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Abstract—In this paper we present a novel algorithm to
simultaneously accomplish color quantization and dithering of
images. This is achieved by minimizing a perception-based cost
function which considers pixel-wise differences between filtered
versions of the quantized image and the input image. We use
edge aware filters in defining the cost function to avoid mixing
colors on opposite sides of an edge. The importance of each pixel
is weighted according to its saliency. To rapidly minimize the
cost function, we use a modified multi-scale iterative conditional
mode (ICM) algorithm which updates one pixel a time while
keeping other pixels unchanged. As ICM is a local method,
careful initialization is required to prevent termination at a local
minimum far from the global one. To address this problem, we
initialize ICM with a palette generated by a modified median-
cut method. Compared to previous approaches, our method can
produce high quality results with fewer visual artifacts but also
requires significantly less computational effort.

Index Terms—Color quantization, dithering, optimization-
based image processing.

I. INTRODUCTION

COLOR quantization is a technique that reduces the num-
ber of unique colors used in an image to a small number

such as 256 or fewer, while preserving visual similarity to
the original input image. It has applications in displaying and
printing images on hardware devices which only support a
small number of colors. It can also be used as a fundamental
preprocessing step in lossy compression, fast image manipu-
lation, image analysis and many other tasks.

A quantized image is represented by a color palette, which
stores a set of unique colors, and a pixel map, which records
the assignment of each pixel to one of the palette colors.
A color quantization process typically involves two steps:
color palette construction, and pixel map assignment [1]. Since
natural images may contain hundreds of thousands of different
colors, obtaining a visually pleasing quantized representation
using a small color palette is a difficult problem.

Earlier works on color quantization are mainly based on
clustering. Some of these methods use specific data structures
to divide the color space, such as median-cut [2], or octrees [3].
Others use iterative clustering methods, such as k-means [1] or
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self-organizing maps [4], to organize all colors into a limited
number of clusters. All colors in the same cluster are then
represented using the same color, resulting in a quantized
representation. However, they only consider whether the color
of each pixel is close to its cluster center. Given the limited
number of colors, and the fact that such methods ignore spatial
contexts, a severe type of artifact arises in the quantized image
in areas of smooth color gradients, in the form of false edges,
as are clearly visible in the sky in Fig. 1b, for example.
To reduce such artifacts, a subsequent dithering step [5] is
typically employed after quantization, as the human visual
system tends to perceive regions with high-frequency spatial
color changes as a homogeneous color. Dithering distributes
quantization errors into neighboring pixels, helping to hide the
false edges. The improvements provided by dithering can be
seen, for example, in Fig. 1c. However, there is an obvious
conflict between these two steps. While quantization tries to
reduce the average distance between each pixel and its cluster
center, dithering increases this average distance in an attempt
to provide smoothly varying colors. Performing these two
steps independently will obviously lead to a suboptimal result.

Thus, instead of using a sequential approach, Puzicha [6]
proposed the concept of spatial quantization, which simulta-
neously performs quantization and dithering by minimizing
a quantization error. To simultaneously incorporate dithering
into the minimization problem, the quantization error is de-
fined as pixel-wise differences between a Gaussian-filtered
quantized image and the Gaussian-filtered input image. Min-
imization is performed by deterministic annealing (DA) and
an iterative conditional mode algorithm (ICM) using a multi-
scale framework. The DA method, which is slow but more
accurate, is used first for minimization. When the annealing
temperature is close to zero, the method switches to ICM for
refinement; the latter is faster, but could get stuck in a local
minimum if used too soon. This approach is able to produce
high quality quantized results. However, it is slow, e.g. taking
a couple of minutes to quantize a small image (512 × 512
pixels) to 64 colors. Furthermore, the results contain visible
noise (see Fig 1d, for example), and do not preserve colors in
salient regions well. The cause of the noise is that Gaussian
filtering mixes the colors of pixels within a certain radius no
matter how different these colors may be, neglecting the fact
that human eyes are sensitive to sudden color changes.

To address these issues, in this paper, we present a
novel color quantization algorithm which again simultaneously
quantizes and dithers color images (see Fig. 1e). The basis
of our approach is similar to Puzicha’s method [6], again
minimizing a cost function considering pixel-wise differences
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between filtered versions of the quantized and input images.
However, instead of using a Gaussian filter, we use edge-
aware filters when defining the cost function, which avoids
mixing colors with large differences, which effectively sup-
presses noise. Furthermore, the importance of each pixel is
weighted according to its visual saliency, which helps to better
preserve the fidelity of salient regions during quantization. Our
approach also improves the speed with which the cost function
is minimized. Instead of using DA with low temperature ICM,
we use an ICM algorithm from the beginning to the end. To
avoid the problem that ICM can easily converge to a local min-
imum, we carefully initialize ICM with a palette generated by
a modified median-cut method (instead of a random palette),
which turns out to be very effective. Compared to previous
approaches, our method can produce high quality results with
fewer visual artifacts while taking significantly less computing
time.

In the context of related color quantization work [6], [7],
[8], [9], our advances include:
• A novel cost function for simultaneous color quantiza-

tion and dithering, which takes into account edges and
saliency, leading to better visual quality.

