
Fast and Accurate Spherical Harmonics Products

HANGGAO XIN, BNRist, Department of CS&T, Tsinghua University, China
ZHIQIAN ZHOU, BNRist, Department of CS&T, Tsinghua University, China
DI AN, BNRist, Department of CS&T, Tsinghua University, China
LING-QI YAN, University of California, Santa Barbara, United States of America
KUN XU∗, BNRist, Department of CS&T, Tsinghua University, China
SHI-MIN HU, BNRist, Department of CS&T, Tsinghua University, China
SHING-TUNG YAU, Harvard University, United States of America

(a) PRT. 3.2 FPS (Trad. method) / 26 FPS (Ours) (b) Shadow fields. 2.6 FPS (Trad. method) / 24 FPS (Ours)

Fig. 1. Performance comparison between our method and traditional method in rendering applications of glossy relighting using PRT (a) and dynamic scene
rendering using shadow fields (b). Thanks to the efficiency in computing triple and multiple products, our method achieves a speedup of more than 8×. SH
order 𝑛 = 15 is used.

Spherical Harmonics (SH) have been proven as a powerful tool for ren-
dering, especially in real-time applications such as Precomputed Radiance
Transfer (PRT). Spherical harmonics are orthonormal basis functions and
are efficient in computing dot products. However, computations of triple
∗Kun Xu is the corresponding author.

Authors’ addresses: Hanggao Xin, BNRist, Department of CS&T, Tsinghua Univer-
sity, Beijing, China, xhg18@mails.tsinghua.edu.cn; Zhiqian Zhou, BNRist, Department
of CS&T, Tsinghua University, Beijing, China, zhouzq18@mails.tsinghua.edu.cn; Di
An, BNRist, Department of CS&T, Tsinghua University, Beijing, China, and17@mails.
tsinghua.edu.cn; Ling-Qi Yan, University of California, Santa Barbara, Santa Barbara,
United States of America, lingqi@cs.ucsb.edu; Kun Xu, BNRist, Department of CS&T,
Tsinghua University, Beijing, China, xukun@tsinghua.edu.cn; Shi-Min Hu, BNRist,
Department of CS&T, Tsinghua University, Beijing, China, shimin@tsinghua.edu.cn;
Shing-Tung Yau, Harvard University, Boston, United States of America, yau@math.
harvard.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/12-ART1 $15.00
https://doi.org/10.1145/3478513.3480563

product and multiple product operations are often the bottlenecks that pre-
vent moderately high-frequency use of spherical harmonics. Specifically,
state-of-the-art methods for accurate SH triple products of order 𝑛 have
a time complexity of 𝑂 (𝑛5) , which is a heavy burden for most real-time
applications. Even worse, a brute-force way to compute 𝑘-multiple prod-
ucts would take𝑂 (𝑛2𝑘) time. In this paper, we propose a fast and accurate
method for spherical harmonics triple products with the time complexity
of only 𝑂 (𝑛3) , and further extend it for computing 𝑘-multiple products
with the time complexity of𝑂 (𝑘𝑛3 + 𝑘2𝑛2 log(𝑘𝑛)) . Our key insight is to
conduct the triple and multiple products in the Fourier space, in which the
multiplications can be performed much more efficiently. To our knowledge,
our method is theoretically the fastest for accurate spherical harmonics triple
and multiple products. And in practice, we demonstrate the efficiency of our
method in rendering applications including mid-frequency relighting and
shadow fields.

CCS Concepts: • Computing methodologies→ Rendering.

Additional Key Words and Phrases: spherical harmonics, Fourier transform,
triple product, multiple product, precomputed radiance transfer

ACM Reference Format:
Hanggao Xin, Zhiqian Zhou, Di An, Ling-Qi Yan, Kun Xu, Shi-Min Hu,
and Shing-Tung Yau. 2021. Fast and Accurate Spherical Harmonics Products.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

https://doi.org/10.1145/3478513.3480563

1:2 • Hanggao Xin, Zhiqian Zhou, Di An, Ling-Qi Yan, Kun Xu, Shi-Min Hu, and Shing-Tung Yau

ACM Trans. Graph. 40, 6, Article 1 (December 2021), 14 pages. https://doi.
org/10.1145/3478513.3480563

1 INTRODUCTION
Spherical Harmonics (SH) have been proven as a powerful tool for
rendering. As a set of 2D basis functions, spherical harmonics are
able to represent and recover low frequency functions faithfully
with only a few coefficients (9 or 16). Therefore, spherical harmonics
are pervasively used in real-time applications such as Precomputed
Radiance Transfer (PRT) [Sloan et al. 2002].
SH possess nice properties such as orthogonality, which imme-

diately enables dot products at a computational cost linear to the
number of SH functions, or equivalently,𝑂 (𝑛2) where 𝑛 is the order
of SH. In PRT, when the lighting (usually from an environment map)
and light transport (including diffuse BRDFs and visibilities) are
both represented as vectors of SH coefficients, at each vertex on
an object, the rendering equation, as a double product integral of
lighting and light transport, will simply reduce to a dot product.

However, in order to enable more flexible and more general ren-
dering tasks, it is often required to perform triple product and mul-
tiple product operations of spherical harmonics. For example, re-
lighting [Ng et al. 2004; Ren et al. 2006] a static scene with dynamic
lighting and BRDFs at a fixed view would require fast integration of
lighting, BRDF, as well as the visibility per point. Another example is
the shadow fields [Zhou et al. 2005] method that extends PRT to sup-
port moving objects. This is achieved by separately precomputing
each object’s Object Occlusion Field (OOF). At runtime, the OOFs
will be multiplied to resolve the final visibilities at different vertices,
which immediately gives rise to the multiple product problem.

Unfortunately, triple and multiple products are much more com-
plex than dot products for spherical harmonics. The orthogonality
property is no longer useful here, and there is no obvious sparsity
to exploit as in the wavelet case [Ng et al. 2004]. Accurate solutions
do exist [Ng et al. 2004; Sloan et al. 2002], but are extremely heavy –
𝑂 (𝑛5) for triple products, and 𝑂 (𝑛2𝑘) for 𝑘-multiple products [Sun
and Mukherjee 2006]. Fast approximate methods also exist [Ren
et al. 2006; Zhou et al. 2005], but reduce quality or introduce artifacts
due to accumulated truncation errors.
In this paper, we challenge this long-standing problem of how

to compute spherical harmonics triple and multiple products both
quickly and accurately. We are inspired by the observation that
SH basis functions are similar to Fourier basis functions. When we
transform SH basis functions from the direction domain (namely
the SH space) to the frequency domain (Fourier space), triple and
multiple products can be performed much more efficiently. Besides,
the conversion between the SH space and the Fourier space can
be performed in an efficient way. Overall, we make the following
contributions to the rendering community:

• Theory: we propose a new and complete theoretical frame-
work of performing SH triple and multiple products in the
Fourier space.

• Performance: we present a break down performance on each
step of our proposed method, and achieve the overall time
complexity of𝑂 (𝑛3) instead of𝑂 (𝑛5) for triple products, and
𝑂 (𝑘𝑛3 +𝑘2𝑛2 log(𝑘𝑛)) for 𝑘-multiple products, as opposed to

𝑂 (𝑛2𝑘) of a bruteforce approach, which is the best so far to
our knowledge.

• Analysis: we perform a detailed analysis of our method on
both CPUs and GPUs, with different orders of spherical har-
monics, and different numbers of multiple product compo-
nents.We also present thorough comparisons on performance
and errors with different methods.

• Applications: we integrate our method into PRT applications,
such as glossy relighting and shadow fields, to demonstrate
that our method is in practice much faster than previous
methods for real applications.

2 RELATED WORK
Precomputed Radiance Transfer (PRT), was proposed by Sloan et al.
[2002]. They projected both environment lighting [Ramamoorthi
and Hanrahan 2001] and light transport to a SH basis to enable
dynamic lighting on diffuse and glossy materials. PRT and SHs have
been further extended in many aspects, such as efficient SH com-
putation [Lessig et al. 2014; Schaeffer 2013; Snyder 2006], efficient
SH rotation [Nowrouzezahrai et al. 2012; Sloan et al. 2005], reduced
precomputed storage [Sloan et al. 2003a], supporting translucent
materials [Hao and Varshney 2004; Xu et al. 2007], glossy materi-
als [Liu et al. 2004], dynamic geometry [Sloan et al. 2005; Wang et al.
2006], and bi-scale rendering effects [Sloan et al. 2003b].

Recently, Wang and Ramamoorthi [2018] derived an analytic so-
lution to SH lighting of near-field polygonal area lights. Wu et al.
[2020] further supported the near-field illumination of many lights
by deriving closed-form SH gradients. Besides the aforementioned
usage in real-time rendering, PRT has also been used in offline
rendering [Pantaleoni et al. 2010]. We refer the readers to the sur-
veys [Kautz et al. 2005; Lehtinen 2007; Ramamoorthi 2009] for more
details. Note that, none of the above works aim at accurate and fast
solutions to SH triple products or multiple products. Therefore, such
operations would still be the bottleneck.
Another line of research uses other basis functions instead of

SHs. Ng et al. [2003] used wavelet basis for all-frequency lighting
and shadows, and Tsai and Shih [2006] chose to use Spherical Radial
Basis Functions (SRBFs) for more accurate approximation. Later,
more attention has been paid to Spherical Gaussians [Tsai and Shih
2006; Wang et al. 2009; Xu et al. 2011, 2013; Yamaguchi et al. 2020;
Yan et al. 2012], a specific kind of SRBFs. These basis functions are
able to provide all-frequency representation, but would often cost
tens to hundreds times more memory than spherical harmonics
basis. In addition, these basis functions often do not share the same
nice properties with spherical harmonics. For example, the wavelets
do not support fast rotations due to the non-linearity in its com-
pression, and the SRBFs are not orthogonal. Therefore, the run-time
computation can be more complex than with spherical harmonics.

