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Figure 1: We present an efficient algorithm to convert an arbitrary manifold triangle mesh M to a Delaunay mesh (DM), which has the same
geometry of M . Our algorithm can also produce progressive Delaunay meshes, allowing a smooth choice of detail levels. Since DMs are
represented using conventional mesh data structures, the existing digital geometry processing algorithms can benefit the numerical stability of
DM without changing any codes. For example, DMs significantly improve the accuracy of the heat method for computing geodesic distances.

Abstract

Delaunay meshes (DM) are a special type of triangle mesh where
the local Delaunay condition holds everywhere. We present an
efficient algorithm to convert an arbitrary manifold triangle mesh
M into a Delaunay mesh. We show that the constructed DM has
O(Kn) vertices, where n is the number of vertices in M and K
is a model-dependent constant. We also develop a novel algorithm
to simplify Delaunay meshes, allowing a smooth choice of detail
levels. Our methods are conceptually simple, theoretically sound
and easy to implement. The DM construction algorithm also scales
well due to its O(nK logK) time complexity.

Delaunay meshes have many favorable geometric and numerical
properties. For example, a DM has exactly the same geometry
as the input mesh, and it can be encoded by any mesh data struc-
ture. Moreover, the empty geodesic circumcircle property implies
that the commonly used cotangent Laplace-Beltrami operator has
non-negative weights. Therefore, the existing digital geometry pro-
cessing algorithms can benefit the numerical stability of DM with-
out changing any codes. We observe that DMs can improve the
accuracy of the heat method for computing geodesic distances.
Also, popular parameterization techniques, such as discrete har-
monic mapping, produce more stable results on the DMs than on
the input meshes.
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1 Introduction

Delaunay triangulations are widely used in scientific computing in
many diverse applications. While Delaunay triangulations in Eu-
clidean space have been extensively studied and well understood,
little progress has been made in Delaunay triangulations on curved
manifolds. In sharp contrast to the Euclidean counterpart, Delau-
nay triangulations do not exist for an arbitrary set of points on a
Riemannian manifold. If a Delaunay triangulation exists for a suf-
ficiently dense set of points on a manifold, it has geodesic curves as
edges and hereby is called intrinsic Delaunay triangulation (IDT).
Using the strong convexity radius and the injectivity radius, Dyer
et al. [2008] proposed adaptive sampling criteria for constructing
IDTs on smooth 2-manifolds. In the discrete setting, Rivin [1994]
and Indermitte et al. [2001] defined IDT on polyhedral surfaces,
where the IDT edges are geodesic paths (i.e., polylines). Similar
to planar Delaunay triangulations, triangles in an IDT satisfy the
Delaunay criterion, i.e., the geodesic circumcircle of an IDT trian-
gle does not contain any vertices in its interior. IDT is desired to
many graphics applications. For example, among all possible tri-
angulations on a 2-manifold mesh M , the Delaunay triangulation
minimizes the discrete Dirichlet energy of a piecewise linear func-
tion on M [Rippa 1990]. The commonly used cotangent formula of
Laplace-Beltrami operator has non-negative weights if and only if
the underlying triangulation is Delaunay [Bobenko and Springborn
2007].

Despite of the aforementioned nice features, IDT did not have
found widespread acceptance in computer graphics, mainly because
it is difficult to represent its geodesic-path-based edges using the
existing mesh data structures, such as triangle soup, winged-edge,
half-edge, quad-edge, etc. This paper focuses on Delaunay meshes,
a special triangle mesh whose IDT is the mesh itself. As a sim-
ple, convenient, and versatile representation of surfaces, Delaunay



meshes are the ideal input to the existing graphics pipeline. Delau-
nay mesh was first studied by Dyer et al. [2007], who proposed an
algorithm to convert an arbitrary manifold triangle mesh to a De-
launay mesh. Their idea is to recursively split non-Delaunay edges
and refine the local triangulations until all edges become locally
Delaunay. Dyer et al.’s algorithm is conceptually simple and easy
to implement, and has guarantees of correctness and termination
in finite steps. However, their local refinement strategy is purely
combinatorial, and it does not consider the local geometry. As a
result, it often adds too many splitting points to the input mesh, sig-
nificantly increasing its space complexity and hereby compromis-
ing the runtime performance of the follow-up geometric processing
and/or rendering. See Figure 14 for an illustrative example and
Section 6.1 for detailed discussion.

In this paper, we present a novel method to construct Delaunay
meshes. Given an arbitrary manifold triangle mesh M with n ver-
tices, our method converts M into a Delaunay mesh with O(Kn)
vertices and runs in O(nK logK) time, where K is a model-
dependent constant. Unlike Dyer et al’s algorithm, our method
takes the local geometry into consideration when refining the non-
Delaunay edges. As Figure 1 shows, our method adds on average
only 2 splitting points to each non-Delaunay edge of the Bunny
model. As a result, our method produces Delaunay meshes with
significantly fewer vertices than Dyer et al’s method. Following the
powerful QEM framework [Garland and Heckbert 1997], we also
develop an efficient algorithm to simplify Delaunay meshes, allow-
ing a smooth choice of detail levels. Our methods are conceptually
simple, theoretically sound and easy to implement. The DM con-
struction algorithm also scales well due to its O(nK logK) time
complexity.

DMs have many favorable geometric and numerical properties. A
DM has exactly the same geometry as the input mesh, and it can be
encoded by any mesh data structure. Due to the empty circumcircle
property, the sum of the two angles facing an internal edge is no
more than π, implying that the commonly used cotangent Laplace-
Beltrami operator has guaranteed non-negative weights. As a re-
sult, many existing algorithms can benefit numerical stability of
DMs without changing any codes. For example, we observe that
DMs can improve the accuracy of the heat method for computing
geodesic distances. See Figure 1. Popular surface parameterization
methods, such as discrete harmonic mapping, also produce better
results on the DMs than on the input meshes.

2 Related Work

There is a huge body of literature of Delaunay triangulation and its
broad applications [Okabe et al. 2000; Cheng et al. 2012]. Due to
limited space, we review only the most relevant works on intrinsic
Delaunay structures. Similar to the planar case, edge flipping and
the dual of Voronoi diagram are two commonly used methods for
studying Delaunay triangulations on polyhedral surfaces.

Rivin [1994] defined intrinsic Delaunay triangulation (IDT) on
polyhedral surfaces by the local Delaunay criterion, and claimed
(but did not prove) the existence theorem via the edge flipping al-
gorithm. Bobenko and Springborn [2007] proved the termination
of the edge flipping algorithm. They also defined intrinsic Delau-
nay tessellation (whose faces are generically but not always triangu-
lar) via a global empty circle criterion and proved its existence and
uniqueness. An IDT is then obtained from the Delaunay tessella-
tion by triangulating the non-triangular faces. They pointed out that
a Delaunay triangulation, while in general not unique, differs from
another Delaunay triangulation only by edges with vanishing cot-
weights. Unlike the planar case where edge flipping takes Θ(n2)
time, it is difficult to obtain the time complexity for polyhedral sur-
faces. Fisher et al. [2007] observed the edge flipping algorithm runs

very fast on real-world meshes and its runtime is easily dominated
by subsequent numerical computing tasks.

Voronoi diagram, as the sibling of Delaunay triangulation, can be
naturally extended from Euclidean planes to curved surfaces. How-
ever, it is tricky to study intrinsic Delaunay triangulations via the
dual graph of Voronoi diagram, since IDTs do not exist for arbitrary
set of points and there are certain density requirements to ensure
that the triangulations can accurately represent both the topology
and geometry of the manifold. Dyer et al. [2008] showed that if a
geodesic Voronoi diagram satisfies the closed ball property [Edels-
brunner and Shah 1997] (see Section 3), its dual is an IDT. Using
a local feature size function [Amenta and Bern 1999], they also
presented an adaptive sampling criterion to ensure the closed ball
property.

Centroidal Voronoi tessellation (CVT) is a special type of Voronoi
diagram, where each Voronoi cell’s generator coincides with its
center of mass. The commonly used method for computing CVT
is the Lloyd’s method [Lloyd 1982], which iteratively moves the
generators to the mass centers. Although conceptually simple and
easy to implement, the Lloyd’s method is a first-order optimization
method and hereby inefficient in practice. Liu et al. [2009] proved
that the CVT energy is C2 continuous for convex domains with
smooth density, as well as in most situations encountered in real-
world applications. As a result, it is possible to minimize the CVT
functional using Newton or quasi-Newton methods with fast con-
vergence. CVT is a powerful computational tool to generate highly
regular triangulations for arbitrary meshes [Yan et al. 2009]. More-
over, it can be easily extended to anisotropic metrics [Du and Wang
2005] and Lp distance metric [Lévy and Liu 2010]. However, the
CVT energy is highly non-linear, thus, computing the global opti-
mal is technically challenging.

