especially when a certain part is occluded in the
source image. Owing to this part-based layer representation,
we can even synthesize proper texture locally though a body
part is totally occluded in the source image but become visible
in the target pose. We further force the part-based generator
to synthesize a complete body component regardless of the
occlusions in this stage and fuse the visible regions in the

Fig. 3. An example of the proposed part-based layer representation. It takes
the local patches of informative maps, coarse transfer result and source
image as input to produce the layer result. Please note that arm/leg generator
additionally takes source part of the other side as an extra input.

Fig. 4. Our part-based layer generator not only preserves local textures for
a certain body component but also recovers the image content in the invisible
areas. Even though one body component is partially occluded in the ground-
truth target image (the first column), our layer generator still synthesizes a
complete result (the last column).

later fine-scale fusion stage. Thus more realistic results around
occlusion boundary can be guaranteed.

Fig. 3 illustrates the pipeline of our face layer generator
as an example. We segment the source image Is with the
same 7 body component labels as Ss by using a human
parsing network [43] and crop the source layer image In

s
accordingly. Three local patches of informative maps, Sn

t , Dn
t ,

Hn
t , are generated directly from the 3D space to preserve their

completeness regardless of the occlusion. To better maintain
the personal characteristics and accelerate the training stage,
we also take the cropped coarse-scale layer Ĩn

t as input.
Therefore, we concatenate In

s , Sn
t , Dn

t , Hn
t and Ĩn

t all together,
then feed them into the specific part-based layer generator to
synthesize a complete target layer In

t temporarily.
As shown in Fig. 4, we restrict the layer generator to

always generate a complete body part instead of considering
the appearing occlusions in the target pose. Upon the complete
body part result, more proper self-occluded effects can be syn-
thesized in the subsequent fine-scale fusion stage. To achieve
this, we introduce an adversarial loss Ln

adv to identify whether
a certain body part is complete or not:

Ln
adv = log(D(In

r , In
s )) + log(1 − D(In

t , In
s )), (1)

where {In
r } denotes a random sample from a complete body

part set with no occlusion.
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Besides, we also apply a perceptual loss Ln
per to make

the generated results perceptually similar to the ground truth.
The perceptual loss measures the distance of the feature
maps extracted by a pre-trained perception network, e.g.
VGG-19 [44]. Aiming to synthesize an occlusion-free result
in agreement with Ln

adv , we only calculate the perceptual loss
on the visible regions to eliminate the effects of occluded
unknown areas. So the perceptual loss for the n-th layer
generator is formulated as:

Ln
per =

L∑
l=1

∥∥∥�l(În
t ) − �l(In

t )
∥∥∥

1
� Sn

t , (2)

where În
t denotes the ground-truth of target layer image.

L is the number of selected feature layers and �l is the
l-th feature layer of the pre-trained perception network �.1

Therefore, the total training loss for the proposed part-based
layer generator is Ln = Ln

adv + Ln
per .

In our implementation, we let these layer generators predict
an offset image Ǐn

t between the target pose image In
t and

the coarse image Ĩn
t , which is shown to be more efficient in

training. Considering the resolution of the final result is 1024,
we determine the resolution of each layer generator by its
relative length to the whole body height, namely 128 for face,
256 for arm and 512 for leg.

D. Hierarchical Generation Framework

In this section, we mainly introduce the design of our three-
stage hierarchical framework, especially the first coarse-scale
generation stage and the final fine-scale fusion stage.

1) Coarse-Scale Generation Stage: generates a rough pose
transfer image Ĩt with a lower 512 × 512 resolution in a coarse
scale by using the aforementioned three informative maps St ,
Dt , and Ht as guidance. We train this network by adopting a
perceptual loss L̃ per , an adversarial loss L̃adv and a feature
matching loss L̃ F M as:

L̃ = L̃adv + λF M L̃ F M + λper L̃ per , (3)

where L̃ F M defines the feature matching loss proposed
in pix2pixHD [13]. L̃adv is multi-scaled [13] and condi-
tioned on Is to preserve the human identity in Ĩt . So it is
represented as:

L̃adv = log(D(Ît , Is)) + log(1 − D(̃It , Is)), (4)

where Ît denotes the ground-truth of transfer image. The
perceptual loss L̃ per measures the perceptual distance between
the coarse-scale result and the ground-truth of transfer image.
We define L̃ per as:

L̃ per =
L∑

l=1

∥∥∥�l(Ît ) − �l (̃It )
∥∥∥

1
, (5)

1In our experiments, � includes relu1_2, relu2_2, relu3_2, relu4_2 and
relu5_2 layers in VGG-19 [44].

Fig. 5. Our fine-scale generator fuses the coarse-scale result and the five body
parts together at first, and then refines this initial result for global consistency
with the guidance from informative maps to produce the final high-quality
transfer result.