Triple and multiple products. Accurate triple and multiple products
for wavelet basis functions have been studied in depth. Ng et al.
[2004] first introduced an accurate and fast way of computing Haar
wavelet triple product integrals, with the performance linear to
the number of non-zero wavelet coefficients. The work was later

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

https://doi.org/10.1145/3478513.3480563
https://doi.org/10.1145/3478513.3480563

Fast and Accurate Spherical Harmonics Products • 1:3

extended by Sun and Ramamoorthi [2009] to consider affine trans-
forms on the integrand, enabling near field lighting. A generaliza-
tion from triple product integrals to multiple product integrals of
Haar wavelets was also studied [Sun and Mukherjee 2006]. These
methods successfully improved the practicality of wavelets as basis
functions, and inspired us to develop a theory for accurate SH triple
and multiple products.

Ng et al. [2004] also provided a general study of accurate SH
triple products. The method described in their work has been the
state-of-the-art for almost two decades, which has a complexity
of 𝑂 (𝑛5) and requires the precomputation of Clebsch-Gordan co-
efficients [Inui et al. 1999; Thornber and Jacobs 2006]. However,
methods for accurate SH multiple products have not been explicitly
introduced yet. A naïve and bruteforce way to accurately compute a
multiple product of (𝑘 − 1) functions will require 𝑂 (𝑛2𝑘) time [Sun
and Mukherjee 2006], which is not affordable for most practical
applications.

For SH multiple products, the most widely used approximation in
previous works [Sun and Mukherjee 2006; Zhou et al. 2005] is to ap-
proximate a multiple product by continuously performing multiple
times of triple products, which we refer to as recursive triple product
approximation. However, the results can be significantly biased due
to accumulated truncation error. Another approximation to multiple
products is SH Exponentiation (SHEXP) [Ren et al. 2006], which
proposes log and exp operators in SH space to turn multiplications
into summations. However, SHEXP is not efficient for direct mul-
tiple product of arbitrary spherical functions due to its 𝑂 (𝑛6) log
step, so it has to further approximate scene geometry with set of
spheres and precompute log steps towards sphere primitives only.
It is highly coupled with its scene geometry approximation and
therefore loses generality.
It is worth noting that the Reproducing Kernel Hilbert Space

(RKHS) method of Lessig et al. [2014] can also be used for comput-
ing SH triple and multiple products, although this was not explicitly
discussed by the authors. However, it requires 𝑂 (𝑛4) time for ac-
curate triple products and 𝑂 (𝑘3𝑛4) time for accurate 𝑘-multiple
products, which is slower than our method.

3 BACKGROUND
To make our paper self-contained, in this section, we review the
important operators used in general basis functions in Sec. 3.1, and
review spherical harmonics and 2D Fourier series in Sec. 3.2.

3.1 Basis Function Operators
3.1.1 Projection and Reconstruction. Considering a set of orthonor-
mal basis functions {𝐵𝑖 (𝜔)} defined over the unit sphere 𝑆2, any
spherical function 𝐹 (𝜔) could be approximated as a linear combina-
tion of the basis functions:

𝐹 (𝜔) ≈
∑
𝑖

𝑓𝑖𝐵𝑖 (𝜔), (1)

where 𝒇 = {𝑓𝑖 } are the coefficients of the corresponding basis func-
tions, which are computed through projection:

𝑓𝑖 =

∫
𝑆2
𝐹 (𝜔)𝐵𝑖 (𝜔)d𝜔. (2)

Note that approximately computing the spherical function 𝐹 (𝜔)
back from its coefficients 𝒇 using Equ. 1 is called reconstruction.
In the following, we use 𝑁 to denote the number of basis func-

tions used for the linear approximation in Equ. 1. Note that order-𝑛
spherical harmonics has 𝑁 = 𝑛2 basis functions.

3.1.2 Dot Product. Given two spherical functions 𝐹1 (𝜔) and 𝐹2 (𝜔)
represented by their basis function coefficients 𝒇1 and 𝒇2, respec-
tively (such that 𝐹1 (𝜔) ≈

∑
𝑖 𝑓1,𝑖𝐵𝑖 (𝜔) and 𝐹2 (𝜔) ≈

∑
𝑖 𝑓2,𝑖𝐵𝑖 (𝜔)),

the integral of their product could be simply computed as a dot
product of the coefficients:∫

𝐹1 (𝜔)𝐹2 (𝜔)d𝜔 ≈
∑
𝑖

𝑓1,𝑖 𝑓2,𝑖 = 𝒇1 · 𝒇2 . (3)

3.1.3 Triple Product. Considering three spherical functions 𝐹1 (𝜔),
𝐹2 (𝜔), and 𝐹3 (𝜔) represented by their basis function coefficients
𝒇1,𝒇2 and 𝒇3, respectively, their triple product integral could be
computed as [Ng et al. 2004]:∫

𝐹1 (𝜔)𝐹2 (𝜔)𝐹3 (𝜔)d𝜔 ≈
∑
𝑖

∑
𝑗

∑
𝑘

C𝑖 𝑗𝑘 𝑓1,𝑖 𝑓2, 𝑗 𝑓3,𝑘 , (4)

where C𝑖 𝑗𝑘 are the tripling coefficients defined as:

C𝑖 𝑗𝑘 =

∫
𝐵𝑖 (𝜔)𝐵 𝑗 (𝜔)𝐵𝑘 (𝜔)d𝜔. (5)

Multiplication of two spherical functions could be computed sim-
ilarly. Suppose we have 𝐺 (𝜔) = 𝐹1 (𝜔)𝐹2 (𝜔). The coefficients of
𝐺 (𝜔) could be computed as [Ng et al. 2004]:

𝑔𝑘 =
∑
𝑖

∑
𝑗

C𝑖 𝑗𝑘 𝑓1,𝑖 𝑓2, 𝑗 . (6)

The abovemultiplication process is also referred to as a triple product,
and is usually denoted in the vector form: 𝒈 = 𝒇1 ⊗ 𝒇2, where ⊗
denotes the triple product operator.

For spherical harmonics, the tripling coefficients C𝑖 𝑗𝑘 are known
as Clebsch-Gordan coefficients [Inui et al. 1999; Thornber and Jacobs
2006]. Among all 𝑛6 tripling coefficients, only 𝑂 (𝑛5) of them are
non-zero [Ng et al. 2004]. Hence, the time complexity to compute a
triple product integral (Equ. 4) or a triple product (Equ. 6) is 𝑂 (𝑛5).
Besides, a precomputation step is required to compute and store the
tripling coefficients in advance.

3.1.4 Multiple product. The triple product could be extended to a
more general case, i.e., multiple product. Specifically, a 𝑘-multiple
product (𝑘 ≥ 3) is referred to as the multiplication of 𝑘 − 1 spherical
functions in the space of basis functions.

Supposewewould like to compute𝐺 (𝜔) = 𝐹1 (𝜔)𝐹2 (𝜔) · · · 𝐹𝑘−1 (𝜔).
The 𝑘-multiple product in the vector form is given by:

𝒈 = ⊗𝑘 (𝒇1,𝒇2, · · · ,𝒇𝒌−1), (7)

where 𝒈,𝒇1,𝒇2, · · · ,𝒇𝒌−1 denote the coefficients of the correspond-
ing functions, respectively, and ⊗𝑘 denotes the 𝑘-multiple product
operator.
The multiple product integral of 𝑘 spherical functions could be

computed through a 𝑘-multiple product and a dot product:∫
𝐹1 (𝜔) 𝑓2 (𝜔) · · · 𝐹𝑘 (𝜔)d𝜔 ≈ ⊗𝑘 (𝒇1,𝒇2, · · · ,𝒇𝒌−1) · 𝒇𝒌 . (8)

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:4 • Hanggao Xin, Zhiqian Zhou, Di An, Ling-Qi Yan, Kun Xu, Shi-Min Hu, and Shing-Tung Yau

Note that triple product is could be viewed as a specialization of
𝑘-multiple product when 𝑘 = 3.

Accurate brute-force approach. A brute force way to accu-
rately computing the multiple product for general basis functions
is given in [Ren et al. 2006; Sun and Mukherjee 2006] by extending
the tripling coefficients to higher orders:

𝑔 𝑗𝑘 =
∑
𝑗1

∑
𝑗2

· · ·
∑
𝑗𝑘−1

[𝐶 (𝑘)
𝑗1, 𝑗2, · · · , 𝑗𝑘−1, 𝑗𝑘 · 𝑓1, 𝑗1 𝑓2, 𝑗2 · · · 𝑓𝑘−1, 𝑗𝑘−1], (9)

where the 𝑘−th order integral coefficient 𝐶 (𝑘)
𝑗1, 𝑗2, · · · , 𝑗𝑘−1, 𝑗𝑘 is computed

through a integral:

𝐶
(𝑘)
𝑗1, 𝑗2, · · · , 𝑗𝑘−1, 𝑗𝑘 =

∫
𝐵 𝑗1 (𝜔)𝐵 𝑗2 (𝜔) · · ·𝐵 𝑗𝑘 (𝜔)d𝜔. (10)

Such a brute-force approach is rather expensive. The time com-
plexity for computing a𝑘-multiple product and the space complexity
to store the integral coefficients are both 𝑂 (𝑁𝑘) for general basis
functions. For spherical harmonics, the time complexity would be
𝑂 (𝑛2𝑘), which would be prohibitively expensive, especially when 𝑘
is large. The time complexity might be slightly reduced by enumer-
ating over only non-zero coefficients, as in triple products whose
complexity is reduced from 𝑂 (𝑛6) to 𝑂 (𝑛5). However, we cannot
find any existing researches that take use of such sparsity to reduce
its time complexity.