Glickenstein [2005] introduced weighted triangulations, which as-
sociate each vertex with a scalar weight and generalize weighted-
Delaunay/power diagrams on arbitrary polyhedral meshes. As an
alternative representation, weighted triangulations have great flexi-
bility in the location of dual vertices while maintaining primal-dual
orthogonality. de Goes et al. [2014] defined an admissible set of
discrete metrics for weighted triangulations and showed this aug-
mented metric can be directly used to derive discrete differential op-
erators, such as the Laplace-Beltrami operator, that retain important
properties of their smooth counterparts. Weighted triangulations
are closely related to well-centered meshes, in which each simplex
contains its circumcenter in its interior. In the case of planar tri-
angulations, each triangle is acute angled. VanderZee et al. [2007]
presented an iterative algorithm to transform a given planar triangle
mesh into a well-centered one by moving the interior vertices while
keeping the connectivity fixed. Mullen et al. [2011] constructed
well-centered planar triangulations by minimizing a functional of
weighted circumcenters. To construct well-centered triangulations
on 3D models, de Goes et al. [2014] alternatively optimized the ver-
tex positions and their weights using the L-BFGS method, which
converged quickly (in only 10 to 20 iterations).

A manifold mesh with only non-obtuse triangles is a special De-
launay mesh. Burago and Zalagaller [1960] proved the existence of
acute triangulations of general 2-dimensional polyhedral surfaces.
Saraf [2009] provided an elementary proof of the same result using
completely different methods. Based on Saraf-type triangulations,
Maehara [2011] proved that a polyhedral surface can be triangu-
lated into O(Cn) acute triangles, where C is a model-dependent
constant. Maehara’s complexity is similar to ours, however, our
method constructs Delaunay meshes, allowing both obtuse and non-
obtuse triangles. Therefore, our results are more general than acute-
angled triangulations. Refer to [Zamfirescu 2002] for a survey of
acute triangulations.



3 Mathematical Background

This section provides the necessary background on Delaunay
meshes and geodesic Voronoi diagrams. Recall that a Delaunay
triangulation for a set P of points in a plane is a triangulation
DT (P ) such that no point in P is inside the circumcircle of any
triangle in DT (P ). Now let us consider a manifold triangle mesh
M = (V,E, F ), where V , E, F are the vertex, edge and face
sets, respectively. For adjacent vertices vi and vj , we denote by
(vi, vj) the edge connecting them. Throughout this paper, we
denote n = |V | the number of vertices in M and K a model-
dependant constant.

Bobenko and Springborn [2007] defined the intrinsic Delaunay tri-
angulation associated to M as follows: the IDT’s vertex set is the
same as that of M ; every IDT edge is a geodesic path in M ; and
for each interior edge the local Delaunay criterion is satisfied, i.e.,
the sum of the opposite angles in the adjacent triangles is no more
than π.

Since a geodesic path (especially a long one) goes through many
triangles, it is tedious to explicitly represent IDT edges. As a result,
one often takes the IDT as an abstract surface representation by
ignoring the geodesic paths and storing only their lengths. To ease
the representation of an intrinsic Delaunay structure on polyhedral
surfaces, Dyer et al. [2007] introduced Delaunay meshes.

Definition 1 (Delaunay Mesh) A Delaunay mesh M is a manifold
triangle mesh that forms an intrinsic Delaunay triangulation of its
vertices with respect to the piecewise flat metric of its polyhedral
surface. In other words, the IDT associated to a Delaunay mesh is
just the mesh itself.

Dyer et al. [2007] proposed a simple edge flipping and refinement
algorithm to construct Delaunay meshes. An internal edge e ∈ E
is locally Delaunay if the sum of the two angles facing e does not
exceed π, otherwise e is an non-locally Delaunay (NLD) edge. An
NLD edge is flippable if it has a zero dihedral angle, otherwise it
is unflippable. Their algorithm first flips all flippable NLD edges
without changing the geometry of M . Rather than flipping the re-
maining unflippable NLD edges, which will reduce the surface area
and introduce shape distortion, their algorithm adopts a geometry-
preserving remeshing strategy: given a non-flippable NLD edge
e = (p, q), it determines a splitting vertex s ∈ e such that the length

d(s, p) = 2kδ (if p is a mesh vertex, otherwise d(s, q) = 2kδ) for
some (possibly negative) integer k ∈ Z, where the factor δ is any
positive number. Splitting e at s creates two planar hereby flip-
pable edges and two non-flippable NLD edges incident to s. The
algorithm recursively flips the flippable NLD edges and splits the
non-flippable NLD edges until all edges are locally Delaunay. See
Figure 2 for an example. Dyer et al. proved the correctness and the
termination of the algorithm. We call their algorithm combinato-
rial, since it does not take geometry into consideration. Moreover,
their method lacks a bound of the added splitting vertices.

Our framework is built upon geodesic Voronoi diagrams
(GVD) [Liu et al. 2011], which are a natural generalization of
Voronoi diagrams on polyhedral surfaces.

Figure 2: Given a non-Delaunay mesh, Dyer et al.’s algorithm re-
cursively splits the non-flippable NLD edges (red) until all edges
are locally Delaunay. The green edges are flippable NLD edges and
the green points are the splitting points added by the algorithm.

Definition 2 (Geodesic Voronoi Diagram). Let P = {pi}
m
i=1 be

a set of points in M . The Voronoi cell C(pi) corresponding to
generator pi is the set of all points in M whose distance to pi
is less than or equal to the distance to any other generators, i.e.,
C(pi) = {q ∈ M |d(pi, q) ≤ d(pj , q), ∀j 6= i}, where d(x, y)
is the geodesic distance between x and y. The geodesic Voronoi
diagram of P , denoted by GVD(P ), is the union of all Voronoi
cells.

In contrast to the Euclidean case, not every GVD has a dual trian-
gulation. Dyer et al. [2008] showed that a GVD has a dual triangu-
lation if it satisfies the following three conditions, which are known
as the closed ball property [Edelsbrunner and Shah 1997]:

1. Disk condition: each Voronoi cell is homeomorphic to a pla-
nar disk;

2. 2-cell intersection condition: the intersection of any two
Voronoi cells is either empty or a single Voronoi edge;

3. 3-cell intersection condition: the intersection of any three
Voronoi cells is either empty or a single Voronoi vertex.

Note that in the closed ball property, the generators are assumed
to be in general position. In practice, a small perturbation of gen-
erators is helpful to deal with the degenerate cases, such as two
Voronoi cells intersecting at a single point. Dyer et al. [2008] also
showed that if the GVD has at least four distinct sites and both the
disk condition and 2-cell intersection conditions are satisfied, then
the 3-cell intersection condition is redundant.

4 Constructing Delaunay Meshes

In this section, we first present a sufficient condition of Delaunay
mesh, and show the existence of DM via a constructive proof. We
then present an efficient algorithm for constructing DM on arbi-
trary manifold triangle meshes. To ease the presentation, we as-
sume that the input mesh M is closed in this section and then deal
with meshes with boundaries in Supplementary Material.

4.1 Sufficient Condition & Existence

Definition 3 Let p ∈ M be an arbitrary point on a closed manifold
triangle mesh M . The 1-ring neighborhood N1(p) of p is defined
as follows:

• If p is a vertex p ∈ V , N1(p) consists of the triangles incident
to p;

• If p lies on an edge e, N1(p) consists of the two triangles
adjacent to e;

• If p is inside a triangle f , N1(p) is f .

Theorem 1 (Delaunay Mesh Condition for Closed Meshes) Let
P ⊇ V be a set of points on M including all vertices. If for every
point p ∈ P , the Voronoi cell C(p) is contained in N1(p)\∂N1(p),
then the dual of the geodesic Voronoi diagram GVD(P ) is a De-
launay mesh.

