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Fig. 1. Data solving results from a real MoCap capture sequence. Relative to the ground truth (red), MoCap-Solver (blue) can achieve more accurate results
than the state-of-the-art [Holden 2018] (green).

In a conventional optical motion capture (MoCap) workflow, two processes
are needed to turn captured raw marker sequences into correct skeletal
animation sequences. Firstly, various tracking errors present in the mark-
ers must be fixed (cleaning or refining). Secondly, an agent skeletal mesh
must be prepared for the actor/actress, and used to determine skeleton in-
formation from the markers (re-targeting or solving). The whole process,
normally referred to as solving MoCap data, is extremely time-consuming,
labor-intensive, and usually the most costly part of animation production.
Hence, there is a great demand for automated tools in industry. In this
work, we present MoCap-Solver, a production-ready neural solver for opti-
cal MoCap data. It can directly produce skeleton sequences and clean marker
sequences from raw MoCap markers, without any tedious manual opera-
tions. To achieve this goal, our key idea is to make use of neural encoders
concerning three key intrinsic components: the template skeleton, marker
configuration and motion, and to learn to predict these latent vectors from
imperfect marker sequences containing noise and errors. By decoding these
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components from latent vectors, sequences of clean markers and skeletons
can be directly recovered. Moreover, we also provide a novel normalization
strategy based on learning a pose-dependent marker reliability function,
which greatly improves system robustness. Experimental results demon-
strate that our algorithm consistently outperforms the state-of-the-art on
both synthetic and real-world datasets.
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1 INTRODUCTION
Motion capture (MoCap) is the process of recording human mo-
tions and is widely used to produce realistic physical movements
of virtual characters. MoCap systems typically belong to one of
two categories, according to the type of sensors, inertial or optical.
Inertial MoCap systems use attached inertial measurement units to
detect movements of each marker relative to a base position, while
optical MoCap systems use calibrated multi-view infrared sensors
to track and calculate the absolute positions of markers in 3D space.
Although inertial systems are more affordable, they lack accuracy
and absolute positioning, limiting their use in applications where a
high level of precision is required. Thus, optical MoCap systems are
more common in the game and film industries.
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However, markers captured by optical senors inevitably contain
positional noise and tracking errors (e.g. missing or misidentified
markers). In a conventional workflow, artists have to manually fix
these issue, which typically requires a huge amount of time and
effort [Holden 2018; Perepichka et al. 2019]. Furthermore, the preci-
sion of marker configuration information also plays an important
role in accurately retrieving skeletons from markers, so a template
agent skeletal mesh has to be carefully set up and fitted to each
actor or actress, placing another burden on MoCap artists. Thus,
automated tools that can relieve the manual workload are in high
demand.
Although the aforementioned tedious manual tasks seem to be

repetitive and mechanical, carrying out these calculations on Mo-
Cap data is actually an ill-posed task. In an optical MoCap system,
each captured marker corresponds to a physical marker pinned
on the MoCap suit. Hence, true positions of markers in the 3D
space depends on three types of intrinsic information: the actor’s
body shape, marker distribution on the suit, and the actor’s pose.
Successfully retrieving a skeleton and clean marker information
relies on correctly recovering these three intrinsic components from
raw markers, which is obviously an impossible task without prior
knowledge of human shape, pose and kinetics.
To incorporate this required prior knowledge, existing methods

either use hard-coded empirical rules, or adopt statistical analysis to
mine it from a database. Holden’s work [2018] is a state-of-the-art
solution to this problem. It trains a simple neural network (i.e. a
fully-connected backbone with residual connections) that predicts
skeletal joint information from raw markers pose-by-pose. How-
ever, two main drawbacks of Holden’s method severely limit its use
in practical production environments. Firstly, the precision of the
network is highly sensitive to noise and errors present at several
key reference markers around the torso, which often leads to unsta-
ble results for real-world data. Secondly, the per-pose framework
tends to break temporal continuity and shape consistency of cap-
tured actions. Although visual smoothness can be achieved with
a Savitzky-Golay post filtering process, fidelity of motions is also
damaged, a serious disadvantage in production environments where
a high degree of accuracy is required (see Fig. 1).

To address these issues, we propose a new neural solver for this
problem (Fig. 2). Starting from a large MoCap database, we first
train neural encoders for three key intrinsic components: template
skeleton, marker configuration and motion. Then, instead of directly
inferring clean markers or skeletons, we train a deep neural net-
work to predict these encoded latent vectors from raw markers, and
recover clean markers or skeletons by applying linear blend skin-
ning (LBS) to the decoded components. We demonstrate that this
approach achieves higher precision and better temporal continuity
than Holden’s end-to-end per-pose solution. Furthermore, to elim-
inate both issues caused by root transformations and at the same
time avoid over-reliance on the stability of key reference markers,
we propose a novel pose normalization strategy incorporating a
pose-dependent marker reliability function learned from real-world
MoCap data. Experimental results show that this strategy greatly
improves system robustness.
The contributions of this paper can be briefly summarized as:

• A deep learning based framework to accurately reconstruct
sequences of clean markers and skeletons from raw markers
by explicitly exploring the intrinsic relationships between
marker positions, actor body-shapes, marker distributions
and motions.

• Anovel normalization strategy incorporating a pose-dependent
marker reliability function learned from real-world MoCap
data, which successfully avoids over-reliance on specificmark-
ers and greatly improves the algorithm’s robustness.

• A production-ready MoCap data solution which consistently
outperforms the state-of-the-art.

2 RELATED WORK
In this section, we review prior work in related areas.

2.1 MoCap Data Cleaning and Solving
To accurately recover skeletal motions from imperfect marker data,
numerous methods, respecting prior beliefs of various kinds, have
been proposed. According to the kind of priors, existing methods
can be considered as evidence-driven or data-driven.