• An efficient optimization technique for the minimization
problem involved, reducing the time needed to quantize
a typical image from minutes to seconds.

II. RELATED WORK

A. Color Quantization

Color quantization has a long history, due to limitations of
early computer graphics hardware. The original approaches
mainly utilized clustering in color space. Representative clus-
tering approaches have been based on median-cut [2], oc-
trees [3], self-organizing maps [4], minmax [10], k-means [1],
fuzzy c-means [11], adaptive distributing units [12], and
variance-cut based on Lloyd-Max iterations [13].

To suppress the false edge artifacts caused by color quanti-
zation, dithering can be applied. Floyd-Steinberg dithering [5]
is one of the most popular methods. It spreads the quantization
error at each pixel to the neighboring pixels using a fixed
distribution. Jarvis-Judice-Ninke dithering [14] diffuses the
error both to neighbouring pixels and pixels that are one step
further away, which is both slower and gives coarser dithering
results.

The necessity of considering quantization and dithering as
a joint problem to achieve optimal results has been noted
by various authors. Orchard and Bouman [7] generate a
palette using binary tree splitting and then combine modified
dithering techniques with the quantization process. Scheun-
ders [8] diffuses the quantization error to two neighboring
pixels during a competitive learning process. Ozdemir and
Akarun [9] combine fuzzy c-means methods with Floyd-
Steinberg dithering to create a color palette, and then use this
palette to perform quantization and dithering as usual. The
above methods consider perform quantization and dithering as
sequential steps in an iterative scheme. However, Puzicha et
al. [6] was the first to simultaneously perform quantization and
dithering by minimizing a cost-function based on a weighted

Gaussian distortion measure, which aims to directly simulate
human visual perception processes. In this paper, we will
show that such optimization-based combined quantization and
dithering can be significantly improved both in terms of speed
and quality.

B. Edge-aware Filtering

One of the key ideas of our method is to replace the
Gaussian filter used in [6] by an edge-aware filter, as the
human visual system is sensitive to edges: our method avoids
blending colors from opposite sides of an edge. Various edge
aware filters exist; we use the bilateral filter [15] for its
simplicity and speed of computation. For each pixel, the
bilateral filter computes a weighted average of the colors of
its neighbors, where the weights depend not only on spatial
distances, but also on color differences. Many techniques have
been proposed for accelerating the computation of the bilateral
filter [16], [17]. However, although such methods are available,
in our optimization process, in order to implement acceleration
based on a look-up table, we need to compute and store the
values of filter coefficients, instead of just filtering the image,
which inevitably results in O(Nr2) time complexity, where N
is the number of pixels, and r is the kernel size. Thus, brute-
force computation of bilateral filtering coefficients suffices.

As well as the bilateral filter, various other edge-aware filters
have also been proposed, such as anisotropic diffusion [18],
median filters [19], and others [20], [21], [22], [23], [24].
Typically, they are either too inefficient or otherwise unsuitable
for our cost function definition and optimization process.

C. Saliency Detection

When looking at an image, humans pay most attention
to visually salient areas. Exploiting this fact, visual saliency
computation has been widely used in applications such as
image segmentation [25], adaptive compression [26], and
image retrieval [27]. Since all color quantization methods
inevitably introduce approximation, it is reasonable to give
priority to salient regions, while pushing the approximation
error to the less important regions. There is extensive work on
saliency detection; representative works such as [28], [29]. In
this paper, we use the approach in [30] for its efficiency, its
ability to abstract away unnecessary details, and its generation
of homogeneous saliency values across similar regions.

III. OVERVIEW

We now outline our method. We use an optimization-based
process [6] to solve the combined color quantization and
dithering problem, minimizing a cost function which considers
pixel-wise differences between the filtered quantized image
and the filtered input image. We modify the cost function in [6]
to take into account edge-awareness and saliency terms (see
Sec. IV). To quickly solve the minimization problem, we adopt
an iterative multi-scale framework [6] in which the result for a
coarser level image is used to initialize the finer level image.
Instead of using deterministic annealing (DA) technique for
the coarser level and only using iterative conditional modes
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(a) Input image (b) Output of k-means
quantization

(c) Output of k-means +
FS dithering

(d) Output of Puzicha’s
method

(e) Output of our method

Fig. 1. Combined quantization and dithering to a palette of 32 colors. (a) Input image. (b) The result of k-means quantization; note the obvious false edge
artifacts. (c) Using the same palette, Floyd-Steinberg dithering leads to fewer false edges. (d) The result of Puzicha’s method, which preserves the original
colors and suppresses false edges better than (c), but at the cost of greater noise. (e) The result of our combined quantization and dithering method, which
preserves the original colors better, has fewer visible false edges, and largely suppresses noise.

(ICM) when the temperature is close to zero [6], we apply
ICM to all levels, but still achieve a minimum which is close
to that obtained by the DA+ICM method. Directly applying
ICM to all levels can easily lead to convergence to a local
minimum. We overcome this obstacle by careful choice of
initial palette, obtained using a fast color quantization method:
modified median-cut [31] (see Sec. V).