Proof. Let N̊1(p) , N1(p) \ ∂N1(p) denote the interior of N1(p).
Consider two adjacent Voronoi cells C(pi) and C(pj). We first
show that their generators are in each other’s 1-ring neighborhood,
i.e., pi ∈ N1(pj) and pj ∈ N1(pi). Assume pi /∈ N1(pj). Then

N̊1(pi) ∩ N̊1(pj) = ∅. Since C(pi) ⊂ N̊1(pi), the bisector of pi
and pj is outside N̊1(pj). As a result, C(pj) 6⊂ N̊1(pj), which is
a contradiction. See Figure 3(a) for an example of pi being a mesh
vertex.

Secondly, since for any two adjacent Voronoi cells C(pi) and
C(pj), pi and pj are in each other’s 1-ring neighborhood, it is read-
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Figure 3: Delaunay mesh condition. (a) Proof of Theorem 1. The
Voronoi cells C(pi) and C(pj) are adjacent. If pi /∈ N1(pj),

then C(pj) 6⊂ N̊1(pj). The dashed red line segment is the shared
boundary of C(pi) and C(pj). (b) The mesh does not satisfy the
Delaunay mesh condition. (c) Local refinement of Voronoi cells that
violate the Delaunay mesh condition (cf. Algorithm 1). The red ver-
tices are the auxiliary points added to the NLD edges and the cyan
edges are the new Delaunay edges.

ily seen that (1) the shortest geodesic connecting pi and pj is unique
and is a straight line segment, and (2) the geodesic Voronoi dia-
gram GVD(P ) satisfies the closed ball property. That completes
the proof. �

Unfortunately, most real-world meshes are far from Delaunay (see
Figure 3(b) for an example). To convert an arbitrary triangle mesh
to a Delaunay mesh with the same geometry, a possible way is to
add sufficient number of auxiliary points on mesh edges so that each
Voronoi diagram is small enough to be in the 1-ring neighborhood
of its generator. See Figure 4.

Denote lmax and lmin the maximal and minimal edge lengths in M ,
and θmin the minimum angle in M . Define

ρv , min

{
lmin sin θmin

0.5 + sin θmin

,
lmin

2

}
, (1)

and

ρe , 2ρv sin θmin, (2)

Definition 4 (Delaunay Sampling Criterion) Let S = {s1, s2, . . .}
be a set of points, where each point si is on some edge of M . We say
S satisfies the Delaunay mesh sampling criterion if the following
conditions hold:

• Each edge e = (vi1 , vi2) ∈ E has at least one point of S. Let
sk1

, sk2
∈ e be the (possibly identical) points closest to vi1

and vi2 , respectively. Then d(sk1
, vi1) = d(sk2

, vi2) = ρv;

• Given any two adjacent samples si and sj (if exists) on an
edge e ∈ E, their Euclidean distance is less than or equal to
ρe.

Now we show that any closed manifold triangle mesh M has an
associated Delaunay mesh DM(M), which has exactly the same
geometry of M .

Theorem 2 (Existence of DM for Closed Meshes) If the point set
S defined on a closed mesh M = (V,E, F ) satisfies the Delau-
nay mesh sampling criterion, then the geodesic Voronoi diagram
GVD(V

⋃
S) satisfies the Delaunay mesh condition, hereby its

dual graph IDT (V
⋃

S) is a Delaunay mesh, whose space com-

plexity is O(Kn), where K = lmax

lmin sin2 θmin

.

Proof. Note that the generator set V
⋃

S consists of two sets V and
S, we prove the Delaunay mesh condition holds for generators of
each set separately.

First, we prove by contradiction that for any sample s ∈ S, the

Voronoi cell C(s) is contained in N̊1(s), i.e., C(s) ⊂ N̊1(s).
Assume there is a Voronoi cell C(s) and a point q ∈ C(s) but

q /∈ N̊1(s). Let e ∈ E be the edge containing s. The geodesic

a 

b 
c 

d e 

ρe 
ρv 

a 

b 
c 

d e 

ρv 
Figure 4: The input mesh M (left) does not satisfy the Delaunay
mesh condition, since the Voronoi cells C(b) and C(e) are not in
their 1-ring neighborhoods. We can convert M into a Delaunay
mesh (right) by adding sufficient number of auxiliary points (shown
in red) on edges. The Delaunay mesh sampling criterion requires 1)
any two adjacent auxiliary points are no more than ρe apart; and
2) each endpoint is ρv to the edge’s endpoint.
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Figure 5: When the generator s ∈ S is a sample, we consider three
cases of geodesic γ(s, q). The red dots are the sample points placed
on mesh edges.

γ(q, s) cannot pass through any vertices v incident to e, otherwise
q ∈ C(v). Then geodesic γ(q, s) is a line segment qs, which inter-
sects an edge e′ incident to e at a point x ∈ C(s). There are three
cases to consider:

• Case 1 (see Figure 5(a)): on edge e′, the generators closest to
x from different sides are sample point s and vertex v which is
an endpoint of e. In this case, the Euclidean distances ‖vs‖ =
ρv and ‖vs‖ ≥ ρv , implying that points q and s are on the
same side of the bisector of s and s. Therefore, point q is
closer to s than to s, i.e., q ∈ C(s), which is a contradiction.

• Case 2 (see Figure 5(b)): on edge e′, the generators closest
to x from different sides are sample points si and sj . In
this case, the shortest distance from x to edge e, denoted
by d(x, e), satisfies d(x, e) ≥ ρv sin θmin = ρe/2. Then
‖xs‖ ≥ d(x, e) ≥ ρe/2. Since ‖sisj‖ ≤ ρe, x is closer to
one of si and sj than to s. Thus, x /∈ C(s) hereby q /∈ C(s),
which is a contradiction.

• Case 3 (see Figure 5(c)): on edge e′, the generators closest to
x from different sides are sample point s′ and vertex v′. In
this case, the shortest distance d(x, e) from point x to edge e

satisfies d(x, e) ≥ (lmin−ρv) sin θmin. If ρv = lmin sin θmin

0.5+sin θmin

,

we have (lmin − ρv) sin θmin = ρv/2. If ρv = lmin/2,

then
lmin sin θmin

0.5+sin θmin

≥ lmin

2
⇒ sin θmin ≥ 0.5. Thus,

(lmin − ρv) sin θmin = lmin sin θmin/2 ≥ lmin/4 ≥ ρv/2.
In either case, we have d(x, e) ≥ ρv/2. Since x is closer to
one of s′ and v′ than to s, x /∈ C(s) hereby q /∈ C(s), which
is a contradiction.

Next, we show that for any vertex v ∈ V , the Voronoi cell C(v)

is contained in N̊1(v). Suppose it is not true. Then there exists a

q
x

v

e

Voronoi cell C(v), v ∈ V , which contains

at least one point q /∈ N̊1(v) (see the right
inset). Then geodesic γ(q, v) must inter-
sect an edge e opposite to v. According
to the aforementioned three cases, we can
show that x /∈ C(v) and hereby q /∈ C(v),
a contradiction. This completes the proof
that the dual graph IDT (V

⋃
S) is a Delaunay mesh.

Finally, we show the space complexity of IDT (V
⋃

S). Note

that for each mesh edge of length le, there are ⌈ le−2ρv
ρe

⌉ + 1 ≤

⌈ lmax

2ρv sin θmin

⌉ + 1 samples. With straightforward calculation, we



obtain the space complexity O(Kn), where K = lmax

lmin sin2 θmin

. �

The existence theorem leads to a naı̈ve DM construction algorithm

that adds ⌈ le−2ρv
ρe

⌉+1 candidates on edge e. However, this simple

strategy is very conservative for real-world models. Note that the
Delaunay sampling criterion is sufficient but not necessary. Here
we present a practical algorithm (Algorithm 1) to construct DMs
by taking only a subset of S. The algorithm is conceptually sim-
ple and takes O(K2n2 log(Kn)) time. We then improve the time
complexity to O(nK logK) in the next subsection.

Algorithm 1 Constructing Delaunay Mesh via Geodesic Voronoi
Diagram

Input: A closed manifold triangle mesh M = (V,E, F )
Output: The DM(M) = (VD, ED, FD) such that V ⊆ VD ,

∪F = ∪FD and |VD| = O(K|V |) for a model-dependent
constant K

1: For each edge e ∈ E, construct a set Ce of candidate samples
satisfying the Delaunay mesh sampling criterion.

2: Set the Voronoi generators S = V .
3: Build the geodesic Voronoi diagram GVD(S).
4: Place the Voronoi cells that are outside the 1-ring neighborhood

of their generators into a queue Q.
5: while Q is not empty do
6: Pop the top element C(s) from Q.
7: Find a mesh edge e ∈ E on the the boundary of N1(s)

where C(s) crosses. Continue if such an edge does not exist,
since C(s) may have already been fixed by some previously
added sample.