3.1.5 Multiple product using recursive triple product approximation.
A more practical method to compute the multiple product is by re-
cursively applying triple products (𝑘 −1) times [Sun and Mukherjee
2006; Zhou et al. 2005]:

𝒈 ≈ (· · · ((𝒇1 ⊗ 𝒇2) ⊗ 𝒇3) ⊗ · · · ⊗ 𝒇𝒌−1) . (11)

This is done by first computing𝒇1⊗𝒇2, then computing (𝒇1⊗𝒇2) ⊗𝒇3,
and so on. Its time complexity is𝑂 (𝑘𝑛5), which is usually acceptable
in real-time applications for low-order spherical harmonics. How-
ever, this method only produces an approximation to the ground
truth multiple product defined in Equ. 7. This is due to early and
accumulated truncation: we need to truncate the intermediate result
of each triple product within order 𝑛 spherical harmonics. We will
visualize and evaluate the truncation errors in Sec. 5.2.

3.2 Spherical Harmonics and 2D Fourier Series
3.2.1 Spherical harmonics. Spherical harmonics (SH) is a widely
used series of orthonormal spherical basis functions. Order 𝑛 spher-
ical harmonics are defined as:

𝑦𝑚
𝑙
(𝜔) = 𝑦𝑚

𝑙
(𝜃, 𝜙) =

𝐾0
𝑙
𝑃0
𝑙
(cos𝜃) 𝑚 = 0√

2𝐾𝑚
𝑙

cos(𝑚𝜙)𝑃𝑚
𝑙
(cos𝜃) 𝑚 > 0

√
2𝐾 |𝑚 |

𝑙
sin(|𝑚 |𝜙)𝑃 |𝑚 |

𝑙
(cos𝜃) 𝑚 < 0

,

(12)
where𝜔 = (sin𝜃 cos𝜙, sin𝜃 sin𝜙, cos𝜃) , index𝑚 and band 𝑙 satisfy
that −𝑙 ⩽ 𝑚 ⩽ 𝑙, 0 ⩽ 𝑙 < 𝑛. 𝐾𝑚

𝑙
are normalization constants and

𝑃𝑚
𝑙
(·) are the associated Legendre polynomials defined as:

𝑃𝑚
𝑙
(𝑥) = (−1)𝑚 ·2𝑙 · (1−𝑥2)𝑚/2 ·

𝑙∑
𝑘=𝑚

𝑘!
(𝑘 −𝑚)!𝑥

𝑘−𝑚 ·
(
𝑙

𝑘

)
·
(𝑙+𝑘−1

2
𝑙

)
.

Any spherical function 𝐹 could be projected into its SH coeffi-
cients 𝒇 = {𝑓𝑙,𝑚} such that:

𝐹 (𝜃, 𝜙) ≈
𝑛−1∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑓𝑙,𝑚𝑦
𝑚
𝑙
(𝜃, 𝜙) . (13)

3.2.2 2D Fourier series. Another common way to represent 2D
functions is to use Fourier series. Any spherical function 𝐹 could be
represented as 2D Fourier series using (𝜃, 𝜙) parameterization:

𝐹 (𝜃, 𝜙) ≈
∑
𝑠,𝑡

[𝐴𝑠,𝑡 cos (𝑠𝜃) cos (𝑡𝜙) + 𝐵𝑠,𝑡 sin (𝑠𝜃) cos (𝑡𝜙)

+𝐶𝑠,𝑡 cos (𝑠𝜃) sin (𝑡𝜙) + 𝐷𝑠,𝑡 sin (𝑠𝜃) sin (𝑡𝜙)] .
(14)

The above trigonometric form could be equivalently written in the
complex form:

𝐹 (𝜃, 𝜙) ≈
∑
𝑠,𝑡

𝑓 ∗𝑠,𝑡𝑒
𝑖 (𝑠𝜃+𝑡𝜙) . (15)

Note that the Fourier coefficients 𝒇∗ = {𝑓 ∗𝑠,𝑡 } in the above equation
are complex values. Its formula is slightly different from conven-
tional 2D Fourier series (i.e., the exponential value is not multiplied
by 2𝜋), since it is defined for spherical functions. To be consistent
with SH terminology, we call 2D Fourier series to have degree 𝑛 if
the values of 𝑠 and 𝑡 are both restricted in [−(𝑛 − 1), 𝑛 − 1].
It is easy to find that both spherical harmonics and 2D Fourier

representations are essentially composed of bivariate polynomials
of trigonometric functions. [Hofsommer and Potters 1960; Sneeuw
and Bun 1996] provided methods to convert between the two rep-
resentations in 𝑂 (𝑛3) time. The conversion is accurate and no ap-
proximations are involved.

3.2.3 Conversion from SH to Fourier series. Given a spherical func-
tion 𝐹 represented by its SH coefficients 𝒇 = {𝑓𝑙,𝑚} (Equ. 13), the
conversion from SH to Fourier series is to find its Fourier coefficients
𝒇∗ = {𝑓 ∗𝑠,𝑡 } (Equ. 15).

There are two key observations. First, for both SH and Fourier
representations, the two dimensions of 𝜃 and 𝜙 could be separably
computed. Second, for spherical harmonics function 𝑦𝑚

𝑙
(𝜃, 𝜙) with

band 𝑙 and index𝑚 (See definition in Equ. 12), the 𝜙 part is com-
posed of only |𝑚 |-th harmonics, i.e., cos (𝑚𝜙), sin (|𝑚 |𝜙), and their
combinations.

We could rewrite a spherical harmonics function 𝑦𝑚
𝑙
(𝜃, 𝜙) in 2D

Fourier series:
𝑦𝑚
𝑙
(𝜃, 𝜙) =

∑
−𝑛<𝑠<𝑛
−𝑛<𝑡<𝑛

𝑦∗
𝑙,𝑚,𝑠,𝑡

𝑒𝑖 (𝑠𝜃+𝑡𝜙) , (16)

where {𝑦∗
𝑙,𝑚,𝑠,𝑡

} is a 4D tensor. By substituting the above equation
to Equ. 13, the Fourier coefficients 𝒇∗ could be obtained from SH
coefficients 𝒇 through:

𝑓 ∗𝑠,𝑡 =
∑

0⩽𝑙<𝑛
−𝑙⩽𝑚⩽𝑙

𝑓𝑙,𝑚𝑦
∗
𝑙,𝑚,𝑠,𝑡

. (17)

Since the 𝜙 part of 𝑦𝑚
𝑙
(𝜃, 𝜙) is a |𝑚 |-th harmonics, it is easy to

find that 𝑦∗
𝑙,𝑚,𝑠,𝑡

is non-zero only when 𝑚 = ±𝑡 . Hence, the 4D
tensor {𝑦∗

𝑙,𝑚,𝑠,𝑡
} could be reduced to 3D, and could be precomputed

only once and stored. The time complexity of converting from SH
coefficients to Fourier coefficients is 𝑂 (𝑛3). Please note that, 2D

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

Fast and Accurate Spherical Harmonics Products • 1:5

Fourier series used to represent real functions must be conjugate
symmetric, so 𝑦∗

𝑙,𝑚,𝑠,𝑡
is conjugate and such property could reduce

a half computation of the conversion from SH to Fourier series.

3.2.4 Fourier series to SH. Given a spherical function 𝐹 represented
by its Fourier coefficients𝒇∗, its SH coefficients𝒇 could be computed
similarly as in Sec. 3.2.3, but in an inverse way.
We could rewrite a Fourier term by a linear combination of SH

basis functions:

𝑒𝑖 (𝑠𝜃+𝑡𝜙) =
∑

0⩽𝑙<𝑛
−𝑙⩽𝑚⩽𝑙

ℎ∗
𝑙,𝑚,𝑠,𝑡

𝑦𝑚
𝑙
(𝜃, 𝜙), (18)

where {ℎ∗
𝑙,𝑚,𝑠,𝑡

} is a 4D tensor. Thus, we have:

𝑓𝑙,𝑚 =
∑

−𝑛<𝑠<𝑛
−𝑛<𝑡<𝑛

ℎ∗
𝑙,𝑚,𝑠,𝑡

𝑓 ∗𝑠,𝑡 . (19)

Similarly, ℎ∗
𝑙,𝑚,𝑠,𝑡

is non-zero only when 𝑚 = ±𝑡 . {ℎ∗
𝑙,𝑚,𝑠,𝑡

} could
be precomputed only once and stored as a 3D tensor. The time
complexity of converting from Fourier coefficients to SH coefficients
is 𝑂 (𝑛3).

4 OUR APPROACH FOR SH PRODUCTS
Given (𝑘 − 1) spherical functions represented by order-𝑛 SH coef-
ficients: 𝒇1,𝒇2, · · · ,𝒇𝒌−1, our goal is to compute the accurate order-𝑛
SH coefficients of theirmultiple product, i.e.,𝒈 = ⊗𝑘 (𝒇1,𝒇2, · · · ,𝒇𝒌−1).
Note that a multiple product is called a triple product when 𝑘 = 3.

To avoid ambiguity, we would like to emphasize that our accurate
method is targeted to accurately compute SH coefficients of the
product within the order limit 𝑛. We do not consider the SH coeffi-
cients beyond the order limit for both the resulting product and the
input spherical functions. Such design is reasonable since SH based
representations usually use a fixed order in real applications.