IV. COST FUNCTION

This section describes our modified cost function for com-
bined color quantization and dithering.
Problem Formulation. Given an image I with N pixels, let
the color at pixel i (1 ≤ i ≤ N ) be ci, and the desired number
of colors in the palette be K. Color quantization is the process
of (i) choosing a list of colors p(k), 1 ≤ k ≤ K making up the
color palette P = {p(k)}, and (ii) a pixel map M = {mi, 1 ≤
i ≤ N} indicating that pixel i uses color mi in the palette.
The goal of color quantization is to preserve the fidelity of the
original image as much as possible for the given palette size
K, which is achieved by minimizing a cost function.
Puzicha’s Cost Function. We briefly review the cost function
E used in [6]. It is defined as:

E =
∑

1≤i≤N

∥∥∥∥∥∥
∑
j∈Ni

wij(c
P
j − cj)

∥∥∥∥∥∥
2

, (1)

where i, j denote pixels, Ni denotes the neighborhood of i, and
wij is the weight of a neighboring pixel j with respect to pixel
i. cj and cPj denote the color (in RGB color space) of pixel j in
the original image and quantized image, respectively, so cPj =
p(mj). The cost function is the sum of L2-norm differences
between original and quantized color values over all pixels.
However, instead of directly computing pixel-wise differences,
local filtering is performed over neighborhood pixels to weight
the differences. Specifically, the weight wij (or filtering kernel)
is defined by a Gaussian filter:

wij = wgij/
∑
j∈Ni

wgij , (2)

wgij = exp(−‖xi − xj‖2/σ2
s), (3)

where xi is the spatial location of a pixel, and σs is a
controllable parameter. The purpose of such filtering is to

simulate the spatial low-pass characteristics of the human
visual system.

∑
j∈Ni

wijcj is effectively the perceived color
at pixel location i. Minimizing this cost function is equivalent
to performing color quantization and dithering simultaneously.
Our Cost Function. We modify the original cost function
in Equation 1 in two ways. Firstly, Gaussian filtering mixes
colors across either side of an edge. This neglects the fact
that the human visual system is sensitive to edges, so instead
we replace the Gaussian filter by a bilateral filter. Here, edges
means any sudden color changes in general. Secondly, since
humans pay more attention to salient regions, we should give
higher priority to keeping the fidelity of salient regions during
quantization, at the cost of sacrificing the fidelity of less salient
regions. Thus, we introduce a visual importance map into the
cost function.

Our modified cost function is thus:

E =
∑

1≤i≤N

ti

∥∥∥∥∥∥
∑
j∈Ni

w′ij(c
P
j − cj)

∥∥∥∥∥∥
2

, (4)

where the weight w′ij is now defined by a normalized bilateral
filtering kernel:

w′ij = wbij/
∑
j∈Ni

wbij , (5)

wbij = exp(−‖xi − xj‖2/σ2
s) exp(−‖ci − cj‖2/σ2

r), (6)

and σs and σr are two parameters to control the relative
contribution of spatial and color components. The importance
value ti is defined according to visual saliency values:

ti = λ+ (1− λ)si, (7)

where we set λ = 0.1 in order to avoid giving pixels very small
or zero importance values, and si is the visual saliency of pixel
i computed using the saliency model in [30] for its efficiency
and generation of homogeneous saliency values across similar
regions. Other saliency models could also be used, and, for
example, a face detector could additionally be used to to assign
larger importance values to human face regions. We refer
to the value of this cost function as the edge-aware spatial
quantization error, ESQE for short.
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V. OPTIMIZATION

Recall that the quantized color cPj in the cost function
(Equation 4) is computed from the color palette P and the
pixel map M . We rewrite the cost function by replacing cPj
by p(mj):

E =
∑

1≤i≤N

ti

∥∥∥∥∥∥
∑
j∈Ni

w′ij(p(mj)− cj)

∥∥∥∥∥∥
2

. (8)

The unknowns here are the color palette P = {pk} and
the pixel map M = {mj}. This is a nonlinear, mixed
combinatorial minimization target.

We solve it in an iterative manner. In each iteration, we
first fix the palette P and solve for the pixel map M , then
we fix the pixel map M and solve for the palette P . Finding
the pixel map is a combinatorial optimization problem while
finding the color palette requires solution of a linear system.
We stop iterating when the results converge. We also utilize
a multi-scale scheme for efficiency. Details of our algorithm
are explained below; pseudocode is given in Algorithm 1.

Algorithm 1 Calculate palette and pixel map
Input: original image I
Output: pixel map M , color palette P
1: Initialize P using modified median-cut.
2: Initialize M randomly.
3: l⇐ 1
4: I1 ⇐ I
5: while l < lmax do
6: Il+1 ⇐ subsample(Il)
7: l⇐ l + 1
8: end while
9: l⇐ lmax

10: repeat
11: repeat
12: repeat
13: Nl ⇐ number of pixels in Il
14: π ⇐ a random permutation of 1, . . . , N l

15: for i = 1, . . . , N l do
16: Update mπ(i) ∈M using ICM
17: end for
18: until M converges
19: Update P by solving a linear system
20: until P converges
21: if l > 1 then
22: M ⇐ upsample(M)
23: end if
24: l⇐ l − 1
25: until l = 0