8: Find the candidate sample c ∈ Ce but c /∈ S that is closest
to s.

9: Add c into S and locally update the Voronoi diagram.

10: If C(s) 6⊂ N̊1(s), put C(s) into Q.

11: If C(c) 6⊂ N̊1(c), put C(c) into Q.
12: end while
13: Construct the DM via the dual graph of GVD(S).

We first generate for each edge e a set Ce of candidate samples satis-
fying the Delaunay mesh sampling criterion. Taking the mesh ver-
tices as the Voronoi generators, we compute the geodesic Voronoi
diagram using [Liu et al. 2011]. Then we iteratively fix the Voronoi
cells that violate the Delaunay mesh condition. Let C(s) be a
Voronoi cell that is outside the 1-ring neighborhood N1(s) of its
generator s. Denote by ∂N1(s) the boundary of N1(s). Pick an
edge e ∈ ∂N1(s) that crosses the Voronoi cell C(s). Among the
candidate samples on e, we find the one s′ /∈ S which is closest to
s. We then add s′ into the generator set S and locally update the
Voronoi diagram. If the updated cell C(s) still crosses edge e, we
need to further add sample points to e (see Figure 6). Note that the
new Voronoi cell C(s′) may also violate the Delaunay mesh condi-
tion. If so, we need to further refine it by adding additional points,
again taken from the pre-defined pools of candidate samples.

Intuitively speaking, Algorithm 1 aims at reducing the sizes of
Voronoi cells that violate the Delaunay mesh condition. In each
iteration, the algorithm adds a generator taken from a large pool of
candidates and it terminates when all Voronoi cells are within their
1-ring neighborhood of their generators. Since there are O(K) can-
didates on each edge, Algorithm 1 is guaranteed to terminate in
O(Kn) steps.

Constructing the geodesic Voronoi diagram GVD(V ) takes
O(n2 log n) time [Liu et al. 2011]. In each iteration, it takes
O(Kn) time to locally update the Voronoi diagram for the new
generator. Finally, constructing the dual graph of GVD(S) takes

(a) (b) (c) (d) (e)
Figure 6: Illustration of Algorithm 1. (a) Voronoi cells C(b)
and C(e) are outside the 1-ring neighborhood of the correspond-
ing generators. (b) Among the candidate samples (in green) on
edge (a, d), pick sample s1 which is closest to e. (c) Locally up-
date the Voronoi diagram at the new generator s1. Note that both

C(b) ⊂ N̊1(b) and C(e) ⊂ N̊1(e), but the new Voronoi cell C(s1)
violates the Delaunay mesh condition. (d) Find the new genera-

tor s2 ∈ (a, c) which is closest to s1. Now C(s1) ⊂ N̊1(s1).
Note that s2 ∈ (a, c) is a sample point whose 1-ring neighborhood

N1(s2) = △abc ∪ △acd. Thus, C(s2) ⊂ N̊1(s2). (e) The fi-
nal Delaunay mesh is obtained by the dual graph of the GVD with
7 generators {a, b, c, d, e, s1, s2}. One can clearly see that each
Voronoi diagram is within the 1-ring neighborhood of its generator.

O(Kn) time. Putting them all together, Algorithm 1 constructs a
DM in O(K2n2 log(Kn)) time.

4.2 An O(nK logK)-Time Construction Algorithm

As a direct approach, Algorithm 1 is conceptually simple and in-
tuitive. However, constructing GVD is computationally expensive,
hereby diminishes its application to large-scale models. Here we
present an indirect algorithm, running in O(nK logK) time. This
algorithm is easy to implement since it computes neither geodesic
distances nor Voronoi diagrams. The key idea is to split the non-
flippable NLD edges and re-tessellate their local triangulations to
Delaunay triangles. Note that the splitting points, if chosen care-
lessly, may break the Delaunay condition for the opposite edges.
We show that carefully selected splitting points can minimize on-
going headache.

We consider the butterfly-shaped local region of an NLD edge e,
and define five Ii ∈ e, i = 0, · · · , 4, as shown in Figure 7. Note
that the interval I0 is always non-empty, and the other intervals Ii,
1 ≤ i ≤ 4, may be empty, depending on the geometry of triangle
ti and the position of edge e.

Observe that splitting edge e at a point s ∈ I0 produces two edges
(a, s) and (s, b), which are both locally Delaunay. Similarly, split-
ting e at a point s ∈ Ii, 1 ≤ i ≤ 4 makes the edge ei locally
Delaunay. Our goal is to find a point s ∈ e so that we can produce
the maximal number of Delaunay edges by splitting e at s. Toward
this goal, we find an interval Is ∈ I0, which maximizes the number
of intersections between Is and {I1, · · · , I4}.

Note that after splitting, the Delaunay condition of edges (a, c),
(c, b), (b, d) and (d, a) becomes even worse, since the sum of the
two subtended angles for each edge strictly increases. If such a
neighboring edge becomes non-flippable NLD, we need to further
split it using the above maximal intersection strategy. As we will
show later, the edge splitting process is guaranteed to terminate in
O(n) steps. We also observe that the complexity of the generated
DM depends on the order of processing non-flippable NLD edges.
We maintain these NLD edges using a stack, whose last-in-first-out
order gives the most recent edges higher priority. Computational
results show that the stack-based implementation produces 10-15%
fewer splitting points than the queue-based implementation. We
outline the geometry-aware NLD edge refinement in Algorithm 2
and illustrate the pipeline on a toy model in Figure 8.
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i=1 ti after making all triangles

coplanar. (b) Dadc (resp. Ddbc) is the disk bounded by the circumcircle of △adc (resp. △dbc). Define interval I0 , Dadc ∩ Ddbc ∩ e.
Splitting edge e at a point s ∈ I0 produces two edges e = (a, s) ∪ (s, b), which are locally Delaunay. (c)-(f) Di, i = 1, · · · , 4, is the disk

bounded by the circumcircle of triangle ti. Define interval Ii , e \ (e ∩ Di). Splitting e at a point s ∈ Ii, 1 ≤ i ≤ 4 makes the edge ei
locally Delaunay. (g) Find a point s ∈ e so that splitting e at s produces the maximum number of Delaunay edges.
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Figure 8: Illustration of Algorithm 2 on a non-planar toy model with 2 non-flippable NLD edges (v0, v2) and (v2, v4). Note that splitting an
non-flippable NLD edge could turn some neighboring Delaunay edges into non-Delaunay. For example, after splitting (v0, v2) at b, the edge
(v2, v5) becomes non-Delaunay (see Step 3 in (a)). We observe that the complexity of DM depends on the order of processing non-flippable
NLD edges. The queue-based implementation adds 4 splitting points. In contrast, the stack-based implementation, which gives the recently
generated NLD edges higher priority, produces only 3 points. The non-flippable and flippable NLD edges are colored in red and green,
respectively. The diagrams below the toy model show snapshots of the data structure and the red tuple is the current non-flippable NLD edge.

Algorithm 2 Constructing Delaunay Mesh via Geometry-aware
NLD Edge Refinement

Input: A closed manifold triangle mesh M = (V,E, F )
Output: A DM (VD, ED, FD) such that V ⊆ VD , ∪F = ∪FD

and |VD| = O(K|V |)
1: For each edge e ∈ E, construct a set Ce of candidate samples

satisfying the Delaunay mesh sampling criterion.
2: Push all NLD edges into a stack S.
3: while S is not empty do
4: Pop a non-flippable NLD edge ẽ from S.
5: Find the mesh edge e ∈ E containing ẽ, i.e., ẽ ⊆ e.
6: Find the interval Is ⊂ ẽ that maximizes the number of inter-

sections with Ii.
7: if Ce ∩ Is 6= ∅ then
8: Take a sample s ∈ Ce ∩ Is.
9: else

10: Find the sample in Ce which is nearest to Is.
11: end if
12: Split edge ẽ at s and then remove s from Ce.
13: Find the two triangles ti, tj ∈ F such that ti ∩ tj = e.
14: Flip all the flippable NLD edges in ti and tj .
15: for each edge l ⊆ ∂ti ∪ ∂tj do
16: if l is an non-flippable NLD edge then
17: Push l into S.
18: end if
19: end for
20: end while

Theorem 3 Algorithm 2 constructs a DM in O(nK logK) time.