4.1 Overview
Our key observation is, using the Fast Fourier Transform (FFT),
multiplication can be performed more efficiently in Fourier space
than in SH space. We design our method as follows:

(1) Conversion from SH space to Fourier space. First, we
convert each spherical function from SH coefficients 𝒇𝒊 to
Fourier series 𝒇∗𝒊 (1 ≤ 𝑖 < 𝑘). See Sec. 3.2.3.

(2) Convolution in Fourier space. Then, we compute the mul-
tiplication of all converted Fourier series, which is essentially
computing convolutions of Fourier coefficients and can be ac-
celerated using FFT. The Fourier coefficients of the resulting
product are denoted as 𝒈∗. We describe it in detail in Sec. 4.2.

(3) Conversion back to SH space. Finally, we convert back
the product from Fourier series 𝒈∗ to SH coefficients 𝒈. See
Sec. 4.3.

The pipeline is visualized in Fig. 2. The whole computation is accu-
rate and no approximations are involved.

!!

!"

!#$!

!#$"

SH to FS

SH to FS !!
∗

!"
∗

!#$!
∗

Convolution "∗ FS to SH
!

In
p

u
t S

H
 vectors

Fourier Space

SH Space

SH Space

…
.

…
.

SH to FS

SH to FS !#$"
∗

Fig. 2. The overview of our method for computing spherical harmonics
triple products (𝑘 = 3) and multiple products (𝑘 > 3).

4.2 Convolution in Fourier space
Given (𝑘 − 1) spherical functions 𝐹 𝑗 (1 ≤ 𝑗 < 𝑘) in Fourier series:

𝐹 𝑗 (𝜃, 𝜙) =
∑
𝑠,𝑡

𝑓 ∗𝑗,𝑠,𝑡𝑒
𝑖 (𝑠𝜃+𝑡𝜙) , (20)

where 𝒇∗𝒋 = {𝑓 ∗
𝑗,𝑠,𝑡

} are its Fourier coefficients, our goal is to com-
pute the Fourier coefficients 𝒈∗ = {𝑔∗𝑠,𝑡 } of their product 𝐺 =

𝐹1𝐹2 · · · 𝐹𝑘−1, such that:

𝐺 (𝜃, 𝜙) =
∑
𝑠,𝑡

𝑔∗𝑠,𝑡𝑒
𝑖 (𝑠𝜃+𝑡𝜙) . (21)

4.2.1 Triple Product. Let us first discuss the simplest triple product
case (i.e., 𝑘 = 3), in which we would like to compute the multiplica-
tion of two 2D Fourier series 𝐺 = 𝐹1 · 𝐹2. Specifically, we have:
𝐺 (𝜃, 𝜙) = 𝐹1 (𝜃, 𝜙) · 𝐹2 (𝜃, 𝜙)

=

(∑
𝑠1,𝑡1

𝑓 ∗1,𝑠1,𝑡1𝑒
𝑖 (𝑠1𝜃+𝑡1𝜙)

)
·
(∑
𝑠2,𝑡2

𝑓 ∗2,𝑠2,𝑡2𝑒
𝑖 (𝑠2𝜃+𝑡2𝜙)

)
=

∑
𝑠1,𝑡1,𝑠2,𝑡2

(𝑓 ∗1,𝑠1,𝑡1 𝑓
∗
2,𝑠2,𝑡2)𝑒

𝑖 [(𝑠1+𝑠2)𝜃+(𝑡1+𝑡2)𝜙] .

(22)

By comparing the coefficients in Equ. 21 and Equ. 22, it is easy
to know that the Fourier coefficients of the product 𝑔∗𝑠,𝑡 could be
computed as:

𝑔∗𝑠,𝑡 =
∑

𝑠1+𝑠2=𝑠
𝑡1+𝑡2=𝑡

𝑓 ∗1,𝑠1,𝑡1 · 𝑓
∗
2,𝑠2,𝑡2 . (23)

Notice that the above equation is exactly a 2D convolution of the
Fourier coefficients and we could further write it in vector form:

𝒈∗ = 𝒇∗1 ∗ 𝒇∗2 , (24)

where ∗ denotes the 2D convolution operator.
It is well known that the 2D convolution could be efficiently com-

puted through FFT [Brigham 1988], which has a time complexity
of only 𝑂 (𝑛2 log𝑛). Specifically, first, we transform the Fourier co-
efficients 𝒇∗1 and 𝒇∗2 into the frequency domain using 2D Discrete
Fourier Transform (DFT). Then, we compute element-wise multi-
plication in the frequency domain. Finally, we obtain the Fourier
coefficients of the product 𝒈∗ by transforming back from the fre-
quency domain using 2D Inverse Discrete Fourier Transform (IDFT).
Both DFT and IDFT can be computed using FFT. Hence, the 2D con-
volution in Equ. 24 has an overall time complexity of 𝑂 (𝑛2 log𝑛).

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:6 • Hanggao Xin, Zhiqian Zhou, Di An, Ling-Qi Yan, Kun Xu, Shi-Min Hu, and Shing-Tung Yau

4.2.2 Multiple Product. Similar to the triple product case, for gen-
eral multiple product cases (i.e., 𝑘 > 3), the Fourier coefficients
of the product 𝒈∗ could also be formulated as 2D convolutions of
coefficients, which is:

𝒈∗ = 𝒇∗1 ∗ 𝒇∗2 ∗ · · · ∗ 𝒇∗𝒌−1 . (25)
We could still use FFT to accelerate the above computation. However,
care must be taken since the degree of Fourier series will increase
after multiplication. For example, the multiplication of two degree
𝑛 Fourier series will result in a degree (2𝑛 − 1) Fourier series. We
cannot simply restrict intermediate results to degree𝑛 since that will
introduce truncation errors. To ensure an accurate multiple product,
a straight-forward way to successively apply the 2D convolution
operator:

𝒈∗ = [(𝒇∗1 ∗ 𝒇∗2)︸ ︷︷ ︸
deg. 2𝑛 − 1

∗ 𝒇∗3]

︸ ︷︷ ︸
deg. 3𝑛 − 2

∗ · · · ∗ 𝒇∗𝒌−1

︸ ︷︷ ︸
deg. (𝑘 − 1) (𝑛 − 1) + 1

. (26)

In Equ. 26, the first convolution 𝒇∗1 ∗𝒇∗2 takes𝑂 (𝑛2 log𝑛) time. Since
the degree increases during the process, later convolutions will take
more time, i.e., the 𝑗-th convolution takes 𝑂

(
𝑗2𝑛2 log(𝑗𝑛)

)
time.

Overall, it takes 𝑂
(
𝑘3𝑛2 log(𝑘𝑛)

)
time.

Divide-and-conquer strategy. For better efficiency, we utilize
a divide-and-conquer strategy instead of successively computing
convolutions. Our key observation is that the convolution operator
is associative, i.e., (𝒇∗1 ∗𝒇∗2) ∗𝒇

∗
3 = 𝒇∗1 ∗ (𝒇∗2 ∗𝒇∗3), hence, the order in

applying convolutions will not affect the final results. Specifically,
we compute the multiple product in this way:

𝒈∗ =

[(𝒇∗1 ∗ 𝒇∗2)︸ ︷︷ ︸
deg. 2𝑛 − 1

· · · (𝒇∗⌊ 𝑘2 ⌋−1
∗ 𝒇∗⌊ 𝑘2 ⌋

)︸ ︷︷ ︸
deg. 2𝑛 − 1

]

︸ ︷︷ ︸
deg. ⌊ 𝑘2 ⌋ (𝑛 − 1) + 1

∗ [(𝒇∗⌊ 𝑘2 ⌋+1
∗ 𝒇∗⌊ 𝑘2 ⌋+2

)︸ ︷︷ ︸
deg. 2n - 1

· · ·𝒇∗
𝑘−1]

︸ ︷︷ ︸
deg. ⌊ 𝑘−12 ⌋ (𝑛 − 1) + 1︸ ︷︷ ︸

deg. (𝑘 − 1) (𝑛 − 1) + 1
(27)

By using the divide-and-conquer strategy, the time complexity of
multiplying (𝑘 − 1) Fourier series of degree 𝑛 can be expressed as a
recursive formula:

𝑇 (𝑛, 𝑘) = 𝑂 (𝑘2𝑛2 log(𝑘𝑛)) + 2𝑇 (𝑛, 𝑘2) . (28)

Applying the master theorem for divide-and-conquer recurrences
shows that the above divide-and-conquer strategy (Equ. 27) has an
overall time complexity of 𝑂 (𝑘2𝑛2 log(𝑘𝑛)), which is smaller than
that of successive computing convolutions (Equ. 26).

4.3 Conversion back to SH space
After convolution in Fourier space, the next step is to convert the
Fourier coefficients back into SH space. As mentioned in Sec. 4.2,
the Fourier coefficients of the resulted product 𝒈∗ have a degree of
(𝑘 − 1) (𝑛 − 1) + 1, but we only need SH coefficients 𝒈 within order
𝑛. A straight-forward way would be first converting 𝒈∗ into SH

coefficients with full order (𝑘 −1) (𝑛−1) +1 using the Fourier-to-SH
conversion procedure described in Sec. 3.2.4, then truncate them by
only leaving the lowest 𝑛 orders. However, it would require𝑂 (𝑘3𝑛3)
time due to the increase of degrees/orders.
Instead, for better efficiency, we could slightly modify the con-

version procedure, to support directly converting a Fourier series
to SH coefficients with a lower order. This is achieved by modifying
the index range for summation in Equ. 19, which yields:

𝑓𝑙,𝑚 =
∑

−𝑛′<𝑠<𝑛′
𝑡=±𝑚

ℎ∗
𝑙,𝑚,𝑠,𝑡

𝑔∗𝑠,𝑡 , (29)

where 𝑛′ = (𝑘 − 1) (𝑛 − 1) + 1. The time complexity is reduced to
𝑂 (𝑘𝑛3).