Evidence-driven methods typically build upon empirical rules de-
rived from human kinematics, e.g. shape consistency, pose legality,
or spatiotemporal continuity. The simplest observations are that
throughout the reconstructed motion sequence, bone joints should
preserve relative positions to corresponding markers, bone lengths
should remain constant and bone joint angles should stay within a
reasonable range. Based on these observations, Herda et al. [2000]
use a fixed template skeleton to track and reconstruct the positions
of clean markers, Zordan et al. [2003] map raw markers to a chosen
template skeleton with fixed limb-length and perform physical simu-
lation to avoid abnormal poses, Kirk et al. [2005] present a nonlinear
optimization framework to automatically estimate from markers
underlying skeletons obeying all distance constraints, and Hornung
et al. [2005] improve the robustness of estimated skeletons by rec-
ognizing and removing unreliable markers based on local rigidity.
Recently, a new evidence-driven method taking the self-similarity
of human motions into account was introduced by Aristidou et
al. [2018]. All of these methods are designed to work with specific
types of noise or errors present in the input marker positions, and
tend to produce broken or over-smoothed results when faced with
more complex situations.

Another assumption often adopted by evidence-drivenmethods is
the temporal smoothness of markers, based on which, two families
of formulations have been proposed: linear dynamical systems [Aris-
tidou and Lasenby 2013; Dorfmüller-Ulhaas 2007; Li et al. 2010], and
low-rank matrix completion [Feng et al. 2015, 2014; Lai et al. 2011;
Liu et al. 2014; Park and Hodgins 2006]. Methods based on linear
dynamical systems (also known as Kalman filters) attempt to predict
motions from noisy marker observations and assume that motions
can be approximated by a linear Gaussian model. Alternatively, low-
rank matrix completion approaches focus on the low-rank property
of MoCap data, and cast the problem as motion reconstruction
subject to low-rank matrix completion. Burke and Lasenby [2016]
introduce a framework which combines these two types of method.
These formulations all build upon solid theoretical foundations, and
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Fig. 2. Overview of our framework. Above: database collected to train our neural networks. Below: the two components of our framework, MoCap-Encoders
and MoCap-Solver. The former comprises three autoencoders for the three intrinsic components of MoCap data. The latter maps from raw markers to the
latent codes of the MoCap-Encoders to recover clean markers for use by a linear skinning function.

are guaranteed to produce optimal results if the assumptions about
data and noise distributions hold, but conversely, may generate un-
realistic results in complex circumstances where the assumptions
do not hold. As pointed out by Li et al. [2010], certain basic distance
constraints required by physics may not be preserved in the results.
Unlike evidence-driven methods which directly build upon ex-

plicit prior observations, data-driven approaches acquire prior knowl-
edge from data. Specifically, a low-dimensional embedding is learned
from a set of existing MoCap data, where each embedding vector
corresponds to a valid pose or a motion segment. By encoding input
markers into and decoding from the embedding space, errors in
the markers are automatically corrected. Linear space embedding
techniques, such as local PCA [Baumann et al. 2011; Chai and Hod-
gins 2005; Liu and McMillan 2006; Tautges et al. 2011] or sparse
encoding [Wang et al. 2016; Xiao et al. 2015], are the basis for most
solutions of this kind. A similar bilinear basis model factorizing tem-
poral and spatial components is introduced by Akhter et al. [Akhter
et al. 2012]. With the rise of deep learning techniques, deep neural
networks have also been utilized to learn manifolds or latent spaces
of human motions [Holden et al. 2015; Taylor et al. 2006] spanned
by a non-linear basis. In a recent application by Pavllo et al. [2019],
an auto-encoder is trained to recover hand motions from markers
subject to two-handed mutual occlusion. Essentially, our algorithm
shares the same spirit with existing data-driven methods. Specifi-
cally, we introduce a novel neural auto-encoder based framework
which learns to decompose a sequence of markers into latent vectors
for three intrinsic components: the template skeleton, marker con-
figuration, and motion. As these are decisive factors contributing to

the 3D positions of MoCap markers, clean markers can be directly
reconstructed. We believe this is the first deep learning based frame-
work fully addressing the relationships between captured full-body
markers and underlying human shape, marker configuration and
motion. We will demonstrate that our factorization significantly
facilitates cleaning and solving of (determination of skeleton infor-
mation from) MoCap data. Compared to existing linear basis models,
the use of deep neural networks greatly improves the orthogonality
and representation ability of the vectors in the learned latent space.
Holden’s state-of-the-art work [2018] also uses a data-driven

approach for automatically solving optical MoCap data. It tackles
the problem by training a simple end-to-end neural network (i.e.
a fully-connected backbone with residual connections) to predict
skeletal joint information from raw markers pose-by-pose. Obvi-
ously, such a per-pose processing framework tends to lack temporal
continuity and shape consistency of motions. Even the length of
each bone in the predicted skeleton sequences varies slightly. To
maintain visual smoothness, Holden applies a Savitzky-Golay filter
to the predicted poses, and as a consequence, the fidelity of the cap-
tured data is damaged, as this post-processing operation destroys
high-frequency action details. This drawback severly limits its us-
age in production environments where a high degree of accuracy is
required. On the contrary, our framework provides excellent mo-
tion precision, spatio-temporal continuity and shape consistency by
exploiting intrinsic priors encoded in the corresponding latent vec-
tors. Moreover, Holden adopts a rigid-body registration algorithm to
align poses in a local reference frame, leading to a lack of robustness,
as its precision is highly sensitive to corruption in several chosen
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markers, posing another drawback for practical usage. To prevent
over-reliance on a small number of key markers and thus improve
system robustness, we learn a pose-dependent marker reliability
function from real-world MoCap data, and automatically pick the
most reliable frame in the sequence for alignment. Experimental
results demonstrate that our algorithm consistently outperforms
Holden’s method on both synthetic and real-world data.