Proof. There are ⌈ le−2ρv
ρe

⌉+ 1 of candidate samples on each edge.

Thus, steps 1 and 2 take O(Kn) time.

In each iteration, the algorithm first splits a non-flippable NLD edge
ẽ at a sample taken from the candidate set Ce on mesh edge e ⊇ ẽ in
O(logK) time. Then it flips all the flippable NLD edges within the
triangles ti and tj which have a common edge e in O(1) expected
time [Guibas et al. 1992]. Finally, it pushes the non-flippable NLD
edges on the boundary of ti and tj into the stack S in O(1) time.
Therefore, each iteration takes O(logK) time.

Also note that the number of NLD edges entering the stack S is
O(Kn). Therefore, Algorithm 2 runs in O(nK logK) time. �

5 Delaunay Mesh Simplification

Algorithm 2 converts an arbitrary triangle mesh into a DM by split-
ting its NLD edges, which increases the mesh complexity. In many
applications, it is often desirable to use approximations in place
of excessively detailed models. A naı̈ve approach is to first re-
duce the mesh resolution using existing simplification tools (e.g.,
QEM [Garland and Heckbert 1997]), and then convert the simpli-
fied mesh into a DM using Algorithm 2. This approach, although
being readily available, cannot guarantee the generated DM has the
user-desired resolution.

In this section, we present an algorithm for Delaunay mesh simpli-
fication, which iteratively removes vertices and maintains the De-
launay condition until the mesh resolution is reduced to the user-
specified value. To remove a vertex v, the algorithm collapses one



of v’s incident edges and then flip the other incident edges if neces-
sary. In the following, we first define two types of vertices that can
be safely removed without violating the local Delaunay condition,
and then detail our DM simplification algorithm.

Note that our algorithm adopts the QEM framework [Garland and
Heckbert 1997] by adding extra constraints for edge contraction.
The issue of topological type preservation in edge contraction has
been addressed in [Dey et al. 1999], which proved that the complex
obtained after an edge contraction is homeomorphic to the origi-
nal one if the neighborhood of the contracted edge satisfies a link
condition.

5.1 Type-I Removable Vertices

Let us first consider the planar case.

Proposition 1 Let DT (S) be the Delaunay triangulation of a set
S of points in R

2 and v ∈ S an interior point with degree less
than 6. There exists an edge (v, v′) ∈ DT (S) such that the sim-
plified triangulation of set S \ {v}, produced by contracting edge
(v, v′) → v′, is still Delaunay.

Proof. We first show that DT (S \ {v}) differs from DT (S) only
by the triangles inside the region N1(v). Note that for each triangle
t ∈ DT (S) and t /∈ N1(v), its circumcircle does not contain any
points in S. After removing v, the empty circumcircle condition
still holds on t. Thus, t is a triangle in DT (S \ {v}).

Since the degree of v is less than 6, removing v and its incident
edges produces a hole with no more than 6 boundary edges. Trian-
gulating such a hole can always be regarded as an edge contraction
(v, v′) → v′. �

It is worth noting that the condition of vertex degree less than 6 in
Proposition 1 is sufficient but not necessary. We observe that real-
world triangle meshes contain many vertices with degree greater
than or equal to 6, which can also be safely removed via edge con-
traction without edge flipping. See Section 6 for detailed discus-
sion. Based on this observation, we define the first type of remov-
able vertices (Figure 9) as follows.

Definition 5 A vertex v ∈ V is type-I removable, if it has an inci-
dent edge e, whose contraction does not violate the local Delaunay
condition, i.e., the mesh is still Delaunay after contracting e.

e
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Figure 9: Contracting edge (v, v′) → v′ does not break the local
Delaunay condition, so vertex v is type-I removable. Specifically,
for each edge opposite to v′ (shown in green), the sum of the two
subtended angles is less than π, αi + βi ≤ π; and for each edge
incident to v′, the sum of the two subtended angles is less than π,
γj1 + γj2 ≤ π.

5.2 Type-II Removable Vertices

Still let us focus on planar Delaunay triangulation first. Type-I re-
movable vertices allow us to directly simplify the Delaunay trian-
gulation using only edge contraction. However, when type-I re-
movable vertices are not available, we must seek other type of
removable vertices by allowing edge flipping. Figure 10 shows
such as an example, where the simplified Delaunay triangulation
DT (S \ {v0}) can only be obtained by both edge contraction and
flipping. Note that by the first part of proof in Proposition 1, edge

DT(S) DT(S\{v0})

v0

v1 v2

v3

v4v5

v6

v1 v2

v3

v4v5

v6

v1 v2

v3

v4v5

v6

e = (v0, v1)  v1 
x

y

Figure 10: Let DT (S) be the Delaunay triangulation of a set S of
planar points and v0 ∈ S an interior point. To obtain the Delaunay
triangulation DT (S \ {v0}), we contract an incident edge e =
(v0, v1) → v1 and then flip edge (v1, v3) to (v2, v4). Note that
the original edges opposite to v0 remain unchanged, since they are
still Delaunay edges. In other words, we can re-triangulate the hole
without flipping any edges outside of N1(v0).

flipping does not apply for the edges opposite to v0 and the edges
outside of N1(v0).

Generalizing this idea to 3D meshes, we define type-II removable
vertices (Figure 11) as follows.

Definition 6 A vertex v ∈ V is type-II removable, if the resulting
hole can be re-triangulated to Delaunay without flipping any edges
opposite to v.

x y

z
v

a 

vi

vj

vk

bk  

Figure 11: Vertex v is type-II removable if for every opposite edge
(vi, vj) (in green) and for every vertex vk ∈ N1(v) \ {v, vi, vj},
the sum of angles α + βk ≤ π, where α is the subtended angle of
(vi, vj) in the face outside N1(v) and βk is the angle ∠vivkvj .

5.3 Algorithm

Garland and Heckbert [1997] proposed an efficient algorithm for
producing high quality approximations of polygonal models using
quadric error metrics (QEM). Their algorithm associates a symmet-
ric 4× 4 matrix Q with each vertex v = [vx, vy, vz, 1]

T , where the

quadratic form vTQv measures the sum of squared distances from
v to its neighboring triangles. For each edge (vi, vj), the optimal

contraction target v that minimizes the error vT (Qi+Qj)v is com-
puted. It places all the edges in a priority queue keyed on error with
the edge of minimum error at the top. The QEM algorithm itera-
tively contracts the edge (vi, vj) of minimum error from the queue,
and updates the errors of all edges incident to vi.

To fit our vertex removal strategy into the QEM framework, we
assign each vertex v ∈ V a quadruple (ev,Qv, εv, λv), where ev
is v’s incident edge to be contracted during the simplification, Qv

the QEM matrix associated with v, and εv the approximation error
when edge ev is contracted. It is worth noting that the quadratic
errors of type-I and type-II vertices are of different units, since the
error of a type-I vertex is the accumulated error during a sequence
of edge contractions whereas the error of a type-II vertex measures
only the local approximation error when that vertex is removed.
We adopt a parameter λv to make the two types of error unitless so
that they can be added together. Intuitively speaking, λv tracks the
number of edge contractions applied in order to reach vertex v.

We initialize ev = NULL, εv = +∞ and λv the number of faces
incident to vertex v. For each edge e = (vi, vj) with at least one
endpoint of type-I removable, say vi, we compute the approxima-
tion error εvi = vTj (Qvi + Qvj )vj , assuming that vi is removed
by contracting edge (vi, vj) → vj .

Next, we set the approximation error for the type-II removable



vertices. Let vi be a vertex of type-II but not type-I removable,
and (vi, vj) the contracted edge. Note that after contracting edge
(vi, vj) → vj , we must flip some edge(s) to ensure the Delaunay
condition. Let LTb (resp. LTa) denote the local triangulation be-
fore (resp. after) edge flipping. We measure the difference between
LTb and LTa by the squared Hausdorff distance:

d2H(B,LTa) = max
b∈B

{ min
p∈LTa

‖b− p‖22}, (3)

where B is the set of mass centers for the triangles in LTb. The
approximation error εvi for the type-II removable vertex vi is given

by εvi = vTj (Qvi +Qvj )vj + (λvi + λvj )d
2
H(B,LTa).