4.4 Complexity Analysis
4.4.1 Time Complexity. The first step, conversion from SH space to
Fourier space, has a time complexity𝑂 (𝑘𝑛3), since (𝑘 − 1) spherical
functions need to be converted and each takes 𝑂 (𝑛3) time. The
second step (convolution in Fourier space) has a time complex-
ity of 𝑂 (𝑘2𝑛2 log(𝑘𝑛)) by using the divide-and-conquer strategy.
The third step, conversion back to SH space, requires an additional
𝑂 (𝑘𝑛3) time. Overall, the time complexity of our multiple prod-
uct method is 𝑂 (𝑘𝑛3 + 𝑘2𝑛2 log(𝑘𝑛)). For triple products, the time
complexity would be 𝑂 (𝑛3 + 𝑛2 log(𝑛)) or simply 𝑂 (𝑛3).
The above time complexity analysis provides a nice indication

from a theoretical aspect. However, it may not be able to reflect
the actual performance in practical applications. As we can see
from the above analysis, the step of convolution in Fourier space
has a relatively low time complexity, which is 𝑂 (𝑘2𝑛2 log(𝑘𝑛)) (or
𝑂 (𝑛2 log(𝑛)) for triple products), compared to the 𝑂 (𝑘𝑛3) of the
conversion steps. However, in practice, in both triple and multiple
products, we still find that the convolution step is the performance
bottleneck. There are two reasons. First, the constant factor involved
in the convolution step is relatively large. Second, in practical appli-
cations of SH, the order 𝑛 is usually small, i.e., 3 ≤ 𝑛 ≤ 20. We will
further validate the efficiency of our method in Sec. 5.

4.4.2 Space Complexity. Our multiple product method requires
𝑂 (𝑘𝑛3 + 𝑘2𝑛2) memory, including 𝑂 (𝑘𝑛3) space for storing the
precomputed tensors and 𝑂 (𝑘2𝑛2) space for runtime storage. In
contrast, the traditional brute-force method would require 𝑂 (𝑛2𝑘)
memory to store the precomputed integral coefficients (Equ. 10),
which would be prohibitively expensive. For triple products, we
require𝑂 (𝑛3) memory while the traditional method requires𝑂 (𝑛5)
memory to store the tripling coefficients (Equ. 5).

4.5 Recursive triple product approximation
Recall that traditional approaches use recursive triple products to
approximately computing a multiple product (see Sec. 3.1.5 and
Equ. 11). It has a time complexity of 𝑂 (𝑘𝑛5), since it involves 𝑘
times of triple products and each triple product costs𝑂 (𝑛5) time. Its
errors come from early truncation of intermediate results of triple
products within SH order 𝑛.

Aside from our accurate solution of multiple product described in
previous subsections, in applications where accuracy is not the top

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

Fast and Accurate Spherical Harmonics Products • 1:7

Traditional method Our method SH to FS Convolutions FS to SH

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order (n)

10 1

100

101

102

103

Ti
m

e
pe

r
pr

od
uc

t
/

s

(a) Performance comparison
for triple products (CPU).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order (n)

10 2

10 1

100

101

Ti
m

e
pe

r
pr

od
uc

t
/

s

(b) Performance comparison
for triple products (GPU).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order(n)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 t

im
e

sp
en

t

(c) Profiling of our method
for triple products (CPU).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order(n)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 t

im
e

sp
en

t

(d) Profiling of our method
for triple products (GPU).

Fig. 3. Comparisons between our method (Green Curve) and the traditional method (Red Curve) for triple products. On CPU, our method is faster than the
traditional method when SH order 𝑛 ≥ 7. On GPU, our method is faster when SH order 𝑛 ≥ 8. By profiling, we found that the convolution in Fourier space is
the bottleneck of our method on both CPU and GPU.

priority, we can also use such recursive triple product approxima-
tion to compute the multiple product, by only replacing the 𝑂 (𝑛5)
traditional triple product method in the recursive approximation
(Sec. 3.1.5) with our proposed𝑂 (𝑛3) triple product method (Sec. 4.1).
This reduces the overall time complexity from 𝑂 (𝑘𝑛5) to 𝑂 (𝑘𝑛3).

Note that our approximate method and the traditional approxi-
mate method have used the same recursive triple product approxi-
mation. They differ in computational efficiency, but are expected to
produce the same results in theory.

5 EXPERIMENTS
We have performed extensive experiments to evaluate the effec-
tiveness of our proposed method for triple and multiple products
under various settings. We implement our method on both CPU and
GPU. We implement the CPU version using C++14 and use the fftw
3.3.9 library for FFT computation. We implement the GPU version
using CUDA 10.2 and use cuFFT library for FFT computation. The
experiments are carried out on a PC with an Intel Xeon E5-2678 v3
CPU and an NVIDIA 2080 Ti GPU.

5.1 Performance comparison
5.1.1 Triple product. We compare the running performance of our
proposed triple product method (Sec. 4.1) with traditional triple
product method (Sec. 3.1.3), as shown in Fig. 3 (a-b). Our method
starts to perform faster than the traditional method when 𝑛 ≥ 7
on CPU or 𝑛 ≥ 8 on GPU. For larger SH order 𝑛, our method runs
significantly faster. For example, our method achieves a speedup of
3.0×, 9.9×, and 21.7× on CPU for 𝑛 = 10, 15 and 20, respectively, and
achieves a speedup of 1.9×, 8.9×, and 17.8× on GPU for 𝑛 = 10, 15
and 20, respectively.
We further analyze the execution time of different steps in our

method, including conversion from SH space to Fourier space (Sec. 3.2.3),
convolution in Fourier space (Sec. 4.2), and conversion back to SH
space (Sec. 4.3), as shown in Fig. 3 (c-d). While the convolution
step has a lower time complexity (i.e., 𝑂 (𝑛2 log𝑛)) than that of
conversion steps (i.e., 𝑂 (𝑛3)), it is still the bottleneck of the whole
computation for all SH orders 3 ≤ 𝑛 ≤ 20. Nevertheless, its propor-
tion in timing decreases when we increase SH order 𝑛, e.g., reduced

from 87% (𝑛 = 3) to 79% (𝑛 = 20) on CPU or from 72% (𝑛 = 3) to 58%
(𝑛 = 20) on GPU.

We also notice that our method achieves slightly less speedup on
GPU than on CPU. This is because the bottleneck of our method–
the convolution using FFT–is mainly dominated by random access
instead of sequential access to the memory, which is less cache-
friendly on GPU.

5.1.2 Multiple product. We compare the efficiency of four differ-
ent methods in computing SH multiple products, including: our
accurate method (Sec. 4.1), our approximate method using recursive
triple products (Sec. 4.5), traditional bruteforce method (Sec. 3.1.4),
and traditional approximate method using recursive triple products
(Sec. 3.1.5), as shown in Fig. 4 (a-f). In our implementation of the the
traditional bruteforce method, we only enumerate over the non-zero
integral coefficients for better efficiency.
The traditional bruteforce method (red curve) is extremely in-

efficient, especially when the number of functions 𝑘 is large (i.e.,
𝑘 = 6 or 8). This is not surprising since it has an extremely high time
complexity, making it not applicable for practical use. Thanks to
a much lower time complexity, our accurate method (green curve)
runs orders of magnitude faster in the majority of settings, except
the cases when 𝑛 and 𝑘 are both very small, e.g., 𝑘 = 4 and 𝑛 ≤ 5.
Notice that our accurate method scales well with both values of 𝑛
and 𝑘 : it is still able to run efficiently when 𝑛 and 𝑘 are very large.

As for the approximate methods, our approximate method (blue
curve) starts to run faster than the traditional approximate method
(orange curve) when SH order 𝑛 ≥ 7 on CPU or 𝑛 ≥ 8 on GPU for
all values of 𝑘 , and runs much faster when 𝑛 is large. It is mostly
consistent with the results of performance comparison conducted
for triple products (see Sec. 5.1.1 and Fig. 3 (a-b)). This is because
both methods use the same recursive triple product approximation.
It is important to note that our accurate method (green curve)

runs even faster than the traditional approximate method (orange
curve) when SH order 𝑛 is large, e.g, when 𝑛 ≥ 9 for 𝑘 = 4, 𝑛 ≥ 12
for 𝑘 = 6, or 𝑛 ≥ 14 for 𝑘 = 8.
We further analyze the time of the three different steps in our

accurate multiple product method, as shown in Fig. 4 (g-l). The

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:8 • Hanggao Xin, Zhiqian Zhou, Di An, Ling-Qi Yan, Kun Xu, Shi-Min Hu, and Shing-Tung Yau

Traditional Bruteforce. Traditional Recursive. Our Accurate. Our Recursive. SH to FS Convolutions FS to SH

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order (n)

101

103

105

Ti
m

e
pe

r
pr

od
uc

t
/

s

(a) Performance comparison
for 𝑘 = 4 multiple products (CPU).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order (n)

10 1

101

103

Ti
m

e
pe

r
pr

od
uc

t
/

s

(b) Performance comparison
for 𝑘 = 4 multiple products (GPU).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order (n)

101

103

105

107

Ti
m

e
pe

r
pr

od
uc

t
/

s

(c) Performance comparison
for 𝑘 = 6 multiple products (CPU).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order (n)

10 1

101

103

105

Ti
m

e
pe

r
pr

od
uc

t
/

s

(d) Performance comparison
for 𝑘 = 6 multiple products (GPU).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order (n)

101

103

105

107

Ti
m

e
pe

r
pr

od
uc

t
/

s

(e) Performance comparison
for 𝑘 = 8 multiple products (CPU).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order (n)

10 1

101

103

105

Ti
m

e
pe

r
pr

od
uc

t
/

s

(f) Performance comparison
for 𝑘 = 8 multiple products (GPU).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order(n)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 t

im
e

sp
en

t

(g) Profiling of our method
for 𝑘 = 4 multiple products (CPU).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order(n)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 t

im
e

sp
en

t

(h) Profiling of our method
for 𝑘 = 4 multiple products (GPU).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order(n)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 t

im
e

sp
en

t

(i) Profiling of our method
for 𝑘 = 6 multiple products (CPU).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order(n)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 t

im
e

sp
en

t

(j) Profiling of our method
for 𝑘 = 6 multiple products (GPU).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order(n)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 t

im
e

sp
en

t

(k) Profiling of our method
for 𝑘 = 8 multiple products (CPU).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SH Order(n)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 t

im
e

sp
en

t

(l) Profiling of our method
for 𝑘 = 8 multiple products (GPU).