2.2 Deep 3D Skeletal Motion Representation
A sound representation of 3D skeletal motions is of vital importance
to our system. Despite various traditional solutions, deep learn-
ing based methods play a dominant role in this area. As skeletal
motions are temporal sequences recording transformations of a
predefined set of joints, sequential models can be naturally adapted
to cope with motion data, for instance, conditional restricted Boltz-
mann machines [Taylor et al. 2006], temporal convolutional net-
works [Holden et al. 2016, 2015; Kaufmann et al. 2020], recurrent
neural networks [Fragkiadaki et al. 2015; Harvey et al. 2020; Henter
et al. 2020; Lee et al. 2018; Li et al. 2019, 2020; Mall et al. 2017], and
spatio-temporal graph convolutional networks (GCN) [Aberman
et al. 2020; Yan et al. 2018]. Since an articulated human skeleton can
be organized as a graph, GCN-based methods prove more suited
to skeletal motions as they not only capture temporal movements
but also account for the underlying skeleton structure. Apart from
network architectures, another notable difference between these
methods concerns their descriptions of joint transformations [Pavllo
et al. 2020]. Due to the constant bone-length constraints, a pose can
either be described by joint rotations or joint positions. Forward
and inverse kinematics can be used for the conversion. However,
as inverse kinematics problems may have multiple solutions, in
applications where joint rotations are required for driving a skinned
mesh, rotational representation is to be preferred.

For these reasons, our backbone structure for learning the motion
embedding is based upon the skeleton-aware graph convolutional
network proposed by Aberman et al. [2020], a state-of-the-art net-
work designed for motion re-targeting. However, unlike the problem
of re-targeting, static template skeletons are unknown information
which needs to be determined in our application. Hence, we feed the
decoded static skeleton, instead of the ground-truth, to the motion
decoder, in a major difference from [Aberman et al. 2020].

2.3 Parametric Human Models
Although addressing a different problem, our decomposition frame-
work shares the same spirit as research into parametric human mod-
els, such as SMPL [Loper et al. 2015] and its subsequent extensions
[Pavlakos et al. 2019; Romero et al. 2017]. Specifically, SMPL charac-
terizes shape and pose variations of natural human bodies using a
skinned vertex-based model, where the shape space is represented
as vertex positions of each mesh in a rest pose while the pose space
is described by angle-axis rotations of body joints. To some extent,
SMPL can also be used to acquire shape and pose information from
MoCap markers, as each marker physically corresponds to a point
location on the mesh surface. In this way, Mahmood et al. [2019]
create a dataset of human meshes from MoCap data. However, such
frameworks are quite sensitive to noise and errors in the markers,

actor 1 actor 2

configuration 1 configuration 2

Fig. 3. Marker positions. Actors 1 and 2 have different body shapes, and
their marker positions are different. Even for a fixed actor (2), different
MoCap suits can have different marker locations.

and thus inapplicable in our scenario where the primary focus is the
precision of reconstructed motions rather than mesh shapes. From
a technical perspective, our framework can be viewed as a skinned
marker-based parametric human model. As markers correspond to
a subset of vertices in a skinned mesh, the same MoCap actor may
be provided with different marker configurations, which differenti-
ates our framework from existing vertex-based parametric human
models.

3 METHOD
In this section, we provide detailed descriptions of our methods.
We first give the formulation of the MoCap problem and introduce
concepts that are related to this problem (Section 3.1). The key idea
of our solution is to explore the compact embeddings of three key
intrinsic components using MoCap-Encoders (Section 3.2) and to
predict the latent codes of these key intrinsic components using
MoCap-Solver (Section 3.3). Finally, the data normalization proce-
dures used before feeding data to the MoCap-Solver are described
(Section 3.4).

3.1 Problem
The problem we focus on is retrieving the skeleton and clean mark-
ers from raw markers that contain positional noise and missing
or mislabeled markers. Given a sequence of raw marker data 𝑋 ∈
R𝑡×𝑁×3 in a temporal window of 𝑡 frames, the question is how to get
clean markers𝑌 ∈ R𝑡×𝑁×3 and skeleton transformations from these
raw markers. This is an ill-posed problem. The true positions of the
markers in 3D space depend on three types of intrinsic information:
the actor’s body shape, marker distributions on the suit, and the
actor’s pose. As shown in Fig. 3, the body shapes of actors differ, so
marker positions differ from actor to actor. Even for the same actor,
since markers on the capture suit are manually pinned in a setup
stage, the positions may differ for different capture sessions.

Thus, we next consider three intrinsic features corresponding to
the actor’s body shape, marker distributions and the actor’s pose
respectively. The marker configuration 𝑌𝐶 ∈ R𝑁×𝐽 ×3 corresponds
to the marker distribution on the suit used for optical MoCap. The
marker configuration 𝑌𝐶 is defined using the local offset from each
marker to each joint. The template skeleton 𝑌𝑇 ∈ R𝐽 ×3 corresponds
to the body shape of the actor; it consists of a set of offsets of
each joint relative to its parent joint, with the actor in a T-pose.
The motion 𝑌𝑀 ∈ R𝑡×( 𝐽 ×4+3) corresponds to the actor’s pose; it
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Fig. 4. MoCap-Encoder architecture. It consists of neural encoders for the
three key intrinsic components: template skeleton, marker configuration
and motion.

consists of a temporal sequence of local rotations of each joint
relative to its parent’s coordinate frame in the kinematic chain, and
the global translation of the root joint. Rotations are represented
by quaternions so have 4 elements. The rotation of the root joint
represents the global rotation of the motion. The global translation
is represented by the global coordinate system.

Given marker configuration 𝑌𝐶 , skeleton template 𝑌𝑇 and motion
𝑌𝑀 , we can reconstruct the marker positions 𝑌 by use of a linear
blending function (LBS). Finally, we may now state the problem as:
given the raw markers 𝑋 for a sequence, how can we decompose
𝑋 into the three intrinsic components: marker configuration 𝑌𝐶 ,
skeleton template 𝑌𝑇 and motion 𝑌𝑀 . We propose a neural network
method to solve this problem.

In order to train our neutral networks, we have collected a high-
quality extensive MoCap dataset. It contains multiple characters,
each having its own template skeleton, marker configuration and
multiple sequences that contain raw markers, clean markers and
corresponding motion data.

3.2 MoCap-Encoders
Our MoCap-Encoders are neural encoders for the three key intrinsic
components: template skeleton, marker configuration and motion.
Their purpose is to exploit compact embeddings of each of these
components. The structure of the MoCap-Encoders unit is shown
in Fig. 4. It contains three sub-encoders: the marker configuration
autoencoder (above), the template skeleton autoencoder (middle),
and the motion autoencoder (below).