2) Fine-Scale Fusion Stage: fuses the coarse-scale result Ĩt

and the offset images {Ǐn
t } for individual body parts together

to achieve the final transfer result It , as shown in Fig. 5.
A simple way is to directly add the offset images onto the
coarse result according to the parsing map Sn

t as:

İt = Ĩt +
N∑
n

Ǐn
t � Sn

t . (6)

However, this may generate improper artifacts because each
offset image is synthesized independently and necessary global
consistency is not guaranteed.

We employ a fine-scale generator to refine the initial result
İt to ensure body consistency for generating a high-quality
pose transfer result. We also utilize the informative maps as
guidance in this stage to identify the occlusion relationships
between all local body parts. With such guidance, our frame-
work handles the self-occlusion problem more precisely than
previous methods. Similar to our part-based layer generator,
this fusion stage also produces an offset image Ǐt concerning
to İt . So the final result is It = Ǐt + İt .

The objective function for training this stage is similar to
training the coarse-scale generator and is formulated as:

L = Ladv + λF M L F M + λper L per , (7)

where Ladv = log(D(Ît , Is)) + log(1 − D(It , Is)) and L per =∑L
l=1

∥∥∥�l(Ît ) − �l(It )
∥∥∥

1
. We set λF M = λper = 10 in our

experiments, both for Eq. (3) and Eq. (7).

IV. EXPERIMENTS

We demonstrate the advantages of our human pose transfer
method through extensive qualitative and quantitative com-
parisons with three state-of-the-art techniques [9], [12], [13].
Thanks to our hierarchical framework with guidance from
3D target pose as well as the proposed part-based layer
representation, our method outperforms previous works in bet-
ter handling self-occlusions, fine detail preservation/synthesis
and a higher resolution result. Various ablation studies are
also conducted for validating the effectiveness of important
components in our framework, including the 3D guidance
from informative maps, the part-based layer representation,
and the coarse-to-fine fusion strategy. All the comparisons
are evaluated on two datasets, the Human3.6M dataset [45]
and our self-collected sport video dataset. Results on video
sequences are also presented in the supplementary materials.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 07,2022 at 16:00:49 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: HIERARCHICAL GENERATION OF HUMAN POSE WITH PART-BASED LAYER REPRESENTATION 7861

A. Datasets

Human3.6M dataset captures 11 actors who perform
15 actions under 4 viewpoints. We uniformly sample the
captured videos into individual keyframes and obtain images
for the same person with large pose variations. We crop
the sampled images and remove the background through a
human segmentation approach [46] to make sure that only the
human foreground is considered in our method. Besides the
ground truth annotation provided in this dataset, we further use
OpenPose [47] to estimate the 2D poses and use HMR [28]
to obtain the 3D ground truth to ensure the consistency
between training and testing stages. We choose ‘Greeting’,
‘Posing’, ‘SittingDown’ and ‘Walking’ actions for training,
and ‘Directions’, ‘TakingPhoto’ actions for testing.

Sport video dataset is our self-collected dataset in high
resolution with annotated 3D poses for validating the general-
ization of our approach. We first download 87 high-resolution
sport videos from the Internet, including basketball, running,
football, etc. Each video contains a sequence of images for
the same person with large pose variations. We again use
OpenPose [47] and HMR [28] to estimate the corresponding
poses for each frame and manually eliminate the inaccurate
predictions. The background is also removed by using [46].
We split the dataset randomly into the training and testing set
at the ratio of 9:1 according to the person identification.

B. Implementation Details

We adopt the architecture of Johnson et al. [48] for all the
generators in our method. It contains several downsample and
upsample convolutional layers with multiple residual blocks in
the middle. In the coarse-scale generation and the fine-scale
fusion stages, we use multi-scale 70 × 70 Patch-GAN [35]
discriminators with two scales and three scales, respectively.
For the completeness discriminator used in training the part-
based layer representation, we adopt the architecture provided
by DCGAN [49]. We replace the inner batch normaliza-
tion [50] layers with spectral normalization [51] in arm and leg
discriminators for training stability. The average inference time
of our entire pipeline is 0.44s on a GTX 1080Ti GPU. Please
refer to the supplementary materials for more hyperparameter
details.

During the training stage, we train the coarse-scale gen-
erator at first. We then use the result from it to train the
part-based layer generators. Finally, we finetune all the above
sub-networks with the fine-scale generator together in an
end-to-end manner. We train the coarse-scale and fine-scale
generators for 10 epochs, and the part-based layer generators
for 20 epochs. As we train all the generators with batch size 1,
we use the instance normalization [52] instead of origin batch
normalization. All the networks are trained by Adam [53]
solver and the learning rate is set to 0.0002 which is constant
during the first half epochs and is linearly decayed in the latter
half training epochs.