Fig. 4. Performance comparisons between our accurate method (Green Curve), our recursive method (Blue Curve), traditional brute-force method (Red Curve)
and traditional recursive method (Orange Curve) for multiple products. Our accurate method is orders of magnitude faster than the traditional brute-force
method especially when 𝑘 and 𝑛 are large. Furthermore, our accurate method is even faster than the approximate method with high-order 𝑛. And our recursive
method is faster than traditional recursive method for most cases. For each 𝑘 and 𝑛, we profile our implementations on CPU and GPU. In all cases tested, the
convolution in Fourier space step is still the bottleneck of our method.

convolution step is the bottleneck of the whole computation for
all SH orders 3 ≤ 𝑛 ≤ 20 and for all 𝑘 = 4, 6, and 8. Nevertheless,
its proportion in time decreases when we increase SH order 𝑛. For
example, for 𝑘 = 4, it reduces from 91%/77% (𝑛 = 3) to 85%/73%
(𝑛 = 20) on CPU/GPU, and for 𝑘 = 8, it reduces from 95%/93% (𝑛 = 3)
to 93%/88% (𝑛 = 20) on CPU/GPU.

5.2 Error analysis of approximate methods
In this subsection, we analyze and visualize the errors introduced
in the approximate multiple product methods using recursive triple
products. Note that our approximate method (Sec. 4.5) and the tradi-
tional approximate method (Sec. 3.1.5) only differ in computational
efficiency, but will produce the same results.

5.2.1 Analysis on Band-limited Inputs. First, we measure the rela-
tive L2 error of the SH coefficients of the multiple product results.
The SH coefficients of each input band-limited spherical function
are randomly and uniformly sampled in [−1, 1]. For each value of 𝑘 ,
we randomly generate 100,000 groups of band-limited inputs, and
further compute the SH coefficients of their multiple products under
each value of SH order 𝑛. The error values are given in Table 1. We
can see that the error grows quickly with the number of functions 𝑘
involved in multiplication, e.g., from about 20% for 𝑘 = 4 to nearly
90% for 𝑘 = 8. This is because the truncation errors in intermediate
triple product will accumulate when 𝑘 increases. We also find that

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

Fast and Accurate Spherical Harmonics Products • 1:9

Input1 Input2 Input3 Recursive Our accurate Reference Diff. recursive Diff. accurate
O
rd
er
𝑛
=
5

(a) L2 Error:0.55 L2 Error:<10−6

O
rd
er
𝑛
=
10

L2 Error:0.41 L2 Error:<10−6
Input 1 Input 2 Input 3 Input 4 Recursive Our accurate Reference Diff. recursive Diff. accurate

O
rd
er
𝑛
=
5

(b) L2 Error:0.51 L2 Error:<10−6

O
rd
er
𝑛
=
10

L2 Error:0.68 L2 Error:<10−6

Input1 Input2 Input3 Recursive. Our accurate Reference Diff. recursive Diff. accurate

O
rd
er
𝑛
=
5

(c) L2 Error:0.24 L2 Error:0.20

O
rd
er
𝑛
=
10

L2 Error:0.17 L2 Error:0.16
Input 1 Input 2 Input 3 Input 4 Recursive. Our accurate Reference Diff. recursive Diff. accurate

O
rd
er
𝑛
=
5

(d) L2 Error:0.35 L2 Error:0.24

O
rd
er
𝑛
=
10

L2 Error:0.18 L2 Error:0.15

Fig. 5. Visualization of multiple product results. For each example, from left to right, we show the input band-limited spherical functions, the multiple product
results generated by the recursive method and by our accurate method, respectively, the ground truth, and difference images.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:10 • Hanggao Xin, Zhiqian Zhou, Di An, Ling-Qi Yan, Kun Xu, Shi-Min Hu, and Shing-Tung Yau

(a) Rendered with SH order 𝑛 = 10. Frame rates: traditional method 14.9 FPS / ours 26.4 FPS

(b) Rendered with SH order 𝑛 = 15. Frame rates: traditional method 3.0 FPS / ours 25.5 FPS

Fig. 6. Results of glossy relighting using PRT.

the error values do not change a lot for varying SH order 3 ≤ 𝑛 ≤ 20
under the same value of 𝑘 . Besides, we also measure the relative
L2 errors of our accurate method for comparison, which are below
10−6 under all settings.

We randomly pick two groups of examples from the above ex-
periments, and visualize the reconstructed input and the resulted
spherical functions from their SH coefficients, as shown in Fig. 5
(a-b). Each group provides two examples under 𝑛 = 5 and 𝑛 = 10, re-
spectively. We could find that the multiple product result generated
the approximate method exhibit large visible differences from the
ground truth. In comparison, our accurate method produces almost
the same results as ground truth.

5.2.2 Analysis on Non-band-limited Inputs. In Fig. 5 (c-d), we fur-
ther visualize examples of multiple product results from real scenes,
where each input spherical function is a self-visibility map or a
visibility map from object occlusion fields [Zhou et al. 2005]. We
project each input spherical function into SH space and compute the
multiple products using our approximate method and our accurate
method, respectively. The relative L2 errors of the resulting multiple
product are computed against the non-band-limited ground truth.
Since our accurate method is designed to obtain accurate results
only for band-limited cases, it is not surprising it still exhibits dif-
ferences with the non-band-limited ground truth, however, its error
is smaller than those of the recursive triple product approximation
in all examples.

5.3 Rendering applications
To demonstrate the merits of our triple and multiple product meth-
ods in practice, we further implement two SH based rendering appli-
cations, including glossy relighting [Ng et al. 2004; Sloan et al. 2002]
and shadow fields [Zhou et al. 2005]. Adapting our method into

these existing rendering applications is very simple. By replacing
the traditional triple/multiple product methods by our proposed
ones, we can easily improve running performance.

5.3.1 Glossy Relighting using PRT. The direct illumination of a static
scene could be formulated as:

𝐿𝑜 (𝑥,𝜔𝑜) =
∫

𝐿(𝑥,𝜔𝑖)𝑉 (𝑥,𝜔𝑖)𝜌 (𝜔𝑖 , 𝜔𝑜)d𝜔𝑖 , (30)

where 𝐿𝑜 is the exit radiance at position 𝑥 , 𝜔𝑜 is the view direction,
𝜔𝑖 is the light direction and 𝜌 is the BRDF bakedwith the cosine term.
Please note that, we do not combine visibility and BRDF together
in order to support dynamic lighting and materials.
Using the PRT framework, we represent each term in the above

equation using SH basis functions. Specifically, the lighting and vis-
ibility function could be approximated as: 𝐿(𝑥,𝜔𝑖) ≃

∑𝑛2
𝑗=1 𝑙 𝑗𝑦 𝑗 (𝜔𝑖),

𝑉 (𝑥, 𝜔𝑖) ≃
∑𝑛2

𝑗=1 𝑣 𝑗𝑦 𝑗 (𝜔𝑖). By tabulatingthe BRDF in terms of view
direction 𝜔𝑜 [Kautz et al. 2002; Lehtinen and Kautz 2003], BRDF
could also be projected to SH space as: 𝜌 (𝜔𝑖 , 𝜔𝑜) ≃

∑𝑛2
𝑗=1 𝜌 𝑗𝑦 𝑗 (𝜔𝑖).

After that, the rendering integral in Equ. 30 naturally becomes com-
puting a triple product integral in SH space [Ng et al. 2004].

We have tested three scenes with dynamic lighting and dynamic
BRDFs. Both environment lights and local area lights [Wang and
Ramamoorthi 2018] are tested. Results are given Fig. 1 (a) and Fig. 6.
The performance statistics are given in Table 2. Notice that our triple
product method is able to achieve a speedup of about 1.8× using
SH order 𝑛 = 10, and a significant speedup over 8× using SH order
𝑛 = 15.

5.3.2 Shadow fields. Shadow fields [Zhou et al. 2005] have extended
PRT to handle dynamic scenes. It supports moving and rotating
occluders by precomputing an object occlusion field (OOF) for each
occluder. At run-time, the visibility map at each shading point 𝑥

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

Fast and Accurate Spherical Harmonics Products • 1:11

Recursive. Our accurate SHEXP Path Tracing (4096spp)

(a)

(b)

Trad. 12 FPS / Our Recur. 24 FPS 13.8 FPS 5 FPS

(c)

(d)

Trad. 1.4 FPS / Our Recur. 13 FPS 6.3 FPS 2 FPS

Fig. 7. Results of shadow fields compared with SHEXP and path tracing. (a-b) are rendered with SH order 𝑛 = 10. (c-d) are rendered with SH order 𝑛 = 15.
Compared with SHEXP, our results are closer to the ground truth generated by path tracing.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:12 • Hanggao Xin, Zhiqian Zhou, Di An, Ling-Qi Yan, Kun Xu, Shi-Min Hu, and Shing-Tung Yau

Recursive. Our accurate SHEXP Path Tracing (4096spp)

Trad. 0.1 FPS / Our Recur. 0.9 FPS 0.5 FPS 0.2 FPS

Fig. 8. Results of shadow fields compared with SHEXP and path tracing tested with SH order 𝑛 = 15. Even for this complex scene with more than 30k vertices,
our method is still more efficient than SHEXP and produces better results.