The basic observations are that motion and marker configuration
are defined with respect to a template skeleton, i.e. relative joint
rotations and relative marker offsets respectively, while the tem-
plate skeleton is independent of motion and marker configuration.
Thus, the skeleton branch is fed to the marker configuration and
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Fig. 5. MoCap-Solver architecture.

motion branches. The template skeleton autoencoder [𝐸𝑇 , 𝐷𝑇 ] and
the motion autoencoder [𝐸𝑀 , 𝐷𝑀 ] follows the static encoder and
dynamic encoder in [Aberman et al. 2020] , a DNN-based framework
for motion re-targeting between skeletons. We found the skeleton-
aware differentiable operators (i.e., skeletal convolution, pooling and
unpooling) proposed by Aberman et al. [2020] effective in character-
izing skeletal data. However, in re-targeting, the template skeletons
are known, but in our application they need to be determined, so we
add the template skeleton decoder 𝐷𝑇 as the symmetric structure to
the encoder 𝐸𝑇 . The structure of marker configuration autoencoder
is inspired by [Holden 2018], which shows that a stack of residual
blocks work well with marker data.

In the training phase, we define the losses as follows to train the
three autoencoders.

L𝑇 = D(𝑌𝑇 , 𝑋𝑇 ), (3-1)
L𝑀 = 𝛽1D(𝑌𝑀 , 𝑋𝑀 ) + 𝛽2D(𝐹𝐾 (𝑌𝑀 , 𝑌𝑇 ), 𝐹𝐾 (𝑋𝑀 , 𝑋𝑇 )), (3-2)
L𝐶 = 𝛽3D(𝑌𝐶 , 𝑋𝐶 ) + 𝛽4D(𝐿𝐵𝑆 (𝑌𝐶 , 𝑌𝑇 ), 𝐿𝐵𝑆 (𝑋𝐶 , 𝑋𝑇 )), (3-3)

where D denotes weighted-𝐿1 loss; the weight distribution will be
discussed in Section 4.1. 𝐹𝐾 (·, ·) is the forward kinematic function
that computes the global positions of joints given motion and the
template skeleton, 𝐿𝐵𝑆 (·, ·) is the linear blend skinning function
that computes the global positions of markers given the marker
configuration and the template skeleton. Notice that L𝐶 is only
evaluated on the template skeleton (i.e., under a T-pose), because
the marker configuration is physically fixed within each capture
session, independent to motion.

3.3 MoCap-Solver
Having trained the MoCap-Encoders for the three intrinsic compo-
nents: marker configuration, template skeleton and motions, our
purpose is to map the input raw markers to the corresponding latent
codes of the three intrinsic components from the input raw markers,
and then decode the latent codes to compute clean markers using a
linear blend skinning function. The benefit of our method is that we
can predict the spatio-temporal information contained in the latent
code of motion.

Thus, the MoCap-Solver is designed to predict the latent codes of
marker configuration, template skeleton and motions. The network
structure of the MoCap-Solver is shown in Fig. 5. We follow [Holden
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2018], using residual blocks to predict the latent codes of the three
intrinsic components.
In our neural network, four sub-unit objectives should be opti-

mized: marker positions, marker configurations, template skeletons
and motions. Overall, the final objective function is:

L =𝛼1D(𝑌,𝑋 ) + 𝛼2D(𝑌𝐶 , 𝑋𝐶 )
+ 𝛼3D(𝑌𝑇 , 𝑋𝑇 ) + 𝛼4D(𝑌𝑀 , 𝑋𝑀 ) + 𝛾 ∥Ψ∥2,

(3-4)

where D is as above, 𝛼1–𝛼4 weight the four losses, ∥Ψ∥2 represents
the 𝑙2 regularization loss and 𝛾 is a weight controlling the penalty
degree.

3.4 Normalization
In the real world, raw markers contain global translations and rota-
tions that vary greatly, increasing the difficulty of training.Moreover,
raw markers often include outliers which hinder convergence of
the training phase of the MoCap-Solver. Thus, before feeding raw
marker data into the MoCap-Solver, we normalize the raw markers
to get rid of outliers and transform them to a local space, acceler-
ating convergence and enhancing the robustness of our algorithm.
Our normalization procedure has two phases: outlier detecting and
replacement, and rigid registration. This section introduces our
novel normalization strategy which incorporates a pose-dependent
marker reliability function learned from real-world MoCap data.
This successfully avoids over-reliance on certain specific markers
and greatly improves the algorithm’s robustness.

Inspired by the outlier removal method in [Holden 2018], we also
use distance matrix tools to identify poorly positioned markers. A
distance matrix is a square matrix recording the pairwise Euclidean
distances between a set of markers. From the input raw markers, we
extract the distance matrix of each frame, and find the frame whose
distance matrix is closest to the mean distance matrix across all
frames as the reference frame. By comparing each distance matrix
with that of the reference frame, we can detect outliers by setting
a threshold to 300𝑚𝑚. Instead of setting detected outliers to the
origin, as in [Holden 2018], we use an outlier replacement method
to fill the gap left by the removed outlier. It works by optimizing
the distance matrix to be consistent to the distance matrix of the
reference frame for the whole sequence.

