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Fig. 1. Dance results automatically synthesised by ChoreoMaster for a traditional Chinese song.

Despite strong demand in the game and film industry, automatically synthe-
sizing high-quality dance motions remains a challenging task. In this paper,
we present ChoreoMaster, a production-ready music-driven dance motion
synthesis system. Given a piece of music, ChoreoMaster can automatically
generate a high-quality dance motion sequence to accompany the input
music in terms of style, rhythm and structure. To achieve this goal, we intro-
duce a novel choreography-oriented choreomusical embedding framework,
which successfully constructs a unified choreomusical embedding space
for both style and rhythm relationships between music and dance phrases.
The learned choreomusical embedding is then incorporated into a novel
choreography-oriented graph-based motion synthesis framework, which
can robustly and efficiently generate high-quality dance motions follow-
ing various choreographic rules. Moreover, as a production-ready system,
ChoreoMaster is sufficiently controllable and comprehensive for users to pro-
duce desired results. Experimental results demonstrate that dance motions
generated by ChoreoMaster are accepted by professional artists.
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1 INTRODUCTION

Dance is ages old. Dance movements are common elements in films
and video games, and so there are rich demands for high-quality 3D
dance animation assets in these industries. However, the production
of dance animations is extremely costly and inefficient, and typically
involves an artist to choreograph a dance (normally based on given
music), an experienced dancer to perform the dance, and a motion
capture team to record the dancer’s movements. The whole task
requires skill and expertise in choreography and dancing, as well as
a tedious process of cleaning and repairing the captured motions.
One minute of original dance animation can easily cost thousands
of (US) dollars. Therefore, it would be of great benefit if this task
could be carried out automatically by a production-ready tool.

In the context of music-driven dance motion synthesis, for a tool
to be considered production-ready, it should have two basic charac-
teristics. Firstly, it should robustly and stably produce high-quality
dance motions satisfying basic choreographic rules, and preferably
provide multiple suitable alternatives for each input. Secondly, users
should have complete control over the synthesis process, being able
to specify desirable and undesirable actions, to adjust the diversity
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and novelty of generated motions, and so on. Unfortunately, none
of the existing research methods for dance motion synthesis have
been successfully transformed into practical production tools, as
currently, no single solution meets these requirements.

Synthesizing new motions based on existing ones is the classic
topic in computer graphics of motion synthesis. After years of study,
graph-based frameworks have become the de facto standard solu-
tion to this problem. In such a framework, the task of synthesizing
a new motion is typically cast as finding an optimal path in a pre-
constructed motion graph [Arikan and Forsyth 2002; Kovar et al.
2002]. Each node denotes a motion segment in the database while
each edge holds the desirability of transition between its associ-
ated nodes. Using such a graph-based scheme, Kim et al. [2003]
made the first attempt to synthesize rhythmic motions by adding
constraints linking motion beats and rhythmic patterns. Shiratori
et al. [2006] and Kim et al. [2006] formally posed the problem of
music-driven dance motion synthesis, and further developed more
sophisticated rules to associate dance motion segments with in-
put music clips. However, the fundamental drawbacks of existing
graph-based methods are the underestimation and oversimplifica-
tion of dance choreography, leading to clearly visible artifacts when
tested on a larger database. On the one hand, hand-crafted basic fea-
tures like beat and rhythm, though intuitively seeming reasonable,
are actually incapable of modeling the deep intrinsic contextual
connections between music and dance, such as style consistency,
structural plausibility, and so on. On the other hand, music aside,
existing methods fail to address widely used choreographic rules,
leading experienced dance artists to comment that the synthesized
motions, while appearing to be a set of dance movements fluidly
pieced together, overall do not look like a well-composed artform.

With the booming of artificial intelligence technologies, deep gen-
erative techniques have successfully been applied to synthesizing
various types of data, including images, text, etc. In this context,
the problem of music-driven dance motion synthesis has also been
considered [Alemi et al. 2017; Tang et al. 2018]. When properly
set up, these methods do appear to grasp some deeper relation-
ships between music and dance than traditional techniques, yet still
fail to meet the standard required for real use. Their most obvious
shortcoming is poor controllability, since synthesis performed by
neural networks works as an inexplicable black box, which is a huge
drawback for a practical production tool. Moreover, from a machine
learning perspective, neural networks characterize data by project-
ing it into a low-dimensional latent space, during which process,
high-frequency motion details are considered to be noises and inten-
tionally ignored. This inevitably lowers the quality of synthesized
dance motions, causing them to be ‘dull’ and ‘blurred’. Furthermore,
existing methods typically lack explicit attention to professional
choreographic rules. As a consequence, the generalizability of the
trained model is limited. As Alemi et al [2017] note, their model may
generate strange and unaesthetic movements given music outside
the training set.