We place all vertices in a priority queue Q keyed on εv with
the vertex of minimal error at the top. The algorithm then itera-
tively removes the vertex v of minimal error from the queue, con-
tracts the edge ev = (v, v′) → v′, and updates the quadruple
(e′v,Qv′ , εv′ , λv′) of v′. Since edge contraction may change the
type of vertex v′, we check its type and update it if necessary. We
also need to update the vertex type, approximation error and associ-
ated edge for every vertex v′′ in the 1-ring neighborhood of v′. The
algorithm repeats this procedure until the number of vertices in the
simplified mesh matches the user-specified value.

Algorithm 3 Delaunay Mesh Simplification

Require: A Delaunay mesh M = (V,E, F ) and the target vertex
number Nv(≤ |V |).

Ensure: A simplified Delaunay mesh with Nv vertices.
1: Initialize each vertex v ∈ V a quadruple (ev,Qv, εv, λv),

where Qv is the QEM matrix, ev = NULL, εv = +∞ and
λv is the number of faces incident to v.

2: for every edge e = (vi, vj) ∈ E do
3: if vi is type-I removable then
4: evi = e; εvi = vTj (Qvi +Qvj )vj .
5: end if
6: if vj is type-I removable then

7: evj = e; εvj = vTi (Qvi +Qvj )vi.
8: end if
9: end for

10: for every type-II removable vertex vi do
11: Find vj ∈ N1(vi) that minimizes vTj (Qvi +Qvj )vj .
12: evi = (vi, vj).
13: Compute the squared Hausdorff distance d2H using Equa-

tion (3).
14: εvi = vTj (Qvi +Qvj )vj + (λvi + λvj )d

2
H .

15: end for
16: Place all vertices in a priority queue Q keyed on εv with the

vertex of minimal error at the top.
17: while |V | > Nv do
18: Extract the top vertex v from Q.
19: Contract edge ev = (v, v′) → v′.
20: Qv′ = Qv +Qv′ and λv′ = λv + λv′ .
21: Update the type of v′.
22: for every vertex v′′ ∈ N1(v

′) do
23: Update its type, approximation error εv′′ and associated

edge ev′′ .
24: end for
25: end while

6 Experimental Results & Applications

6.1 DM Construction

We implemented our DM construction and simplification algo-
rithms in C++ and evaluated their performance on a wide-range of

Model |V | # non-flippable Dyer’s method Our method

NLD edges Ns T (s) Ns T (s)

Teapot 22,162 11,924 (17.9%) 88,017 0.73 27,571 0.34

Armadillo 66,544 35,368 (17.7%) 257,145 2.28 80,101 1.05

Kitten 70,442 37,411 (17.7%) 293,432 2.46 88,495 1.12

Bunny 98,996 51,665 (17.3%) 370,303 3.42 120,486 1.58

Gargoyle 111,137 57,091 (17.1%) 447,677 3.80 130,976 1.78

Lucy 155,814 82,110 (17.6%) 632,851 5.46 192,346 2.54

Decocube 219,032 116,647 (17.7%) 906,539 8.04 280,708 3.64

Buddha 221,400 116,818 (17.6%) 788,157 7.43 264,294 3.50

Blade 500,000 194,448 (12.9%) 1,180,363 9.06 431,625 4.24

Dragon 1,000,000 450,302 (15.1%) 3,249,611 33.97 1,373,154 15.35

Thai Statute 2,000,000 756,104 (12.6%) 4,983,205 55.74 1,920,739 22.17

Table 1: Mesh complexity and runtime performance. The percent-
age is the NLD edge ratio, defined as the number of non-flippable
NLD edges to the total number of edges. Ns is the number of split-
ting points required to ensure the Delaunay condition and the run-
ning time T was measured in seconds on an Intel Core i7-2600
CPU 3.40 GHz. Our method adds significantly fewer splitting
points than Dyer et al’s algorithm, and it also runs two times faster.

synthetic and real-world models. Running time was measured on a
PC with an Intel Core i7-2600 CPU 3.40 GHz and 8GB memory.

The proposed DM construction algorithms (cf. Algorithm 1 and
Algorithm 2) produce Delaunay meshes with very similar complex-
ity. Since the edge refinement algorithm has better runtime perfor-
mance, we report its results only. We define the NLD edge ratio R,
defined as the number of non-flippable NLD edges to the total num-
ber of edges. Table 1 shows that real-world meshes have large NLD
edge ratios (e.g., more than 10%), meaning that they are far from
Delaunay triangulations. As proved in Section 4, the generated De-
launay mesh has O(Kn) combinatorial complexity. In practice, we
observe that the DM complexity is linearly proportional to the ratio
of NLD edges. As Figure 12(a) and Figure 18 show, the complex-
ity of DM depends on the quality of the input mesh. For common
models with fair triangulations, our DMs have roughly 1.5 to 2.5
times the number of vertices of the input mesh. Due to its linear
time complexity, our method is highly efficient and it takes only a
few seconds on 500K-vertex models.

We also compare our method with Dyer et al.’s algorithm. As Fig-
ures 14 and 15 show, our geometry-aware NLD edge refinement is
more effective to improve the Delaunay quality than their combina-
torial refinement. In practice, our method generates only 20-30%
splitting points as Dyer et al’s method, hereby our method outruns
theirs by a factor of 2-3.
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Figure 12: (a) We observe that the DM complexity is linearly pro-
portional to the ratio of NLD edges. The horizontal axis is the NLD
edge ratio (i.e., the number of non-flippable NLD edges to the to-
tal number of edges) and the vertical axis is the splitting vertex
ratio (i.e., the number of splitting vertices added to the number of
vertices in the input mesh). (b) Statistics of type-I and type-II re-
movable vertices in a sequence of simplified DMs. At the beginning,
most of the deleted vertices are of type II. When the DM resolution
becomes low, type-I vertices are dominant.
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Figure 13: Evaluating the runtime performance and accuracy of the DM simplification algorithms. The horizontal axis is mesh resolution
and the vertical axes show the mean and maximal approximation errors as well as running time (in logarithm). The original Delaunay meshes
have 146K and 219K vertices, respectively. We gradually reduce the mesh resolution while keeping the Delaunay condition. Our method
runs consistently faster than Dyer et al’s algorithm in all resolutions. Our results are slightly better in high resolution, whereas Dyer et al’s
results are more accurate when the resolution is low. See Supplementary Material for more results.

 Dyer (iter 7)             Dyer (iter 13)            Dyer (iter 16)          Dyer (iter 22)

Original                       Ours                     Dyer (iter 1)             Dyer (iter 2)

Figure 14: Our geometry-aware edge refinement vs Dyer et al’s
combinatorial edge refinement. The bird-shaped non-planar patch
is taken from a real-world model, where the horizontal edge is a
non-flippable NLD edge. Our method splits the NLD edge at a sin-
gle point so that all edges become Delaunay. As a combinatorial
method, Dyer et al’s edge refinement does not take the local geom-
etry into consideration. Therefore, their method takes more itera-
tions and produces a Delaunay mesh with 16 splitting points. The
red point denotes the new splitting point at the current iteration of
Dyer et al’s algorithm.

6.2 DM Simplification

The proposed DM simplification algorithm is efficient, since the
overhead per edge contraction is small. We observe that the speed
of our method is comparable to the QEM method [Garland and
Heckbert 1997]. Figure 12(b) shows the statistics of type-I and
type-II vertices on common models. We observe that type-II re-
movable vertices are dominant in the early stage of the simplifica-
tion (i.e., when the resolution is still high), and type-I removable
vertices become more important when the resolution is low.

Note that the DM simplification algorithm proposed in [Dyer et al.
2007] also adopts the QEM framework, which iteratively contracts
mesh edges and ensures the Delaunay condition. Let e = (vi, vj)
be a to-be-contracted edge in a Delaunay mesh and v the target ver-
tex after edge contraction. To ensure that the simplified mesh is still
Delaunay, Dyer et al. showed that vertex v must be inside some al-
lowed region Ωv . However, computing the exact allowed region is
challenging due to the lack of the analytical form. Dyer et al. [2007]

Input mesh Dyer et al’s result Our result
|V | = 1, 370 |VD| = 3, 273 |VD| = 2, 035

Figure 15: Our method produces the DM with significantly less
vertices than Dyer et al.’s method. The added auxiliary points are
in yellow, the NLD edges in red and the added edges in blue.

suggested computing a subspace Ω′
v ⊂ Ωv , represented by the in-

tersection of half spaces. The optimal position of v is then obtained
by minimizing the quadratic QEM objective function with linear in-
equality constraints. However, solving such an optimization prob-
lem is time consuming. For example, it takes their algorithm almost
80 minutes to simplify the 345K-vertex Lucy model to 500 vertices.
In contrast, our method takes only 40 seconds. Computational re-
sults show that our method runs two orders of magnitudes faster
than Dyer et al’s method.