Finding the pixel map. During this stage, we fix the palette
P and optimize the pixel map M . We employ the iterative
conditional mode (ICM) algorithm [32] to do so. Specifically,
we enumerate over all pixels in a random order. At each time,
we update the color index mi of a specific pixel i while
keeping the color indices of all other pixels unchanged. We
change the color index mi to the new value m′i in the range

1 ≤ m′i ≤ K which minimizes the cost function (Equation 8).
A naive approach takes time O(KN) to obtain the new color
indices (K evaluations for N pixels), and is prohibitively
expensive. Two schemes are used for acceleration. Firstly, to
compute the cost function, instead of fully evaluating it using
Equation 8, taking time O(N), we employ the local updating
scheme proposed in [6] to incrementally compute it using a
look-up table. When we change the color index mi of a single
pixel i, only the neighborhood of that pixel is affected. Hence,
we can record the original value of the cost function before
updating, and only re-evaluate a small part of the cost function
(i.e. for pixels in the neighborhood), to incrementally update
its value. Secondly, instead of testing all K colors in the color
palette, we use a greedy scheme which only tests a small
number of colors in the palette which are similar to the current
assigned pixel color. The most similar colors (in the palette)
for each color in the palette are precomputed and stored before
solving for the pixel map. In our implementation, we set the
number of similar colors to n = 10 for a palette size 32, which
achieves a good trade-off between efficiency and fidelity. The
effect of varying n is shown in Section VI. After considering
all pixels, we check the number of pixels that have changed.
If the proportion of changed pixels is lower than a predefined
threshold tm (in experiments, we set tm = 0.001), we cease
updating pixels.
Finding the color palette. In this stage, we fix the pixel map
M and optimize the color palette P . As in [6], this is done
by directly solving a small linear system derived from:

∂E

∂Pks
= 0, (9)

where Pks denotes the k-th color of channel s in palette P .
Termination. At the end of each iteration, we check how many
colors have changed in the color palette since the last iteration.
A color in the palette is considered to have changed if the
difference is larger than 1 (color values are in the range 0–
255). If the proportion of new colors in the palette is smaller
than a predefined threshold tp (in experiments, we set tp =
0.1), we regard the process as having converged and terminate
the iteration.
Multi-scale Solution. Inspired by [6], we also use a multi-
scale framework to accelerate the optimization process. We
build an image pyramid from the input image by iterative
subsampling by a factor of two. Following Puzicha’s setting,
we use a 5 level multi-scale framework (lmax = 5). We start
the optimization at the coarsest level. The pixel map resulting
from one level is upsampled and used to initialize the next
level. Specifically, the pixel map value of (x, y) at the finer
scale is copied from (floor[x/2], f loor[y/2]) of the coarser
level, as in [6]. The color palette is copied directly to the next
level.
Initialization. The convergence and efficiency of the above
iterative optimization process depend greatly on the values
used to initialize the color palette. A straight-forward approach
is to use a random palette, as done in [6]. However, in
experiments we find that this can cause the optimization
process to become stuck in a local minimum. To address this
issue, we employ a modified median-cut (MMC) algorithm
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(a) Input (b) Gaussian σs = 0.5 (c) Gaussian σs = 1.0 (d) Bilateral σs = 1.0

(e) Input (f) Gaussian σs = 0.5 (g) Gaussian σs = 1.0 (h) Bilateral σs = 1.0

Fig. 2. Comparison between Gaussian and bilateral kernels. Top: images, bottom: zoomed detail. (a) Input image. While (b) contains false edges, (c) contains
too much noise; (d) shows that our method avoids false edges and suppress noise.

adapted from [31] to generate the initial palette, since, to our
knowledge, MMC acquires the lowest MSE among traditional
clustering-based quantization methods. Specifically, first, each
pixel is assigned a visual importance weight using its saliency
value [30]. Next, we place a bounding-box in RGB color space
surrounding all colors in the image and iteratively split a box
at the median value along its longest axis, until the number of
boxes is equal to the size of the palette. Each time splitting
occurs, we choose the box with the largest product of the
sum of the visual importance weights in it and variance of
colors in it. After the splitting stage, the average color of each
box is used as an initial color in the palette. After median-cut,
the palette is further adjusted using k-means, which iteratively
recalculates the nearest palette color for each color under the
L2-norm and updates the palette with the new cluster centers.
Hybridizing median-cut and k-means can utilize the speed
of median-cut and the flexibility of cluster boundaries of k-
means. After a round of median-cut and k-means, the visual
importance weights of each pixels are increased by a factor
proportional to their distance from their nearest palette color,
and then do a second round of median-cut and k-means. This is
iterated until the MSE between the input image and the current
result image fails to improve for several rounds. For more
details, please see [31]. Using the palette resulting from this
modified median-cut algorithm, our optimization algorithm is
able to produce results with comparable quality to the DA
algorithm [6], but is much faster.