The rawmarker data is in global coordinate system. To reduce the
training difficulty, we need to remove the global transformation by
re-representing the data in a local space. Similar to [Holden 2018], we
take 8 markers surrounding the spine as reference markers, calculate
the global rigid transformation to the T-pose using these markers
and place all markers into this local space using the calculated rigid
transformation matrix. However, in real-world raw marker data,
these reference markers are, though much more reliable than other
markers, still very likely to contain noise and error. Such errors
greatly affect the precision of the network, which is also mentioned
in [Holden 2018]. Actually, this is amajor drawback of [Holden 2018]
in production environments, as we found 4.43% of the frames in a
large real MoCap dataset containing obvious problematic reference
markers (i.e. if any of the reference markers has an distance error
over 300𝑚𝑚 ).
Unlike Holden’s frame-by-frame solution, our MoCap-Solver

takes a sequence of frames as input, making it possible to retrieve
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Fig. 6. The network structure of pose-dependent marker reliability function
𝐹𝑀𝑅 .

rigid transformation base on more frames. The key problem lies in
finding frames in a sequence that contain least noise in the reference
markers. We observe that the distribution of noise in the reference
markers is highly related to the actor’s pose. For example, the front-
abdomen markers are often occluded when actors bend over. Thus,
we make use of a pose-dependent marker reliability function 𝐹𝑀𝑅 to
measure the reliability of the reference markers. We define marker
reliability 𝑃𝑖 of the 𝑖−th reference marker as a function of the dis-
tance 𝑑𝑖 between the raw reference marker and clean reference
marker, as follows, larger 𝑃𝑖 indicating greater reliability:

𝑃𝑖 =


1 𝑑𝑖 ≤ 50𝑚𝑚
1.2 − 0.004𝑑𝑖 50𝑚𝑚 < 𝑑𝑖 < 300𝑚𝑚
0 𝑑𝑖 ≥ 300𝑚𝑚

(3-5)

The raw markers are the input 𝑍 ∈ R𝑁×3 to 𝐹𝑀𝑅 , and the output
consists of the marker reliability of 8 reference markers 𝑃 ∈ [0, 1]8.
We formulate this problem as a regression problem. The network
structure of 𝐹𝑀𝑅 is shown in Fig. 6 and follows the network structure
of [Holden 2018]. To train 𝐹𝑀𝑅 , we collect a real MoCap dataset
which contains both raw markers and corresponding clean markers
for sequences. Then the marker reliability of the reference markers
are computed by Eq. (3-5). The loss function of 𝐹𝑀𝑅 in the training
phase is the cross-entropy loss D𝑐𝑒 of marker reliability:

L𝑃 = D𝑐𝑒 (𝑃, 𝑃) (3-6)

where 𝑃 denotes the ground-truth marker reliability.
After training 𝐹𝑀𝑅 , given raw markers for a sequence, we com-

pute the marker reliability function 𝐹𝑀𝑅 for all frames. Frames are
identified as reliable if the predicted reliability of all 8 reference
markers exceeds 0.8. For each reliable frame, we calculate its rigid
transformation matrix to the T-pose. Since in our system the pre-
dicting is performed on a temporal window of size 𝑡 , we need to
specify a local reference frame for each input 𝑡 frames, where if
there are more than one reliable frames, we pick the frame with
minimum rotation transformation, and if no reliable frames, the
local reference frame in the closest previous temporal window is
used.

4 EVALUATION
In testing our MoCap-Solver, we consider three things. Firstly, we
discuss the training settings of the MoCap-Solver in Section 4.1.
Then we focus on analyzing the performance of various components
of the MoCap-Solver in Section 4.2, with an ablation study in Section
4.3. Finally we compare MoCap-Solver with [Holden 2018] and
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[Mahmood et al. 2019], state-of-the-art MoCap data solving and
recovery methods respectively.

4.1 Training Settings
In this section, we introduce the detailed training settings used
in our experiments, including database collection and parameter
settings.

4.1.1 Database Collection. We need an extensive, high-quality Mo-
Cap dataset with different characters, which consists of rawmarkers
and corresponding clean markers and skeleton information. We
collected two types of datasets, and trained a version of the MoCap-
Solver for each dataset.

The first is the real MoCap dataset captured in the real world for
character motion production for a game studio. The ground-truth
markers were cleaned by hand, the skeleton information was pro-
duced using a commercial solver. We collected 10k sequences of
MoCap data with a total of around 5m frames containing 81 char-
acters and 125 sets of marker configurations. Two sets of markers
configured for the same character are considered as different marker
configurations if the distance between any pair of corresponding
markers exceeds 10𝑚𝑚.
The second is the synthetic MoCap dataset produced by driving

SMPL model using pose parameters from the CMU MoCap dataset
[CMU 2000] and shape parameters from the CAESAR dataset [Robi-
nette et al. 2002]. We separately generated three sets of marker
configurations for each character by randomly making small pertur-
bations to a standard setup. Sampling the skeleton transformations
of the SMPL model and the positions of surface locations specified
by marker configurations provided the skeleton information and
clean markers. To simulate the raw markers, we adopted the corrup-
tion function proposed by Holden [Holden 2018], which involves
three parameters controlling the probability of occlusion 𝜎𝑜 , the
probability of shifting 𝜎𝑠 and the intensity of shifting 𝜎𝑖 (i.e. 𝛽 in
[Holden 2018]) respectively. In our simulation, we set these parame-
ters to 𝜎𝑜 = 0.1, 𝜎𝑠 = 0.1 and 𝜎𝑖 = 0.3𝑚. We collected 5k sequences
of synthetic MoCap data with a total of 8m frames containing 1700
characters and 5100 sets of marker configurations.

4.1.2 Parameter Settings. When training the MoCap-Encoders and
MoCap-Solver, we set 𝛽1 : 𝛽2 = 1 : 100 in Eq. (3-2), 𝛽3 : 𝛽4 = 1 : 2
in Eq. (3-3) and 𝛼1 : 𝛼2 : 𝛼3 : 𝛼4 = 1 : 3 : 4 : 8 in Eq. (3-4).
To weight the smoothed 𝑙1 function D in Sections 3.2 and 3.3, we
divided the human body into seven parts: head, shoulder, arm, wrist,
torso, thigh and feet. Markers and joints belonged to each part were
separately given a weighting ratio as 8 : 4 : 6 : 10 : 4 : 6 : 10. The
learning rate for MoCap-Encoders was set to 10−4 and each branch
was trained with 2k epochs. The MoCap-Solver was trained with
2400 epochs with a decaying learning rate starting from 0.01 (decay
factor 0.1 for every 600 epochs). The batch size was set to 512 for
the MoCap-Encoders and 128 for the MoCap-Solver. The temporal
window size 𝑡 was set to 64 and a 32 frame overlap was adopted
to ensure smoothness between adjacent windows; the predicted
temporal windows were combined into one sequence by averaging
the overlapping areas.

Table 1. Reconstruction errors of the MoCap-Encoders under 10-fold cross-
validation.