The body component label is annotated by segmenting the
uniform mesh topology of the SMPL [14] model. We project
3D meshes of each body part into image coordinate to obtain
component masks as the 2D human parsing ground truth.

TABLE I

QUALITATIVE EVALUATION WITH STATE-OF-THE-ART METHODS
[9], [12], [13] ON HUMAN3.6M [45] DATASET AND OUR

SELF-COLLECTED SPORT VIDEO DATASET. WE CONDUCT A

USER STUDY AND THE PARTICIPANTS ARE ASKED TO PICK

THEIR FAVOURITE RESULTS FROM THE FOUR METHODS

The ground truth of 3D segmented volume is obtained through
voxelizing a SMPL [14] 3D mesh into the voxel grid by using
binvox [54].

C. Comparison With Previous Works

We compare the results of our approach with three state-
of-the-art methods, including pix2pixHD [13], DSC [9] and
LW-GAN [12]. Pix2pixHD [13] is a general framework to
handle the high-resolution image-to-image translation task.
DSC [9] and LW-GAN [12] are two state-of-the-art human
pose transfer approaches but are limited in low image resolu-
tion. Pix2pixHD [13] and DSC [9] use 2D pose as input while
LW-GAN [12] use SMPL [14] model as input. We re-train
all these methods on the two datasets. Because the informa-
tive maps of our method can be generated from either the
SMPL [14] model or the segmented 3D volume, we denote
the corresponding results as Ours-S and Ours-V, respectively.

The qualitative comparisons on the two evaluated datasets
are presented in Fig. 6 and Fig. 7, respectively. It is clear
that our method significantly outperforms others, especially
for the regions where the self-occlusion happens. Because we
consider the semantic representation of human and synthesize
each important body component with its own part-based
generator, so local details of these regions are well preserved
during transferring its pose, e.g. the face regions (see the first
two rows in Fig. 6 and all results in Fig. 7). Besides preserving
the local details, the content in new areas appearing in target
pose is also synthesized more precisely by the separated layer
generators. Furthermore, thanks to our informative guidance
from the 3D target pose, our method identifies the visibility
in target pose correctly and the upper layers (visible parts) are
obviously improved. Our method can handle the extremely
difficult self-occluded situations when legs are cross (see the
last two rows in Fig. 6 and the first two rows in Fig. 7) or
arms are laid in the front (see the last two rows in Fig. 6 and
Fig. 7), while other methods fail.

We also conduct a user study to compare our method with
other three human pose transfer techniques [9], [12], [13].
We randomly select 20 pairs of source images and target
poses from the test set of Human3.6M [45] and the sport
video dataset, respectively. We then show each source image
and target pose, along with the four results (Pix2pixHD,
DSC, LW-GAN, Ours-S) in a random order to users, who
are asked to pick their favourite one. There are 21 participants
in total, resulting in 420 votes for each dataset. Tab. I lists
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Fig. 6. Qualitative comparison with state-of-the-art methods [9], [12], [13] on Human3.6M [45] dataset. We cropped close-up views for better visualization
and please zoom in for details.

Fig. 7. Qualitative comparison with state-of-the-art methods [9], [12], [13] on our self-collected sport video dataset. We cropped close-up views for better
visualization and please zoom in for details.

the proportion of votes for each method and shows that our
method receives significantly more votes than other methods.

Besides qualitative comparisons, we employ two quanti-
tative metrics, namely SSIM [56] and Learned Perceptual
Similarity (LPIPS) [57] to measure the quality of images
generated by all methods. We also design a new metric,

Occlusion State Accuracy (OSA), to expressly demonstrate
the superiority of our method for addressing the self-occlusion
problem. We apply HMR [28] to estimate the 3D human
model from the generated image and calculate the accuracy
of occlusion states for different body components comparing
to the ground truth. We list the corresponding evaluation
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TABLE II

QUANTITATIVE EVALUATION WITH STATE-OF-THE-ART METHODS [9], [12], [13] ON HUMAN3.6M [45] DATASET AND OUR SELF-COLLECTED
SPORT VIDEO DATASET. THE ARROW AFTER EACH METRIC IDENTIFIES THE IMPROVEMENT DIRECTION

Fig. 8. Qualitative comparison with state-of-the-art methods [9], [12], [13] on DeepFashion [55] dataset. We cropped close-up views for better visualization
and please zoom in for details.

in Tab. II. Not surprisingly, our method outperforms state-of-
the-art approaches both in the general image quality metrics
(SSIM [56] and LPIPS [57]) and self-occlusion handling
(OSA). LW-GAN [12] employs HMR [28] to estimate the
target 3D model, thus it performs better than the other
two methods for self-occlusion handling (OSA). However,
the image quality of its result is also unsatisfying because
the semantic and spatial relationships of the different body
parts are still ignored. Since we use HMR [28] to annotate
3D ground truth for the training set, our method performs
better when using SMPL [14] model than 3D volume at the
inference time. We resize our results to scale of 256 × 256,
denoted as Ours-S-256 in Tab. II. Our method still performs
better than LW-GAN [12] and DSC [9], which are both trained
and evaluated by the image size of 256 × 256.