We adopt the Metro tool [Cignoni et al. 1998] to measure the differ-
ence between the original DMs and the simplified ones. Figure 13
plots the maximal error εmax and the mean error ε̄ in the simplifi-
cation process. We can see that our simplification is slightly more
accurate when the DM resolution is high, and Dyer et al’s simpli-
fication is of better quality when the resolution is low. However,
the visual difference between two methods is not significant at all
regardless of DM resolution. See Figure 16.

6.3 Applications

Discrete Laplace-Beltrami operators (LBO) are ubiquitous in com-
puter graphics, spanning from geometric modeling to simulation
and imaging. Many applications require the discrete operators re-
tain key structural properties inherent to the continuous setting. Un-



T = 4627s T = 4663s T = 4677s T = 4686s

(0.38%, 0.03%) (0.71%, 0.06%) (0.93%, 0.11%) (1.30%, 0.19%)

Dyer et al.’s method

T = 40.0s T = 40.4s T = 40.5s T = 40.6s
(0.50%, 0.05%) (0.93%, 0.10%) (1.05%, 0.16%) (1.59%, 0.25%)

Our method

Figure 16: Comparison with Dyer et al’s DM simplification algo-
rithm. The original DM has 345K vertices and the simplified DMs
have 5K, 2K, 1K and 500 vertices, respectively. T is running
time and the tuple shows (the maximal error εmax, the mean error
εmean). Our method maintains a comparable level of accuracy of
Dyer’s method, but runs two orders of magnitude faster than theirs.

|V | = 30, 002 |V | = 30, 002 |V | = 30, 002 |VD| = 67, 254

0.26s, ǫ = 0% 0.02s, ǫ = 2.76% 0.02s, ǫ = 0.81% 0.03s, ǫ = 0.69%

(a) Exact result (b) HM on M (c) HM on IDT (d) HM on DM

Figure 17: Solving the discrete geodesic problem. The MMP al-
gorithm [Mitchell et al. 1987] computes exact geodesic distances
in an empirical O(n1.5 log n) time, whereas the heat method (HM)
[Crane et al. 2013] computes approximate distances in near-linear
time. Since the HM solves a pair of elliptic linear system, its ac-
curacy highly depends on the Delaunay quality of the input mesh.
Both IDT and DM can improve the accuracy of the HM signifi-
cantly. Note that the HM computes the first order approximation.
The DM based result is slightly more accurate, since the average
edge length of a DM is shorter than that of the IDT. Since the DM
has more vertices than the IDT, it takes the heat method slightly
longer time to compute geodesic distances. The reported runtime
of the heat method does not include the preprocessing time.

fortunately, as pointed out by Wardetzky et al. [2007], discrete
LBOs defined on general triangle meshes cannot satisfy all nat-
ural properties, namely symmetry, non-negative weights, local
support, linear precision, maximum principle and positive semi-
definiteness. Wardetzky et al’s theoretical analysis explains the di-
versity of existing discrete LBOs.

The cotan weights [Pinkall and Polthier 1993] and their variants,
are arguably the most widely used discrete LBO in computer graph-
ics. Given an edge eij = {vi, vj}, the cotan weight is defined as
follows:

wij =

{
1

2
(cotαij + cotαji) if eij is an internal edge

1

2
cotαij otherwise

where αij and αji are the two angles facing edge eij . This opera-
tor satisfies all the above-mentioned properties except non-negative
weights. Since non-negative weights are a sufficient condition for
discrete maximum principle, failing to respect it may result in unex-
pected numerical issues when solving discrete Laplacian and Pois-
son equations. To avoid such issues, many geometry processing al-
gorithms require a preprocessing (e.g., remeshing) to improve mesh
quality. Remeshing, however, is time consuming and in most cases,
does change the geometry of the input model.

In this section, we show that Delaunay mesh is a natural solution to
this problem. Recall that a DM is a manifold triangle mesh which
has exactly the same geometry as the input mesh. Due to the empty
geodesic circumcircle property, the sum of angles αij and αji sub-
tended by an internal edge eij is no more than π. For a boundary
edge, condition C2 in Theorem 4 in Supplementary Material also
ensures the angle αij opposite to eij is no more than π/2. As a
result, the cotan weight has guaranteed non-negative weights for all
edges. In other words, the DM induced cotan LBO satisfies all
natural properties inherent to the continuous setting. Note this
result does not contradict to Wardetzky et al.’s claim, since a DM
is not a general triangle mesh. Thanks to these favorable proper-
ties, many existing algorithms can benefit the numerical stability of
DMs without changing any codes. We demonstrate DM on discrete
geodesics and discrete harmonic maps.

τ = 1.336 τ = 1.522 τ = 1.728 τ = 2.211

|VD| = 27, 811 |VD| = 31, 659 |VD| = 33, 288 |VD| = 47, 538

Figure 18: The complexity of Delaunay meshes depends on the
quality of the input triangulation. Row 1 shows the 25K-vertex
Bunny in various tessellations and Row 3 shows the corresponding
DMs. τ is the anisotropy measure: τ = 1 for equilateral triangles;
the larger τ , the higher degree of anisotropy of triangles.



Discrete Geodesics. The heat method [Crane et al. 2013] is an el-
egant method for computing geodesic distances. Given a triangle
mesh M and a user-specified point source s ∈ M , the heat method
first solves the heat flow us(t) for a fixed time t. Then it com-

putes the normalized gradient field X = − ∇u
‖∇u‖

. Finally, it com-

putes the geodesic distance field φ by solving the Poisson equation
△φ = ∇ · X . Since both the heat flow and the Poisson equa-
tion are elliptic linear systems, which can be prefactored once and
subsequently solved in near-linear time, the heat method is highly
efficient for large-scale models. However, its accuracy is highly
sensitive to the Delaunay quality of the input mesh. As mentioned
above, many real-world models are far from Delaunay triangula-
tions, hereby the heat method yields poor approximation on such
models. The proposed DMs can significantly improve the accuracy
of the heat method. See Figure 17 and Table 2. More results can be
found in Supplementary Material.

Model |V | |VD| Input mesh DM IDT

ǫ Tp Ts ǫ Tp Ts ǫ Tp Ts

Armadillo
30,002 67,254 2.76% 0.15 0.02 0.69% 0.26 0.03 0.81% 0.15 0.02

172,974 293,126 0.40% 1.47 0.08 0.13% 2.70 0.13 0.29% 1.47 0.08

Bunny
25,007 41,172 1.87% 0.13 0.01 0.99% 0.23 0.01 1.04% 0.13 0.01

72,020 144,233 1.32% 0.54 0.03 0.60% 1.31 0.06 0.65% 0.54 0.03

Gargoyle
35,001 60,047 1.73% 0.18 0.01 1.20% 0.34 0.03 1.58% 0.18 0.01

349,999 514,208 0.43% 4.62 0.21 0.24% 7.16 0.31 0.36% 4.62 0.21

Lucy
20,002 48,077 4.43% 0.09 0.01 0.96% 0.24 0.02 1.38% 0.09 0.01

262,909 424,954 1.95% 2.44 0.13 0.61% 4.33 0.13 1.02% 2.44 0.13

Table 2: Computing geodesic distances using the heat method. |V |
and |VD| are the number of vertices in the input mesh M and the
associated DM, respectively. The IDT has the same number of ver-
tices as M . ǫ: relative mean error of the computed geodesic dis-
tances; The runtime, broken down into the preprocessing time Tp

and solving geodesic distances Ts, was measured in seconds.

Discrete Harmonic Maps are a popular technique for surface pa-
rameterization. We parameterize the Fandisk model to a unit disk
by solving a Laplace equation with Dirichlet boundary condition,
where the boundary vertices are mapped to the unit circle by arc-
length parameterization. We evaluate the parameterization quality
by measuring the area and angle distortions. As Figure 19 shows,
IDT, DM and simplified DM are very effective in terms of reducing
angle distortions. Note that IDT edges are geodesic paths that may
cross several triangles on the input mesh. As a result, IDT faces
usually have significantly varying sizes, leading to even larger area
distortion than the result obtained by the input mesh. The simpli-
fied Delaunay mesh (with exactly the same number of vertices as
the input mesh) produces the least area distortion, since its triangle
sizes are more uniform than those of the input mesh and DM. See
Supplementary Material for more results.