Fortunately, after multiple rounds of iteration with professional
artists and systematic study of the theory of choreography (see
e.g., [Mason 2012; Nor and Stepputat 2016]), we have found some
widely used choreographic rules that can be utilized to facilitate the
problem of music-driven dance motion synthesis. In particular:
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o the style of music and body movements should be consistent,
conveying similar mood and tone,

e each synchronized dance and music segment should present
the same rhythmic pattern, while rhythmic patterns in dance
phrases appear with great regularity,

o the organization of a dance should be coordinated with the
structure of the corresponding music, e.g., repeated musical
phrases (verse and chorus) are typically associated with re-
peated movements, while identical meters in a phrase often
correspond to symmetrical movements.

Following these rules allows the synthesized dances to reach a
suitable aesthetic standard as expected by professional artists. Based
on these rules, we have developed ChoreoMaster, a choreography-
oriented music-driven dance motion synthesis system (see Fig. 1). As
illustrated in Fig. 2, starting from an annotated database containing
both paired and unpaired music and dance motion sequences, we
first capture the music-dance connections through a choreography-
oriented choreomusical embedding module (see Section 3). Specifi-
cally, we find a choreomusical style embedding by mapping music
and dance phrases into a unified space where phrases of similar
style are closely clustered, and a choreomusical rhythm embedding
by identifying rhythm patterns for each meter of music or dance
movement. The learned choreomusical embedding is then incorpo-
rated within a novel choreography-oriented graph-based motion
synthesis framework (see Section 4), which can robustly and ef-
ficiently generate high-quality dance motions following various
choreographic rules, while simultaneously offering great controlla-
bility to users. Experimental results demonstrate that ChoreoMaster
can robustly and efficiently generate diverse high-quality dance
motions widely recognised by professional artists. ChoreoMaster
has successfully produced hours of dance assets for several projects
in Netease Games and to our best knowledge, is industry’s first
production-ready tool for this purpose.

The contributions of this paper are thus:

o we introduce three rules from choreography theory, which
greatly facilitate music-driven dance motion synthesis;

o we develop a cross-domain embedding framework, incorpo-
rating the introduced rules, to correctly and effectively char-
acterize complex choreomusical relationships from limited
available high-quality music/motion data, which successfully
casts qualitative choreographic knowledge into computable
metrics;

o we present the first production-ready dance motion synthe-
sis system, which can robustly generate high-quality dance
motions in a highly controllable way;

o we demonstrate that deep features, a graph-based framework
and traditional optimization methods can be effectively com-
bined to provide semantically correct, robust and controllable
productional audio-based animation synthesis tools.

2 RELATED WORK

In this section, we discuss previous work in related areas.
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Fig. 2. ChoreoMaster comprises two choreography-oriented modules: a choreomusical embedding module to capture music-dance connections, and a
graph-based motion synthesis module to generate high-quality dance motions, following various choreographic rules, from input music.

2.1

Motion synthesis has long been an important topic in computer
graphics; its main goal is to synthesize new 3D skeletal motions
from an existing motion database. Lamouret et al. [1996] raised the
idea and presented the first prototype system to create new motions
by cutting-and-pasting together existing motion segments from the
database. Arikan et al. [2002], Kovar et al. [2002] and Lee et al. [2002]
formally introduced the concept of graph-based motion synthesis,
casting the problem as finding paths in a pre-constructed motion
graph. Kim et al. [2003] extended this framework to cope with rhyth-
mic motions by introducing constraints involving motion beats and
rhythmic patterns. Shiratori et al. [2006] and Kim et al. [2006] de-
veloped more sophisticated music-to-dance matching constraints
when path finding in the motion graph. Ofli et al. [2011] and Manfre
et al. [2016] formulated this problem using a hidden Markov model
(HMM), allowing it to be efficiently solved using dynamic program-
ming or beam search algorithms. Berman et al. [2015] discussed
the possibilities of generating new kinds of dance movements us-
ing a motion graph, to assist the creative processes of dancers and
choreographers.