Our recursive (𝑛 = 10) SHEXP (𝑛 = 10) Our recursive (𝑛 = 15) SHEXP (𝑛 = 15) Path Tracing (4096spp)

9.4FPS 2.2 FPS 4.3FPS 0.9 FPS

Fig. 9. Comparison between our method and SHEXP on a scene with only sphere occluders. Our method performs consistently faster than SHEXP on different
SH orders. And the results of our method are much closer to the ground truth.

Table 1. Relative L2 error of the approximate multiple product method using recursive triple products.

SH Order 3 4 5 6 7 8 9 10 12 14 16 18 20
Our accurate, 𝑘 = 4/5/6/7/8 <10−6 <10−6 <10−6 <10−6 <10−6 <10−6 <10−6 <10−6 <10−6 <10−6 <10−6 <10−6 <10−6
Trad. / our recursive, 𝑘 = 4 0.21 0.22 0.23 0.23 0.23 0.24 0.23 0.24 0.25 0.24 0.25 0.24 0.24
Trad. / our recursive, 𝑘 = 5 0.35 0.36 0.35 0.35 0.34 0.35 0.35 0.35 0.35 0.35 0.34 0.34 0.35
Trad. / our recursive, 𝑘 = 6 0.49 0.51 0.52 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.52
Trad. / our recursive, 𝑘 = 7 0.67 0.65 0.66 0.68 0.68 0.67 0.69 0.67 0.68 0.69 0.69 0.67 0.68
Trad. / our recursive, 𝑘 = 8 0.87 0.88 0.88 0.89 0.89 0.89 0.89 0.88 0.89 0.89 0.89 0.89 0.88

could be obtained through a multiple product:

𝑉 (𝑥,𝜔) = 𝑉self (𝑥,𝜔) ·𝑉1 (𝑥, 𝜔) · · ·𝑉𝑚 (𝑥, 𝜔), (31)

where𝑉self (𝑥,𝜔) denotes the self visibilitymap and𝑉𝑗 (𝑥, 𝜔) denotes
the visibility map viewing towards the 𝑗-th occluder. By expressing
each term in the above equation using SH coefficients, it naturally
becomes a multiple product in SH space.

We have tested various scenes with different complexity, i.e., ver-
tex number ranging from 14k to 335k, as shown in Fig. 1 (b) and Fig. 7

to 9. The performance statistics are given in Table 2. Three methods
are evaluated for computing the multiple product, including our
accurate method, our approximate method (Sec. 4.5), and the tradi-
tional approximate method (Sec. 3.1.5). We emphasize again that
the latter two methods only differ in computational efficiency but
will produce the same results, so that we do not provide duplicated
rendering results for them. Compared with the traditional approx-
imate method, both our accurate and approximate methods run
faster. Specifically, our accurate method runs 1.15× faster (𝑛 = 10)

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

Fast and Accurate Spherical Harmonics Products • 1:13

Table 2. Performance statistics. For each scene, we provide the name of the scene, the number of vertices, SH order (𝑛), rendering application (PRT or Shadow
Field), the performance data of the traditional method, our accurate method, and our recursive method, respectively, and the speedup on GPU we achieved.
For each method, we show the frame rates and time percentage of SH products in the entire shading pass.

Scene Figure #vert SH order App. Trad.
(FPS/Time perc.)

Our acc.
(FPS/Time perc.)

Our recur.
(FPS/Time perc.) Speedup

Lucy Fig.6 (a) 69994 10 PRT 14.9/92% 26.4/85% N/A 1.8×
Dragon & Bunny Fig.6 (b) 36613 15 PRT 3.0/98% 25.5/87% N/A 8.5×
Plants & Teapot Fig.1 (a) 34213 15 PRT 3.2/98% 26/87% N/A 8.2×
Spider & Scorpion Fig.7(a) 30238 10 SF 12/96% 13.8/93% 24/86% 1.2×/2.0×

Ball & DNA Fig.7(b) 24410 15 SF 1.4/99% 6.3/96% 13/92% 4.5×/9.3×
Chess board Fig.1 (b) 14018 15 SF 2.6/98% 11.2/93% 24/86% 4.3×/8.9×

Dragon in Hall Fig.8 335823 15 SF 0.1/98% 0.5/92% 0.9/88% 4.5×/9.2×
Spheres Fig.9 73753 10 SF 4.9/95% 5.7/94% 9.4/91% 1.2×/1.9×
Spheres Fig.9 73753 15 SF 0.4/98% 2.1/96% 4.3/91% 4.6×/9.1×

or 4.5× faster (𝑛 = 15), and our approximate method runs 2× faster
(𝑛 = 10) or 9.3× faster (𝑛 = 15). Notice that there is not much vi-
sual difference between the rendered results of our accurate and
approximate methods. Hence, in applications where the accuracy is
not the top priority, we could still use the recursive triple product
approximation to compute the multiple product for better efficiency.
We also provide rendered images generated by SH Exponentia-

tion (SHEXP) [Ren et al. 2006] for comparison. The main idea of
SHEXP to compute multiple product is to first transform each input
function to log space, then perform summation in log space, and
finally transform back through an exp operator. However, a SH log
operator would take 𝑂 (𝑛6) time for an arbitrary spherical function.
For better efficiency for rendering, they further approximate the
scene geometry with a set of spheres and the SH log results of visi-
bility maps towards the spheres are precomputed. We found that
SHEXP exhibits a large visual difference from the ground truth.
There are two main reasons. First, the geometries of our tested
scenes are relatively complex, i.e., the antennae of spiders (Figure 7)
are thin and cannot be well approximated using set of spheres. Sec-
ond, the SH exponentiation and SH logarithm operators are crude
approximations, especially for higher-order SHs. Even for scenes
containing only sphere occluders (Figure 9), where no geometric
approximations are involved, the visual differences are still large.
In contrast, our methods, including both accurate and approximate
versions, have a relatively small difference compared to the path
traced ground truth.

Note that the rendering results may exhibit some level of ringing
effects. This is a shared problem using SHs and could be allevi-
ated through a post-process [Sloan 2008] after the triple/multiple
products are computed.

6 DISCUSSIONS AND CONCLUSION
Conclusion. In this paper, we have proposed an accurate and fast
method for SH triple and multiple products. The key idea is to
transform SH basis functions to the Fourier space, perform efficient
multiplications using FFT, then transform the result back. Theoreti-
cally, our method has the best time complexity. And in practice, we
show clear benefits of using our method on both CPU and GPU, on

medium to high SH orders with different numbers of multiple prod-
uct components. We integrate our method into PRT applications,
such as glossy relighting and shadow fields, to demonstrate that our
method is able to reach real-time performance even at an SH order
of 15.

Scope. We believe that our method has opened up possibilities for
the use of moderately high orders of spherical harmonics in ren-
dering applications. Moreover, despite the seemingly complex the-
oretical derivation, our new method could be implemented with
just a few lines of code, and is orthogonal to any other parts in the
rendering engine. Therefore, our method is ready to be adopted by
the industry.

SH is a powerful and fundamental tool widely used across differ-
ent research fields. For example, in computer graphics, it has always
been a common choice to use SHs to represent light in probe based
global illumination. In computer vision, SHs are pervasively used
for illumination estimation in recognition and reconstruction tasks.
SHs have also been used in CNN layer designs, and have shown
effectiveness in point cloud classification and segmentation [Poule-
nard et al. 2019] and shape classification [Cohen et al. 2018; Esteves
et al. 2018]. Recently, SHs have also been applied to neural rendering,
e.g., using SHs as the representation of radiance [Yu et al. 2021] for
real-time rendering of Neural Radiance Fields (NeRFs) [Mildenhall
et al. 2020], or modulating feature values using SHs for better view
coherence [Thies et al. 2019]. Since multiple products are funda-
mental operators of SHs, our method is expected to benefit many
applications beyond PRT.

Limitations and future work. As elaborated above, our method has a
great advantage on the time complexity compared to the traditional
method. However, due to the large constant factor in the time com-
plexity of FFT, our current implementation can be slower than the
traditional method at low SH orders 𝑛 with a few components of
multiplication 𝑘 . An interesting direction is to further optimize the
performance for low SH orders, possibly by specially optimized FFT
implementation tailored to our problem.

The recursive triple product approximation would still be favored
in applications where the accuracy is not the top priority, hence, it
is also interesting to efficiently estimate or bound the truncation

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:14 • Hanggao Xin, Zhiqian Zhou, Di An, Ling-Qi Yan, Kun Xu, Shi-Min Hu, and Shing-Tung Yau

errors introduced in the triple product approximation. A possible
way to achieve that is through analyzing the distributions of energy
(i.e., coefficient values) along bands.

We also hope our work would inspire researchers to explore the
Fourier transform idea deeper to accelerate other complex computa-
tions in rendering. For example, as a subset of spherical harmonics,
triple and multiple product of zonal harmonics [Sloan et al. 2005]
might be accelerated even further with their own properties. It is
also of potential value to perform fast high-dimensional multiple
product integrals (such as the rendering equation with a 4D BRDF
inside).