Models Synthetic data Real data
Position Orientation Position Orientation

[𝐸𝐶 , 𝐷𝐶 ] 0.5𝑚𝑚 - 0.7𝑚𝑚 -
[𝐸𝑇 , 𝐷𝑇 ] 0.3𝑚𝑚 - 0.4𝑚𝑚 -
[𝐸𝑀 , 𝐷𝑀 ] 1.8𝑚𝑚 1.0◦ 1.9𝑚𝑚 1.3◦

Fig. 7. Reconstruction error versus scale of training data of synthesis dataset
for the MoCap-Encoders. The curves show marker position error (unit:𝑚𝑚)
reconstructed by marker configuration (blue), skeleton position error (unit:
𝑚𝑚) reconstructed by template skeleton (green) and the skeleton position
error (unit:𝑚𝑚) reconstructed by motion (red).

4.2 Performance Analysis.
We analyzed the performance of each component of the MoCap-
Solver. Firstly, we evaluated the the MoCap-Encoders in terms of
reconstruction error and generalization. Then a comparison was
made of precision achieved using different temporal window sizes.
The precision is measured by the prediction errors in joints and
markers, specifically, joint position error (JPE), joint orientation
error (JOE) and marker position error (MPE).

4.2.1 MoCap-Encoders. The MoCap-Encoders include three au-
toencoders: the marker configuration encoder [𝐸𝐶 , 𝐷𝐶 ], the tem-
plate skeleton encoder [𝐸𝑇 , 𝐷𝑇 ] and the motion encoder [𝐸𝑀 , 𝐷𝑀 ].
We first evaluated the reconstruction errors on both synthetic dataset
and real MoCap dataset. Results produced under 10-fold cross-
validation are given in Table 1. The positional and rotational errors
were computed as mean Euclidean distances across all skeleton
joints and markers, represented in millimeters and degrees respec-
tively. We can see that the reconstruction errors are small enough
to be useful.

To evaluate the generalizability performance of theMoCap-Encoders,
we randomly split the synthetic MoCap dataset into a training set
(90%) and a testing set (10%). Then, we randomly sampled the train-
ing data, choosing 10%, . . . , 100% of it to train the MoCap-Encoders
and calculated the reconstruction error on the testing set. The results
are shown in Fig. 7. As the scale of the training dataset increases, the
reconstruction error decreases correspondingly, finally converging
to stable results. The marker configuration encoder and template
skeleton encoder achieve stable results using 50% of the training
data; the motion encoder needs 80% to achieve a stable result.

4.2.2 Temporal Window Size. The temporal window size can po-
tentially influence the performance of MoCap-Solver. Particularly, a
motion encoder with a larger window can encode more temporal
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Table 2. Precision versus window size for the synthetic MoCap test dataset.

window size JPE JOE MPE
16 9.97𝑚𝑚 3.73◦ 10.51𝑚𝑚
32 9.53𝑚𝑚 3.43◦ 10.12𝑚𝑚
64 9.48𝑚𝑚 3.19◦ 10.03𝑚𝑚
128 14.96𝑚𝑚 4.78◦ 15.51𝑚𝑚

information and improve prediction precision. However, a large
window size will also increase the complexity of the motion encoder
and thus require more data to train this encoder, tending to de-
crease the precision of the MoCap-Solver. We trained four versions
of the MoCap-Encoder with window sizes 16, 32, 64 and 128, using
the synthetic training dataset (90%), and compared the precision
achieved on the test dataset (90%). The result (see Table 2) shows
little variation with window size at first, but the size of 128 decreases
the precision because of the above reasons. Therefore, a window
size of 64 is chosen in our system.

4.3 Ablation Study
We next evaluated the effectiveness of the MoCap-Encoders and the
normalization strategy on the real MoCap dataset.

4.3.1 MoCap-Encoders. The advantage of the MoCap-Encoders is
to learn compact embeddings of template skeleton, marker config-
uration and motion, helping the MoCap-Solver to converge and
improving its prediction accuracy. To evaluate the advantage of
the MoCap-Encoders, we trained an end-to-end network bypassing
MoCap-Encoders on the real MoCap dataset and compared pre-
diction errors for the test data. The results are shown in Table 3.
Compared to an MoCap-Solver without MoCap-Encoders, using
MoCap-Encoders reduces 2𝑚𝑚 positional errors of markers and
joints, and 1.5◦ rotational errors of joints.

4.3.2 Normalization Strategy. Our normalization procedure involves
two phases: outlier detecting and replacement, and rigid registra-
tion. To quantitatively evaluate its effectiveness, we trained/tested
our MoCap-Solver on the real MoCap dataset with different strat-
egy selections in each phase. Specifically, three strategies in outlier
detecting and replacement, i.e., no outlier handling (𝑂0), setting
detected outlier to origin (𝑂1) and our outlier replacement method
(𝑂2), and three strategies in rigid registration. i.e., no rigid regis-
tration (𝑅0), aligning to the first frame (𝑅1), and our method which
employs a pose-dependent marker reliability function 𝐹𝑀𝑅 to select
the best frame for registration (𝑅2). The precision of MoCap-Solver
with different normalization strategies are listed in Table 4.

The statistics show that normalization is of vital importance to
this problem; significant increases in prediction errors can be found
in MoCap-Solver without outlier handling (𝑂0) or rigid registra-
tion (𝑅0). Besides, our outlier replacement method (𝑂2) contributes
greatly to the final precision compared with the zero-filling strat-
egy (𝑂1) in [Holden 2018]. Actually, [Holden 2018] also benefits
from such strategy, i.e., around 3.5𝑚𝑚 reduces in marker and joint
positional errors, and a 1.15◦ reduce in joint rotational errors can
be achieved on the real MoCap dataset. To make the comparisons
fair, all experiments in this paper were conducted with the same

Table 3. Precision of various methods for real MoCap dataset.