Differences from Puzicha’s method. Our optimization
method differs from Puzicha’s method [6] in several ways.
Firstly, when solving for the pixel map, they use deterministic
annealing. Since DA is slow, for speed, they switch to using
the iterative conditional mode algorithm once the annealing
temperature is close to zero. In contrast, we use the iterative

conditional mode algorithm throughout, allowing us to find the
pixel map much more quickly. As mentioned above, we also
use a greedy scheme for further acceleration. Secondly, they
initialize the color palette randomly, while we use a more so-
phisticated method which generates better initialization, which
is necessary to be able to use ICM optimization throughout.
While their method typically needs about 20 minutes to
generate a quantized result with 256 colors for a small image
(512× 512 pixels), our method can do so under 12 seconds.

VI. EXPERIMENTS

We have implemented our method in C++ using the
OpenCV library on a PC with an Intel 3.4GHz Core i7-3770
CPU. Source code is available at [to be completed on publica-
tion]. By default, the parameters used in our experiments were
σs = 1.0 (spatial distance is measured in pixels), σr = 2.0
(color range for each channel of RGB space is [0, 255]), kernel
size 3 × 3, palette size 32, n = 10. The 100 test images
used as inputs in our experiments were downloaded from [33],
Wikipedia and Flickr. They were all resized or cropped to
512× 512 to ease comparison.
Evaluation of Our Cost Function. We now evaluate the
effectiveness of our cost function, which replaces the original
Gaussian kernel based cost function in [6], to one based
on a bilateral filtering kernel, and also includes a saliency
term. In Fig. 2, we compare the quantized results generated
using a bilateral filtering kernel to those generated using
Gaussian kernels with different σs. We can see that when using
Gaussian kernels, setting σs = 0.5 is unable to remove false
edge artifacts in the smoothly changing area. Increasing σs
to 1.0 removes false edges but introduces significant noise.
In contrast, the results generated by using bilateral filtering
kernels achieve a good balance between suppressing false
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(a) Input (b) Without Saliency (c) With Saliency

(d) Input (e) Without Saliency (f) With Saliency

Fig. 3. The effect of saliency weights. (a), (d): input images with saliency
maps shown at top-right. With the guidance of the saliency map, (c) preserves
the yellow color of the ball (marked by a red rectangle) better than (b).
Similarly, (f) preserves the green color of the picture better than (e).

edges and suppressing noise. In Fig. 3, we compare quantized
results generated with and without the saliency term. Using
the saliency term preserves better fidelity in salient areas.
Parameter settings. In solving for pixel maps, we employ a
greedy scheme which only considers the n most similar colors
in the palette. We generated results using different values of n
and record the edge-aware spatial quantization error (ESQE)
after convergence. The variation of ESQE with n is shown
in Fig. 4. For a palette size of 256, n = 25 achieves a good
trade-off between speed and quality. n = 10, 10, 15 are the
best values for palette sizes of 32, 64 and 128, respectively.

Secondly, we tested the effect of different kernel sizes. In
our experiments, by changing the kernel size from 5 × 5 to
3 × 3, the average time for processing the 100 test images
significantly decreased from 8.9 s to 3.7 s without visible
quality loss. So, 3× 3 kernels are used by default. The same
kernel size was used for Puzicha’s method[6] while perfroming
comparisons.
Comparison with other methods. We next compared our
method (all levels ICM optimization with palette initial-
ized using modified median-cut, or MMC+AICM for short)
with several existing methods, including quantization us-
ing k-means (KM) [1], quantization using modified median-
cut (MMC) [31], quantization using adaptive distributing
units (ADU) [12], quantization using variance-cut based
on Lloyd-Max iterations (VCL) [13], quantization using k-
means followed by Floyd Steinberg dithering [5] (KM+FS),
quantization using modified median-cut followed by Floyd
Steinberg dithering (MMC+FS), quantization using ADU
followed by Floyd Steinberg dithering (ADU+FS), quanti-
zation using VCL followed by Floyd Steinberg dithering
(VCL+FS) and Puzicha’s [6] deterministic annealing with
ICM at low temperatures with Gaussian filtering weights
(DA+ICM). To demonstrate that our optimization method can
achieve comparable quality to Puzicha’s DA+ICM method, we
also generated results using our MMC+AICM optimization
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(a) palette size = 32
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(b) palette size = 64
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(d) palette size = 256

Fig. 4. The effect of parameter n. For palette size of 256, the fastest speed
without sacrificing quality is achieved at about n = 25. Similarly, n =
10, 10, 15 are best values for palette sizes of 32, 64 and 128, respectively.

method with Puzicha’s cost function, which are denoted by
MMC+AICM(GAUS). To demonstrate the importance of a
good palette initialization instead of random initialization, we
also give results of our method with random initialization
(RAND+AICM).