ACKNOWLEDGMENT
We would like to thank the reviewers for their constructive com-
ments and suggestions. This work is supported by the National
Natural Science Foundation of China (Project Numbers: 61822204,
61521002, 61863031) and a research grant from the Beijing Higher
Institution Engineering Research Center. Ling-Qi Yan is supported
by gift funds from Adobe, Dimension 5 and XVerse.

REFERENCES
E Oran Brigham. 1988. The fast Fourier transform and its applications. Prentice-Hall,

Inc.
Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. 2018. Spherical CNNs. In

International Conference on Learning Representations.
Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis.

2018. Learning so(3) equivariant representations with spherical cnns. In Proceedings
of the European Conference on Computer Vision. 52–68.

Xuejun Hao and Amitabh Varshney. 2004. Real-time rendering of translucent meshes.
ACM Transactions on Graphics 23, 2 (2004), 120–142.

DJ Hofsommer andML Potters. 1960. Table of Fourier coefficients of associated Legendre
functions. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen:
Series A: Mathematical Sciences 63, 5 (1960), 460–480.

Teturo Inui, Yukito Tanabe, and Yositaka Onodera. 1999. Group theory and its applica-
tions in physics. Vol. 78. Springer Verlag.

Jan Kautz, Peter-Pike Sloan, and Jaakko Lehtinen. 2005. Precomputed Radiance Transfer:
Theory and Practice. In ACM SIGGRAPH 2005 Courses. 1–es.

Jan Kautz, John Snyder, and Peter-Pike Sloan. 2002. Fast Arbitrary BRDF Shading
for Low-Frequency Lighting Using Spherical Harmonics. Rendering Techniques 2,
291-296 (2002), 1.

Jaakko Lehtinen. 2007. A framework for precomputed and captured light transport.
ACM Transactions on Graphics 26, 4 (2007), 13–es.

Jaakko Lehtinen and Jan Kautz. 2003. Matrix radiance transfer. In Proceedings of the
2003 symposium on Interactive 3D graphics. 59–64.

Christian Lessig, Mathieu Desbrun, and Eugene Fiume. 2014. A constructive theory of
sampling for image synthesis using reproducing kernel bases. ACM Transactions on
Graphics 33, 4 (2014), 1–14.

Xinguo Liu, Peter-Pike J Sloan, Heung-Yeung Shum, and John Snyder. 2004. All-
Frequency Precomputed Radiance Transfer for Glossy Objects. Rendering Techniques
2004 (2004).

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing scenes as neural radiance fields
for view synthesis. In European conference on computer vision. 405–421.

Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. 2003. All-frequency shadows using
non-linear wavelet lighting approximation. In ACM SIGGRAPH 2003 Papers. 376–
381.

Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. 2004. Triple product wavelet integrals
for all-frequency relighting. In ACM SIGGRAPH 2004 Papers. 477–487.

Derek Nowrouzezahrai, Patricio D. Simari, and Eugene Fiume. 2012. Sparse zonal
harmonic factorization for efficient SH rotation. ACM Transactions on Graphics 31,
3 (2012), 23:1–23:9.

Jacopo Pantaleoni, Luca Fascione, Martin Hill, and Timo Aila. 2010. Pantaray: fast
ray-traced occlusion caching of massive scenes. ACM Transactions on Graphics 29, 4
(2010), 1–10.

Adrien Poulenard, Marie-Julie Rakotosaona, Yann Ponty, and Maks Ovsjanikov. 2019.
Effective rotation-invariant point cnn with spherical harmonics kernels. In 2019
International Conference on 3D Vision. 47–56.

Ravi Ramamoorthi. 2009. Precomputation-based rendering. Foundations and Trends in
Computer Graphics and Vision 3, 4 (2009), 281–369.

Ravi Ramamoorthi and Pat Hanrahan. 2001. An Efficient Representation for Irradiance
Environment Maps. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’01). 497–500.

Zhong Ren, Rui Wang, John Snyder, Kun Zhou, Xinguo Liu, Bo Sun, Peter-Pike Sloan,
Hujun Bao, Qunsheng Peng, and Baining Guo. 2006. Real-time soft shadows in
dynamic scenes using spherical harmonic exponentiation. In ACM SIGGRAPH 2006
Papers. 977–986.

Nathanaël Schaeffer. 2013. Efficient spherical harmonic transforms aimed at pseu-
dospectral numerical simulations. Geochemistry, Geophysics, Geosystems 14, 3 (2013),
751–758.

Peter-Pike Sloan. 2008. Stupid spherical harmonics (sh) tricks. In Game developers
conference, Vol. 9. 42.

Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. 2003a. Clustered principal
components for precomputed radiance transfer. ACM Transactions on Graphics 22,
3 (2003), 382–391.

Peter-Pike Sloan, Jan Kautz, and John Snyder. 2002. Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments. In Proceedings
of the 29th annual conference on Computer graphics and interactive techniques. 527–
536.

Peter-Pike Sloan, Xinguo Liu, Heung-Yeung Shum, and John Snyder. 2003b. Bi-scale
radiance transfer. ACM Transactions on Graphics 22, 3 (2003), 370–375.

Peter-Pike Sloan, Ben Luna, and John Snyder. 2005. Local, deformable precomputed
radiance transfer. ACM Transactions on Graphics 24, 3 (2005), 1216–1224.

Nico Sneeuw and Richard Bun. 1996. Global spherical harmonic computation by
two-dimensional Fourier methods. Journal of Geodesy 70, 4 (1996), 224–232.

John Snyder. 2006. Code generation and factoring for fast evaluation of low-order
spherical harmonic products and squares. MSR-TR-2006-53 (May 2006), 9.

Bo Sun and Ravi Ramamoorthi. 2009. Affine double-and triple-product wavelet integrals
for rendering. Transactions on Graphics 28, 2 (2009), 1–17.

Weifeng Sun and Amar Mukherjee. 2006. Generalized Wavelet Product Integral for
Rendering Dynamic Glossy Objects. In ACM SIGGRAPH 2006 Papers. 955–966.

Justus Thies, Michael Zollhöfer, andMatthias Nießner. 2019. Deferred Neural Rendering:
Image Synthesis Using Neural Textures. ACM Transactions on Graphics. 38, 4 (2019),
12 pages.

Karvel K Thornber and David W Jacobs. 2006. Broadened-specular reflection and linear
subspaces for object recognition. US Patent 7,058,217.

Yu-Ting Tsai and Zen-Chung Shih. 2006. All-frequency precomputed radiance transfer
using spherical radial basis functions and clustered tensor approximation. ACM
Transactions on Graphics 25, 3 (2006), 967–976.

Jingwen Wang and Ravi Ramamoorthi. 2018. Analytic Spherical Harmonic Coefficients
for Polygonal Area Lights. ACM Transactions on Graphics 37, 4 (2018).

Jiaping Wang, Peiran Ren, Minmin Gong, John Snyder, and Baining Guo. 2009. All-
frequency rendering of dynamic, spatially-varying reflectance. In ACM SIGGRAPH
Asia 2009 papers. 1–10.

Jiaping Wang, Kun Xu, Kun Zhou, Stephen Lin, Shimin Hu, and Baining Guo. 2006.
Spherical Harmonics Scaling. The Visual Computer 22 (Sept 2006), 713–720.

LifanWu, Guangyan Cai, Shuang Zhao, and Ravi Ramamoorthi. 2020. Analytic spherical
harmonic gradients for real-time rendering with many polygonal area lights. ACM
Transactions on Graphics 39, 4 (2020), 134–1.

Kun Xu, Yue Gao, Yong Li, Tao Ju, and Shi-Min Hu. 2007. Real-time homogenous
translucent material editing. In Computer Graphics Forum, Vol. 26. Wiley Online
Library, 545–552.

Kun Xu, Li-Qian Ma, Bo Ren, Rui Wang, and Shi-Min Hu. 2011. Interactive hair
rendering and appearance editing under environment lighting. ACM Transactions
on Graphics 30, 6 (2011), 1–10.

Kun Xu, Wei-Lun Sun, Zhao Dong, Dan-Yong Zhao, Run-Dong Wu, and Shi-Min Hu.
2013. Anisotropic Spherical Gaussians. ACM Transactions on Graphics 32, 6 (2013),
209:1–209:11.

Tomoya Yamaguchi, Tatsuya Yatagawa, Yusuke Tokuyoshi, and Shigeo Morishima.
2020. Real-time rendering of layered materials with anisotropic normal distributions.
Computational Visual Media 6, 1 (2020), 29–36.

Ling-Qi Yan, Yahan Zhou, Kun Xu, and Rui Wang. 2012. Accurate Translucent Material
Rendering under Spherical Gaussian Lights. Computer Graphics Forum 31, 7 (2012),
2267––2276.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021.
Plenoctrees for real-time rendering of neural radiance fields. arXiv preprint
arXiv:2103.14024 (2021).

Kun Zhou, Yaohua Hu, Stephen Lin, Baining Guo, and Heung-Yeung Shum. 2005.
Precomputed shadow fields for dynamic scenes. In ACM SIGGRAPH 2005 Papers.
1196–1201.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Basis Function Operators
	3.2 Spherical Harmonics and 2D Fourier Series

	4 Our approach for SH products
	4.1 Overview
	4.2 Convolution in Fourier space
	4.3 Conversion back to SH space
	4.4 Complexity Analysis
	4.5 Recursive triple product approximation

	5 Experiments
	5.1 Performance comparison
	5.2 Error analysis of approximate methods
	5.3 Rendering applications

	6 Discussions and Conclusion
	References