Models JPE JOE MPE
[Holden 2018] 18.68𝑚𝑚 7.94◦ 19.88𝑚𝑚

[Mahmood et al. 2019] 60.00𝑚𝑚 21.90◦ 58.10𝑚𝑚
MoCap-Solver 9.23𝑚𝑚 3.78◦ 10.03𝑚𝑚
MoCap-Solver

(w/o MoCap-Encoders) 11.44𝑚𝑚 5.22◦ 12.02𝑚𝑚

Table 4. Precision of MoCap-Solver with different normalization strategies
for real MoCap dataset.

Normalization JPE JOE MPE
𝑂0 and 𝑅2 23.36𝑚𝑚 10.22◦ 25.30𝑚𝑚
𝑂1 and 𝑅2 16.28𝑚𝑚 7.23◦ 17.14𝑚𝑚
𝑂2 and 𝑅2 9.23𝑚𝑚 3.78◦ 10.03𝑚𝑚
𝑂2 and 𝑅1 12.77𝑚𝑚 6.34◦ 13.60𝑚𝑚
𝑂2 and 𝑅0 19.35𝑚𝑚 8.68◦ 20.97𝑚𝑚

Fig. 8. Comparison of marker position error distributions for MoCap-Solver
(blue), [Holden 2018] (green) and the SMPL method [Mahmood et al. 2019]
(red) for test data of the real MoCap dataset. Horizontal axis stands for
marker position error (unit:𝑚𝑚), and the vertical axis stands for the propor-
tion of predicted frames.

outlier detecting and replacement strategy (𝑂2) for [Holden 2018]
and MoCap-Solver. Moreover, our pose-dependent marker reliabil-
ity function also proves to be effective, as using 𝐹𝑀𝑅 (𝑂2 and 𝑅2)
reduces over 3.5𝑚𝑚 of marker and joint positional errors and 2.56◦
of joint rotational errors relative to MoCap-Solver without 𝐹𝑀𝑅 (𝑂2
and 𝑅1). In our implementation, 𝐹𝑀𝑅 was trained on the real MoCap
data, and its mean prediction error of all reference markers, under
10-fold cross-validation, is 0.0047.

4.4 Comparison
We next compared MoCap-Solver with Holden’s state-of-the-art
MoCap data solving method [Holden 2018] and the SMPL fitting
approach [Mahmood et al. 2019], in 5 ways: precision, robustness to
reference marker noise, shape variation, generalizability and speed.

4.4.1 Precision. We used the test data from the real MoCap dataset
to evaluate the prediction errors of [Holden 2018], [Mahmood et al.
2019] andMoCap-Solver. See Table 3. A statistical analysis of marker
position error distributions of the prediction results for this data is
presented as a histogram in Fig. 8. As SMPL is a pre-trained model
which may not be fully consistent with actors’ shape distribution
in our real MoCap dataset, the prediction error of [Mahmood et al.
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Holden 2018               Holden 2018               Holden 2018               Ground Truth [                      ] Ground Truth [                      ] Ground Truth [                      ] 

Holden 2018               Holden 2018               Holden 2018               Ground Truth [                      ] Ground Truth [                      ] Ground Truth [                      ] 

MoCap-Solver MoCap-Solver MoCap-Solver

MoCap-Solver MoCap-Solver MoCap-Solver

Fig. 9. Comparison of prediction results for the real MoCap dataset. Green: Holden [Holden 2018]. Blue: MoCap-Solver. Red: ground-truth. Orientations in
our results are more accurate than Holden’s for head, feet, and arms when walking, running, sitting and squatting.

Fig. 10. Comparison of prediction errors of synthetic MoCap test dataset for different noise intensities on non-reference markers. Green: prediction errors for
[Holden 2018]. Blue: prediction errors for MoCap-Solver. Left: prediction errors for shifting probability 𝜎𝑠 from 0.1 to 0.4 with 𝜎𝑜 = 0.1, 𝜎𝑖 = 0.2𝑚. Center:
prediction errors for shifting intensity 𝜎𝑖 from 0.1𝑚 to 0.5𝑚 with 𝜎𝑜 = 0.1, 𝜎𝑠 = 0.2. Right: prediction errors for occlusion probability 𝜎𝑜 from 0.05 to 0.2 with
𝜎𝑠 = 0.2, 𝜎𝑖 = 0.2𝑚.

2019] is much higher than the other two. With the help of MoCap-
Encoders and pose-dependent marker reliability function, MoCap-
Solver clearly achieves higher precision, better motion fidelity, and
far less abnormal prediction results, compared with [Holden 2018].
In practice, unacceptable visual artifacts can be found in predicted
frames whose mean marker error is over 30𝑚𝑚. Fig. 9 illustrates
some of these cases. Joint errors of various body parts can be found
in the poses generated by [Holden 2018], while MoCap-Solver per-
forms much better. Generally, there are around 10% of the frames
predicted by [Holden 2018] with mean marker error over 30𝑚𝑚,
while the number for MoCap-Solver is 1%.

To make an in-depth quantitative comparison, we tested the per-
formances of MoCap-Solver and [Holden 2018] over different in-
tensities of simulated noise on the synthetic test dataset. In this
experiment, reference marker were not corrupted. By varying each
control parameter (with the other two fixed) in the corruption func-
tion on non-reference markers, we can plot the prediction error
curves over the intensities of different types of noise and errors. The
results showing in Fig. 10 demonstrate that MoCap-Solver consis-
tently outperforms [Holden 2018].

4.4.2 Robustness to Corruption on ReferenceMarkers. Asmentioned
in [Holden 2018], the prediction of the network is significantly af-
fected by the reliability of several reference markers used for rigid
registration. As we found 4.43% of the frames in the real MoCap
dataset contain obvious problematic reference markers, the over-
reliance on reference markers is apparently a major drawback in
production environments. With a learned pose-dependent marker
reliability function, our framework is much more robust to cor-
ruptions happened in reference markers. To demonstrate this, we
conducted an experiment using the synthetic dataset. Specifically,
we set noise simulation parameters 𝜎𝑖 = 0.2𝑚 and 𝜎𝑜 = 0.1 for
all markers, fixed shifting probability 𝜎𝑠 = 0.1 for non-reference
markers, and then varied 𝜎𝑠 from 0 to 0.25 for reference markers.
The accuracy of MoCap-Solver and [Holden 2018] is shown in Fig.
11(a); the prediction errors of [Holden 2018] increases drastically
when the shifting probability of reference markers is over 0.1, while
MoCap-Solver performs much more stable.