For each test image, we generated a quantized result using
each of the above methods. In the absence of a perfect psy-
chophysically defined error measure [34], for each quantized
image, we report quantitive results under various perceptual
metrics including the most popular mean squared error (MSE),
structural similarity (SSIM) [35], Puzicha’s spatial quantiza-
tion error (SQE) [6] and the edge-aware spatial quantization
error (ESQE) derived from our cost function. In the compari-
son, we set the dithering level in the Floyd Steinberg method
to 1.0, the number of iterations in k-means to 10, and the
number of iterations in MMC to 30. Here k-means algorithm
is randomly initialized. Specifically, the initial center of each
cluster is randomly chosen from one of the existing colors.
For each method, the average time to generate a result, and
average MSE, SQE and ESQE values over all 100 test images
are recorded. For randomized methods, we ran the test 10
times for each input image and recorded the mean values
of these qunatities. Results are reported in Table I. Table II
gives detailed statistics for all the images which appear in
this paper. We can see that the MSE values become larger
and SSIM values become smaller after FS dithering for KM,
MMC, ADU and VCL. Since KM, MMC, ADU and VCL
without FS dithering cause obvious false edges, it suggests
that MSE and SSIM are imperfect assessment methods for the
color quantization problem. Among the traditional clustering
based algorithms (KM, MMC, ADU and VCL), MMC gives
results with the lowest MSE, which is why we use MMC to
initialize AICM. If users want a faster initialization with higher
MSE, ADU may also be a good choice. Comparing DA+ICM
with MMC+AICM(GAUS), we can see that our optimization
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(a) Input (b) KM (c) ADU (d) VCL

(e) MMC (f) KM+FS (g) ADU+FS (h) VCL+FS

(i) MMC+FS (j) DA+ICM (k) MMC+AICM(ours)

Fig. 5. Comparison of different optimization methods. Using Floyd-Steinberg dithering, (f-i) hide some of the false edges seen in (b-e), but there are still
some obvious false edges on the car. Both DA+ICM (j) and our method (k) achieve better results with fewer false edges. However, our method (k) introduces
less noise than Puzicha’s method (j).

TABLE II
METHODS COMPARISON FOR EACH IMAGE

Method
Fruit (Fig 7 (a) ) Wall (Fig 7 (b)) Butterfly (Fig 7 (c)) Parrot (Fig 7 (d)) Church (Fig 7 (e))

Time MSE SSIM SQE ESQE Time MSE SSIM SQE ESQE Time MSE SSIM SQE ESQE Time MSE SSIM SQE ESQE Time MSE SSIM SQE ESQE

KM 0.24 s 131.9 0.78 81.4 23.8 0.27 s 80.8 0.90 32.8 14.4 0.14 s 67.9 0.94 50.9 15.1 0.20 s 89.2 0.82 53.2 32.7 0.20 s 75.1 0.92 38.9 15.7

KM+FS 0.25 s 196.7 0.63 44.9 23.7 0.28 s 104.3 0.85 22.9 16.4 0.16 s 103.1 0.75 35.7 15.5 0.20 s 125.5 0.64 30.2 35.1 0.21 s 109.7 0.78 19.1 17.4

MMC 1.9 s 126.1 0.78 75.7 21.8 2.2 s 68.6 0.91 28.3 15.3 0.84 s 49.7 0.94 32.8 13.5 1.3 s 77.4 0.83 42.6 30.5 1.6 s 59.2 0.92 23.7 14.0

MMC+FS 1.9 s 182.9 0.64 44.0 22.2 2.3 s 91.1 0.86 19.2 17.8 0.9 s 86.6 0.74 16.3 13.8 1.3 s 105.9 0.70 27.9 33.0 1.6 s 84.6 0.83 12.0 16.6

ADU 0.03 s 126.7 0.79 74.4 23.3 0.03 s 69.6 0.91 28.9 13.6 0.03 s 43.9 0.93 21.2 17.8 0.03 s 80.8 0.84 39.3 29.2 0.03 s 62.6 0.93 24.7 16.4

ADU+FS 0.05 s 184.6 0.65 41.6 23.7 0.07 s 91.9 0.87 19.9 15.8 0.06 s 61.5 0.86 13.3 21.1 0.06 s 106.3 0.79 24.2 31.5 0.07 s 91.0 0.88 13.8 21.6

VCL 0.03 s 140.3 0.78 86.7 24.7 0.03 s 75.6 0.91 36.5 15.9 0.02 s 50.3 0.93 29.9 16.5 0.02 s 78.3 0.85 40.9 31.5 0.02 s 68.7 0.91 30.5 18.8

VCL+FS 0.05 s 205.1 0.63 49.1 24.8 0.07 s 100.3 0.86 26.2 18.7 0.05 s 73.4 0.80 18.1 18.7 0.05 s 111.6 0.72 22.6 34.5 0.06 s 98.5 0.84 17.1 22.5

DA+ICM 41.5 s 618.2 0.38 11.5 63.3 37.6 s 431.9 0.60 7.1 69.5 55.2 s 305.3 0.49 6.1 54.6 47.3 s 406.5 0.43 8.3 92.4 37.9 s 359.9 0.68 6.5 95.9

MMC+AICM(GAUS) 5.5 s 623.4 0.37 11.2 55.4 5.5 s 401.7 0.60 6.5 68.7 6.9 s 305.8 0.53 5.9 57.6 4.9 s 307.5 0.53 6.1 78.0 4.3 s 370.2 0.61 5.9 76.1

RAND+AICM 5.9 s 236.4 0.59 49.3 16.8 7.4 s 199.8 0.78 74.7 23.0 22.0 s 382.9 0.47 28.4 13.6 4.7 s 198.4 0.62 47.1 27.2 4.6 s 131.7 0.74 38.0 17.4