7 Comparison

This section compares our method with other intrinsic Delaunay,
Voronoi, and orthogonal dual structures. Table 3 summarizes the
properties of various approaches.

7.1 Comparison with CDTs

A constrained Delaunay triangulation (CDT) [Chew 1987] is a gen-
eralization of the Delaunay triangulation that forces certain required
segments into the triangulation. The CDT is useful for mesh gener-
ation since it respects user-specified constraints (such as boundaries
and vertices) as well as having many of the properties of the De-
launay triangulation. Chew [1993] developed an elegant algorithm
(also known as Chew’s second algorithm) for creating quality CDTs
on polyhedral surfaces embedded in R

3. Chew’s second algorithm

(a) Input mesh (b) IDT (c) DM (d) Simplified DM

|V | = 397 |V | = 397 |VD| = 3, 633 |VD| = 397
T = 0.001s T = 0.001s T = 0.012s T = 0.001s

(1.701, 2.848) (1.565, 3.361) (1.353, 2.570) (1.463, 2.302)

Figure 19: Parameterizing the Fandisk model using harmonic map.
The tuple shows the mean angle distortion and area distortion, re-
spectively. The closer the value to one, the better quality the param-
eterization has. The DM induced parameterization has the least
angle distortion, whereas the simplified DM (with the same number
of vertices) produces the result with least area distortion.

allows user to control triangle size so that small triangles in interest-
ing areas and large triangles elsewhere. All triangles are guaranteed
to have angles greater than 30 degrees, except for the badly shaped
elements that may be required by the specified boundary.

The proposed DM distinguishes itself from the CDT in three as-
pects: Firstly, the CDT is well defined only if the given polyhe-
dral surface is a smooth representation. Specifically, Chew’s sec-
ond algorithm assumes normals of adjacent vertices vary by less
than π

2
. Such an assumption often fails on models with large trian-

gles and/or sharp features (e.g., the Fandisk model). As an intrinsic
representation, our method works for arbitrary manifold triangle
meshes. Secondly, the CDT is an approximate representation of
the input mesh, whereas our DM has exactly the same geometry.
Thirdly, Chew’s second algorithm aims at creating high-quality tri-
angle meshes, where all triangles (except the ones on the boundary)
have a fairly good shape. In contrast, our method aims at fixing
the non-Delaunay edges. As a result, the triangulation quality of a
DM is not as good as that of a CDT. However, we do observe that
our DM simplification algorithm can produce triangle meshes with
much higher quality than the DMs. See Figure 16.

7.2 Comparison with IDTs

Both IDTs and DMs have exactly the same geometry of the input
meshes and they satisfy the Delaunay condition everywhere. Each
has its merits and limitations. An IDT has the same number of
vertices, edges and faces as the input mesh. Since its edges are
geodesic paths, the IDT is usually represented in an abstract man-
ner, i.e., recording the length and connectivity of each Delaunay
edge rather than its actual geometry. Obviously, such an abstract
representation does not allow visualization. Even worse, the exist-
ing algorithms have to be adapted for IDTs.

As a manifold triangle mesh, the DM fits the existing graphics



Method Arbitrary Runtime Numerical Time Mesh Mesh Strongly regular Exact

manifold mesh performance solver complexity complexity representation triangulation geometry

Constrained DTs No Fair Yes N.A. User-specified Manifold triangle mesh Yes No

CVTs Yes Fair Yes N.A. User-specified Manifold triangle mesh Density dependent No

Well-centered meshes Yes Fair Yes N.A. n Primal/Dual triangulation Yes No

Fisher et al’s IDTs Yes Good No Unknown n Abstract No Yes

Liu et al’s IDTs Yes Good No O(n2 logn) n Abstract Yes Yes

Dyer et al Yes Good No Unknown Unknown Manifold triangle mesh Yes Yes

Our method Yes Good No O(nK logK) O(Kn) Manifold triangle mesh Yes Yes

Table 3: Comparison of intrinsic Delaunay, Voronoi and orthogonal dual structures in terms of application domains, computational cost,
space complexity, etc. A triangulation is called strongly regular if each triangle is incident with three different edges and three different
vertices, the intersection of two triangles is either empty or one edge or one vertex, and the intersection of two edges is either empty or one
vertex. If there are sufficient generators on the input model, the dual graph of the CVT is a strongly regular triangulation.

pipeline, so that the existing algorithms can benefit from its fa-
vorable geometric and numerical properties without changing any
codes. However, the price to pay for such a simple and versatile
representation is the additional memory cost for storing auxiliary
points. We prove DM has the O(Kn) space complexity and ob-
serve that the number of splitting points is roughly twice the num-
ber of non-flippable NLD edges (see Table 1).

The algorithms for constructing IDTs and DMs are also different.
The edge flipping algorithm [Fisher et al. 2007] for constructing
IDTs is conceptually simple and easy to implement, however, it
may produce self-loops and/or triangles with only two sides. Al-
though it guarantees to stop in finite steps, the algorithm does not
have a known time complexity. Compared with the existing IDT al-
gorithms, our NLD edge refinement algorithm is easy to implement
and it has a O(nK logK) time complexity.

7.3 Comparison with CVTs

Centroidal Voronoi tessellations are a powerful computational tool
for generating highly regular tessellations in both Euclidean do-
mains and curved domains. Since the CVT energy is highly non-
linear, both the Lloyd algorithm and the quasi-Newton solver com-
pute only the local optimum. Although one can improve the results
by some global optimization tools (e.g. [Lu et al. 2012]), the high
computational cost diminishes its application to large-scale mod-
els. A CVT may not have a dual triangulation, especially when
there are insufficient number of seeds on a high-genus model. For
CVTs with dual triangulations, the dual mesh may have different
geometry than the input model M , since the Delaunay edges are
line segments, which usually do not stay on M . In contrast, every
manifold triangle mesh has a DM with exactly the same geome-
try. Moreover, our algorithm is simple and efficient and it does not
involve any numerical solver.

7.4 Comparison with Well-centered Meshes

Voronoi diagrams and Delaunay triangulations are orthogonal
primal-dual structures. Such a dual structure can be defined in a
more general setting, called weighted triangulation [de Goes et al.
2014; Glickenstein 2005]. Specifically, a weighted triangulation is
a manifold triangle mesh equipped with a scalar weight per vertex.
Well-centered meshes are a special type of weighted triangulation,
where the weighted circumcenter of each triangle is in the triangle.

The proposed DMs have different application domains than
weighted triangulations and are also built on a completely different
foundation. First, the input mesh and its induced DM share exactly
the same metric, whereas a weighted triangulation is based on a
more general metric due to the more degrees of freedom brought by
the weights. Therefore, weighted triangulations are desired to ap-

plications that require a solution space larger than the one that can
be provided by the input mesh. Examples include self-supporting
structures [de Goes et al. 2013; Liu et al. 2013], optimal trans-
port [de Goes et al. 2012], etc. In contrast, DM is particularly useful
for applications which require the original metric, such as comput-
ing geodesic distances and surface parameterization.

Second, the condition of well-centered meshes is much stronger
than the local Delaunay condition. For example, all triangles must
be acute in the case of uniform weights. Such a condition may not
hold on general meshes. de Goes et al. [2014] proposed a novel al-
gorithm for constructing well-centered meshes by optimizing both
vertex weights and positions. Due to the change of vertex positions,
the produced well-centered meshes have different shape than the
input mesh. Using the local Delaunay condition (which is weaker
than that of well-centered meshes), DM can be defined on arbitrary
manifold triangle meshes without changing their geometries.

8 Conclusion & Future Work

This paper presents an efficient algorithm for constructing Delau-
nay meshes. Based on geometry-aware NLD edge refinement, our
algorithm is conceptually simple and easy to implement. It also
scales well due to the O(nK logK) time complexity. Following
the powerful QEM framework, we also develop an efficient method
for DM decimation. Due to its mesh-based representation and the
empty circumcircle property, the DM-induced cotan Laplacian op-
erator has guaranteed non-negative weights, making it an ideal in-
put to the existing digital geometry processing algorithms. We ob-
served that DM can improve the accuracy of the heat method for
computing geodesic distances. Also, DM based discrete harmonic
mapping is more robust than the one based on non-Delaunay mesh.

Within our current computational framework, the constructed DM
has an O(Kn) space complexity, where K is a model-dependent
constant. Although K is fairly small for common 3D models, it
is desired to develop a method which can produce DM with O(n)
vertices.
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