4.4.3 Shape Variation. Apart from rawmarkers, [Holden 2018] also
requires the corresponding marker configuration as input. Bene-
fiting from the pre-trained MoCap-Encoders, MoCap-Solver can
directly retrieve marker configuration from raw marker sequences
which is obviously more convenient to use. Moreover, considering

ACM Trans. Graph., Vol. 40, No. 4, Article 84. Publication date: August 2021.



84:10 • Kang Chen, Yupan Wang, Song-Hai Zhang, Sen-Zhe Xu, Weidong Zhang, and Shi-Min Hu

Fig. 11. (a) illustrates the prediction errors of synthetic MoCap test dataset for different noise intensities by varying the probability of shifting reference
markers 𝜎𝑠 from 0 to 0.25 while fixing shifting probability 𝜎𝑠 = 0.1 for non-reference markers and keeping 𝜎𝑜 = 0.1 and 𝜎𝑖 = 0.2𝑚 for all markers; (b)
illustrates the prediction errors of synthetic data versus the marker configuration errors, the horizontal axis stands for marker configuration error (unit: 𝑐𝑚),
and the vertical axis stands for prediction errors; (c) illustrates the predicting errors versus scale of training data of synthetic dataset.

Table 5. Precision on real MoCap data after training on synthetic data.

Models JPE JOE MPE
[Holden 2018] 29.15𝑚𝑚 15.43◦ 36.35𝑚𝑚
MoCap-Solver 12.77𝑚𝑚 6.47◦ 13.66𝑚𝑚

marker configurations as one of the intrinsic components grants
MoCap-Solver with more resistance to noises presented in manually
calibrated marker configurations. To demonstrate this, we randomly
added small perturbations to marker configurations when generat-
ing test motions, and recorded the prediction error versus marker
configuration error for both MoCap-Solver and [Holden 2018]. Here,
the marker configuration error was calculated as the summed dis-
tance of all markers, in centimeters. The results are shown in Fig.
11(b), from which we can see that [Holden 2018] is actually quite
sensitive to such error. In our real MoCap dataset, the mean marker
configuration variation of the same character is around 2𝑐𝑚 to 3𝑐𝑚,
enough to affect the precision of [Holden 2018].

4.4.4 Generalizability. As data-drivenmethods, bothMoCap-Solver
and [Holden 2018] require a large set of training data with sound
coverage of common human poses and shapes. To evaluate the
generalizability of MoCap-Solver and [Holden 2018], we made two
experiments. First, we recorded the precision of MoCap-Solver and
[Holden 2018] trained over different scale of train data (i.e. 10%,
. . . , 100%) in the synthetic dataset. The results are shown in Fig.
11(c). Both methods can achieve stable performance using 50% of
the training data, while MoCap-Solver consistently outperforms
[Holden 2018] in terms of precision. Second, we tested the perfor-
mance of trained models on data from different distributions with
the training set. To this end, we trained MoCap-Solver and [Holden
2018] with synthetic MoCap data, and tested with real MoCap data.
The results showed in Table 5 imply MoCap-Solver also has much
greater generalizability than [Holden 2018].

4.4.5 Speed. To compare the speed of MoCap-Solver and other
approaches, we recorded the training time (hours) and the average
prediction speed (frames per second) on synthetic MoCap dataset
in Table 6. We used a server with a Intel Xeon Gold 6240 CPU and a
Nvidia RTX 2080Ti GPU. Since SMPL is a pre-trained parametric

Table 6. Speed.

Models Training Time Prediction Speed
[Mahmood et al. 2019] − 10 fps

[Holden 2018] 26ℎ 43 fps
MoCap-Encoder 10ℎ −
MoCap-Solver 40ℎ 34 fps

model, [Mahmood et al. 2019] does not require training but tends to
be slow in prediction. We set the batch size to 512 for both [Holden
2018] and MoCap-Solver, and processed testing data sequence by
sequence. Training MoCap-Solver (plus MoCap-Encoders) takes
twice as long as the time for [Holden 2018] because it has more
complex architecture. Once trained, both [Holden 2018] and MoCap-
Solver can predict at over 30 fps, satisfying the speed requirements
for production use.

5 LIMITATION AND FUTURE WORK
Like other data-drivenmethods,MoCap-Solver cannot produce good
results for cases totally "unseen" in the training set. Therefore, build-
ing a large MoCap dataset covering more diversed human shapes
and poses is definitely the next step to facilitate the performance of
MoCap-Solver.

Besides, even though the pose-dependent marker reliability func-
tion can greatly improve our system robustness to noise in reference
markers, MoCap-Solver may still fail to correctly handle frames
where all reference markers are occluded. Although with a very
low probability, such extreme cases might occur in real MoCap data.
In our experiments, the SMPL fitting algorithm [Mahmood et al.
2019] performed much better in handling such extreme cases. In fu-
ture work, we would like to explore the possibility of incorporating
optimization-based approaches like [Mahmood et al. 2019] into our
framework, to further promote the system’s robustness.

Furthermore, currently our framework can only handle homoge-
neous skeletons. If the skeleton topology changes, both the MoCap-
Encoders and the MoCap-Solver have to be re-trained. In the future,
we would like to consider heterogeneous template skeletons in
the MoCap-Encoders as well, which will significantly increase the
applicability of our system in more production environments.
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6 CONCLUSION
MoCap data solving is an indispensable step for motion data pro-
cessing. In this paper, we have presented a production-ready MoCap
data solution framework, MoCap-Solver, which can accurately re-
cover clean markers and skeletons from raw markers by exploring
the latent spaces of marker distributions, template skeletons and
motions. Moreover, we show how to learn a pose-dependent marker
reliability function from real MoCap data to avoid over-reliance
on reference markers; this greatly improves the robustness of our
framework. Experiments on both synthetic and real MoCap data
show that MoCap-Solver consistently outperforms existing meth-
ods and achieves results of a quality and at a speed suitable for
production use.
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