We also compare our method with DSC [9], LW-GAN [12]
and Pix2pixHD [13] on the DeepFashion [55] dataset.
Following the training/test split applied in DSC, we re-train
our method and Pix2pixHD on DeepFashion. We also adopt
the pre-trained models released publicly by DSC and LW-GAN

TABLE III

QUANTITATIVE EVALUATION WITH STATE-OF-THE-ART METHODS

[9], [12], [13] ON DEEPFASHION [55] DATASET. THE
ARROW AFTER EACH METRIC IDENTIFIES THE

IMPROVEMENT DIRECTION

for testing. Fig. 8 shows the qualitative comparison on the
DeepFashion. Our method obviously outperforms other pose
transfer techniques, especially for the local details of each
body component (faces in the first two rows and lower bodies
in the first row) and the regions where self-occlusions happen
(cross legs in the second row and the arm in the last row).
Our method also achieves the best scores in two quantitative
metrics, namely SSIM and LPIPS, as shown in Tab. III.
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Fig. 9. Qualitative comparison for ablation studies by adding each component one by one. We cropped close-up views for better visualization and please
zoom in for details.

Fig. 10. Selected frames from motion sequences generated by our method. Please zoom in for a better visualization.

TABLE IV

ABLATION STUDY FOR VALIDATING THE EFFECTIVENESS OF EACH

IMPORTANT COMPONENT IN OUR FRAMEWORK. H , S , AND D
IDENTIFY THE POSE HEATMAPS, THE PARSING MAP, AND THE

DEPTH MAP FOR INPUT, RESPECTIVELY. P L− AND P L
DENOTE THE INCOMPLETE/FULL PART-BASED LAYER

REPRESENTATION. F DENOTES THE FINE-SCALE
FUSION STAGE. THE ARROW AFTER EACH METRIC

IDENTIFIES THE IMPROVEMENT DIRECTION

D. Ablation Study

In order to validate the effectiveness of each important
component in our framework, we conduct an ablation study
by incorporating each component one by one. Our baseline
model H just uses the coarse-scale generator to produce
the target image with source image Is and the 2D pose
heatmaps Ht as input. We then incrementally incorporate each
important component, namely the human parsing map St ,
the extra depth map Dt , the incomplete and complete part-
based layer representation, and the fine-scale fusion stage in
this study. We denote these components as S, D, P L−, P L
and F , respectively. So our whole solution can be denoted as
H + S + D + P L + F . We use the SMPL [14] model as the
3D representation through the entire ablation studies.

We show the quantitative ablation study on Human3.6M
dataset [45] using SSIM [56], LPIPS [57] and Occlusion
State Accuracy (OSA) of the five variations in Tab. IV. It is

obvious that all the studied components contribute to the
final high-quality results as the increase of SSIM [56]/OSA
and the decrease of LPIPS [57] along the five variations.
Among these components, our part-based layer representation
significantly improves the quality of generated images which
can be explained by the large improvement in SSIM [56] and
LPIPS [57]. Qualitative comparison in Fig. 9 also demonstrates
that handling important body parts individually by our part-
based layer representation is necessary for generating fine-
scale local details, e.g. faces, and the fine-scale fusion stage
further polishes the individual results by ensuring global
consistency.

E. Motion Video Results

Our method can be easily applied to generate the motion
video with a given target pose sequence for the reference
person pose-by-pose. Fig. 10 shows several frames generated
by our method from one pose sequence. Please notice that
some partial details around the important body components,
especially the face and the garments, are well preserved while
applying a large pose motion. Please refer to our supplemen-
tary materials for more motion video results.

V. CONCLUSION

In this paper, we propose a hierarchical end-to-end human
pose generation framework with the consideration of semantic
part-based representation of the human body. We segment
the human body into multiple parts and formulate individual
layer representation for each of them. A high-quality result
is fused with these local layer representations in a coarse-
to-fine manner. We employ 3D informative guidance through
the framework to better identify the occlusion ambiguity and
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generate proper results in self-occluded regions. Both qualita-
tive and quantitative evaluations demonstrate that our method
significantly outperforms previous methods consistently. Our
framework is general and can be adapted to various 3D
representations, such as SMPL [14] model and 3D volume.

Limitations: Our method is still not able to handle hand
regions well since common joint key points do not include
fingers. Our part-based layer representation and the entire
framework can be easily extended to such case once more
spatial constraints around hand regions are available.
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