MMC+AICM (ours) 3.3 s 214.0 0.59 44.3 14.7 3.1 s 89.8 0.87 31.3 12.4 3.2 s 115.8 0.67 16.8 9.6 2.9 s 112.0 0.66 23.1 18.8 3.1 s 83.8 0.79 18.1 12.2

Method
Harbor (Fig 1) Puppy (Fig 3 top) Room (Fig 3 bottom) Flower (Fig 2) Car (Fig 5)

Time MSE SSIM SQE ESQE Time MSE SSIM SQE ESQE Time MSE SSIM SQE ESQE Time MSE SSIM SQE ESQE Time MSE SSIM SQE ESQE

KM 0.20 s 90.9 0.90 50.8 15.5 0.19 s 57.4 0.88 30.0 11.4 0.18 s 81.9 0.88 46.6 24.6 0.16 s 79.6 0.89 52.7 24.2 0.19 s 87.9 0.84 48.9 29.3

KM+FS 0.21 s 121.5 0.67 24.2 11.7 0.21 s 85.9 0.76 19.3 12.0 0.19 s 127.3 0.67 21.7 27.1 0.16 s 110.6 0.71 29.6 22.8 0.19 s 116.6 0.72 30.3 30.5

MMC 1.9 s 65.4 0.91 35.6 11.6 1.8 s 52.0 0.90 27.1 11.3 1.2 s 73.5 0.89 40.0 26.2 1.4 s 61.1 0.89 33.0 21.5 1.4 s 69.5 0.87 35.6 24.1

MMC+FS 1.9 s 97.8 0.76 19.0 11.4 1.8 s 77.0 0.80 18.2 12.0 1.3 s 109.8 0.74 21.0 29.5 1.4 s 86.6 0.74 17.0 21.8 1.4 s 100.7 0.76 19.7 27.3

ADU 0.03 s 67.3 0.91 35.0 11.8 0.03 s 54.4 0.90 28.8 11.5 0.03 s 76.4 0.89 40.5 26.8 0.03 s 79.4 0.88 42.8 36.2 0.03 s 73.6 0.88 33.1 28.9

ADU+FS 0.05 s 98.4 0.80 20.1 12.3 0.07 s 76.4 0.83 19.6 12.0 0.06 s 111.9 0.77 22.2 29.6 0.06 s 112.3 0.78 23.7 39.4 0.07 s 106.4 0.79 18.4 32.6

VCL 0.02 s 73.5 0.90 41.4 13.9 0.03 s 63.7 0.88 34.6 13.9 0.02 s 84.5 0.89 51.8 29.4 0.02 s 70.8 0.88 40.5 25.8 0.02 s 78.8 0.87 39.1 29.5

VCL+FS 0.04 s 112.3 0.72 21.4 12.8 0.07 s 92.6 0.78 21.7 14.2 0.05 s 118.5 0.77 34.3 32.2 0.05 s 101.4 0.70 20.4 25.5 0.06 s 117.9 0.75 19.8 32.5

DA+ICM 41.6 s 376.9 0.53 6.8 39.0 34.1 s 277.1 0.55 4.0 37.3 47.6 s 390.6 0.48 8.4 80.9 27.6 s 244.6 0.54 6.2 64.1 30.8 s 337.8 0.57 6.3 96.7

MMC+AICM(GAUS) 5.9 s 342.9 0.52 6.2 34.7 5.7 s 265.4 0.52 6.4 33.0 6.2 s 417.9 0.46 7.4 76.0 5.1 s 289.0 0.48 6.0 61.6 3.9 s 365.6 0.55 6.9 89.1

RAND+AICM 6.6 s 174.2 0.60 26.9 10.3 25.2 s 131.2 0.67 23.6 9.8 20.1 s 242.9 0.55 30.2 19.9 31.2 s 325.5 0.50 18.6 16.6 7.7 s 214.5 0.64 21.7 19.6

MMC+AICM (ours) 3.4 s 111.0 0.67 20.1 7.7 3.1 s 78.2 0.75 20.4 7.4 5.9 s 179.7 0.57 22.7 17.7 4.5 s 126.2 0.61 16.7 15.1 2.5 s 126.3 0.69 19.8 18.1

method can achieve similar quality to Puzicha’s method but takes less time. Comparing RAND+AICM with MMC+AICM,



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 8

(a) Input (b) KM+FS (c) ADU+FS (d) VCL+FS

(e) MMC+FS (f) DA+ICM (g) MMC+AICM(ours)

Fig. 6. Another comparison of different optimization methods. In this example, it is clear that generally our method (g) hides false edges better than (b-e),
especially the false edges around those lights. (g) also introduces less noise than Puzicha’s method (f).

TABLE I
METHODS COMPARISON, AVERAGE OVER 100 TEST IMAGES

Method Time MSE SSIM SQE ESQE

KM 0.26 s 75.7 0.88 41.0 25.5

KM+FS 0.28 s 104.2 0.78 26.9 26.6

MMC 1.7 s 62.0 0.89 31.4 21.3

MMC+FS 1.8 s 87.7 0.81 19.3 23.5

ADU 0.03 s 63.5 0.89 31.5 23.4

ADU+FS 0.07 s 89.3 0.83 19.0 25.6

VCL 0.02 s 70.5 0.89 37.2 24.6

VCL+FS 0.06 s 101.4 0.78 22.3 26.8

DA+ICM 46.0 s 335.6 0.59 6.1 85.7

MMC+AICM(GAUS) 5.8 s 339.8 0.58 6.1 77.0

RAND+AICM 12.5 s 171.3 0.69 34.1 23.7

MMC+AICM 3.6 s 99.0 0.77 21.3 16.1

we can see that the initial palette from MMC improves AICM
both in speed and quality.

Fig. 5 and Fig. 6 shows output quantized images using
different methods. We can see that KM, MMC, ADU and
VCL produce visible false edge artifacts, which FS dithering
can hide to some degree, but not always: see the false edges
on the red car (Fig. 5) and around the lights (Fig. 6). In com-
parison, generally smooth results are produced by DA+ICM
and MMC+AICM (our method) for all parts of the image,
but introduce some noise. Generally speaking, false edges are
more visible than noise when we look at an image from some
distance. Moreover, MMC+AICM introduces less noise than
DA+ICM. Thus we believe our method (MMC+AICM) to be
more preferable. Further results are given in the supplementary
material.

To further explore the efficiency of our method, we compare
the timings of MMC+FS, DA+ICM and MMC+AICM (our
method) with different sizes of color palette. As shown in

TABLE III
THE SPEED OF DIFFERENT SIZE OF COLOR PALETTE

Colors MMC+FS DA+ICM MMC+AICM

32 1.8 s 46 s 3.6 s

64 2.3 s 178 s 4.2 s

128 2.9 s 498 s 5.7 s

256 3.3 s 1225 s 11.6 s

Table III, with a palette size of 256, our MMC+AICM method
takes less than 12 seconds, while DA+ICM takes more than
20 minutes. Thus, our method produces quantized results
with better quality while taking significantly less time than
DA+ICM. While MMC+FS takes less time but introduces
more false edges, our method takes a little longer, but intro-
duces some noise. However, false edges are more visible than
noise. Given the small performance difference, we believe our
method is more preferable.
Sensitivity to initial random pixel map. Recall that our pixel
map is initialized randomly (see Algorithm 1). However, the
results of our method are insensitive to the initial random pixel
map. To demonstrate it, we have run our algorithm 10 times on
5 images. Each time, the pixel map is initialized with different
random values. The mean and standard deviation (shown as
±x) of the timings and errors are shown in Table IV. From
the results, we can easily find that our method is insensitive
to the initial random pixel map.
User Study. We also carried out a subjective user study to
compare our method to Puzicha’s method [6]. We invited 8
males and 3 females, aged from 21 to 28, to participate in
our study. 25 test images from [33] were used. For each test
image, three images, including the input image, the quantized
result of our method, and that produced by Puzicha’s method,
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(a) (b) (c) (d) (e)
Fig. 7. Visual comparison between our method and Puzicha’s method. Top: input images. Middle: results of our method. Bottom: results using Puzicha’s
method [6]. Zoom-ins of the centers of each image are shown at the top-left corner. The size of the palette is 32.

TABLE IV
MEAN AND STANDARD DEVIATION OVER 10 TIMES OF TRIALS

Image Time MSE SSIM SQE ESQE

Fruit (Fig 7 (a) ) 3.3 ± 0.24 s 214.0 ± 1.29 0.59 ± 0.0015 44.3 ± 0.21 14.7 ± 0.025

Wall (Fig 7 (b)) 3.1 ± 0.44 s 89.8 ± 0.50 0.87 ± 0.0019 31.3 ± 0.29 12.4 ± 0.053

Butterfly (Fig 7 (c)) 3.2 ± 0.11 s 115.8 ± 0.23 0.67 ± 0.0003 16.8 ± 0.02 9.6 ± 0.003

Parrot (Fig 7 (d)) 2.9 ± 0.07 s 112.0 ± 0.57 0.66 ± 0.0021 23.1 ± 0.06 18.8 ± 0.022

Church (Fig 7 (e) 3.1 ± 0.13 s 83.8 ± 0.45 0.79 ± 0.0017 18.1 ± 0.10 12.2 ± 0.029

were shown to each participant; the two result images were
shown in a random order. Each participant was asked to mark
which image better preserved the fidelity of the input image
(or to state that they were equally good). For 88% of the
images, the participants preferred our results. Five examples
are shown in Fig. 7. Generally speaking, our method preserves
original colors well, successfully hides false edges in smoothly
changing areas, and suppresses noise.

VII. CONCLUSION

In this paper, we have presented a novel combined quanti-
zation and dithering method. It optimizes a novel cost function
based on a bilateral filtering kernel to suppress noise, and
extended to include a saliency term which is able to better pre-
serve the quality of more salient regions during quantization.
For efficiency of optimization, we use an all-level iterative
conditional mode algorithm with an effective initial palette
generated by a modified median-cut method. Compared to
previous methods, our method can produce high quality results
with fewer visual artifacts while taking significantly less time,
enabling practical applications for higher image resolutions
and larger palette sizes.
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