Over time, graph-based frameworks have become the de facto
standard solution to the motion synthesis problem, because of their
numerous advantages. For instance, Yang et al. [2020] recently uti-
lized a graph-based framework to successfully synthesize body mo-
tions for social conversations. With a properly constructed motion
graph, transitions between adjacent segments of the synthesized
motion are guaranteed to be smooth. However, from the perspective
of professional artists, a dance is more than just a sequence of dance
elements smoothly stitched together. Technically, our system can
be viewed as a choreography-oriented extension to the traditional
graph-based motion synthesis framework, from motion graph build-
ing to graph-based optimization, in which choreographic rules are
respected throughout.

Graph-based Motion Synthesis

2.2 Music-to-Dance Cross-Modal Mapping

Properly formulating the connections between music and dance is
of vital importance to music-driven dance motion synthesis. Various
attempts have been made to better associate dance movements with
music. Early approaches [Kim et al. 2006; Lee et al. 2013; Ofli et al.
2008; Shiratori and Ikeuchi 2008; Shiratori et al. 2006] typically per-
form similarity-search based on features detected in music signals
(e.g., onset, chroma, MFCC) and dance motions (e.g., movement
speed, joint trajectory). Image features have also been explored to
extract visual beats from dancing videos [Davis and Agrawala 2018].
Learning-based methods have also been explored. For instance, Fan
et al. [2011] use a boost-based learning algorithm to regress mu-
sic to a motion mapping score and Fukayama et al. [2015] adopt a
probabilistic model to measure the likelihood of assigning a dance
motion to a given piece of music.

Although these methods can exploit some superficial connections
between music and dance, they typically fail to model the deep
intrinsic choreomusical relationships. Furthermore, the requirement
of paired data also prevents these algorithms from benefiting from
more readily available unpaired music and motion data.

Now, choreography is an empirical discipline and as mentioned
before, there are some undeniable general rules which should be fol-
lowed. Following these principles, we develop a novel choreography-
oriented choreomusical embedding framework with two key ele-
ments: in a cross-modal style embedding process, we learn to map
music and dance segments into a unified latent space where seg-
ments conveying similar mood and tone are closely clustered, then
in a choreomusical rhythm embedding process, we learn to assign
possible rhythm signatures for each meter of music or dance move-
ment. Unpaired music and dance motion sequences can also be used
by our framework. Quantitative and qualitative evaluation of our
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approach demonstrate that the choreomusical relationships charac-
terized by our framework can greatly promote the soundness and
naturalness of synthesized dance motions.

2.3 Deep Generative Dance Motion Synthesis

Recently, deep generative methods have also been applied to the
problem of dance motion synthesis. Based on the dimensionality of
the motion data, existing methods can be divided into 2D and 3D
solutions. Lee et al. [2019] presented the first 2D music-to-dance
generation framework, which models dance units with a VAE (vari-
ational autoencoder) and recurrently generates dance sequences
using a GAN (generative adversarial network). Since the human
skeleton naturally forms a graph, Ren et al. [2020] and Ferreira et
al. [2020] employ GCNs (graph convolutional networks) to improve
the naturalness of generated 2D dance motions. Notwithstanding
these advances, 2D dance motion synthesis has a different goal from
our system. Instead of producing dance animation assets, the 2D
pose sequences produced act as intermediate guidance for genera-
tion of dance videos. The absence of the third dimension severely
limits application of 2D frameworks to 3D scenarios.

The idea of synthesizing 3D human motion with neural networks
was first suggested by Grzeszczuk et al. [1998]. Then, Lee et al. [2006]
employed neural networks to synthesize human neck movements.
Since the rise of deep learning techniques, various time-series data
generation frameworks have been adapted for music-driven 3D
dance motion synthesis purpose, for instance, temporal convolu-
tional autoencoder [Holden et al. 2016], FCRBM (factored condi-
tional restricted Boltzmann machine) [Alemi et al. 2017], LSTM-
autoencoder [Tang et al. 2018], CSGN (convolutional sequence gen-
eration network) [Yan et al. 2019], GAN [Sun et al. 2020], Bi-LSTM
combined with temporal convolution [Zhuang et al. 2020], trans-
formers [Li et al. 2021], etc. The key idea behind all these methods is
to translate music into motion encoded in a low-dimensional latent
space, and then recover corresponding dance motions by decoding
from the latent space. As noted, the poor controllability and unstable
performances resulting mean that such methods are unsuited to
practical production environments. To alleviate these issues, some
recent approaches [Duan et al. 2020; Ye et al. 2020] translate music
into sequences constructed from a set of predefined dance action
units, instead of skeletal dance motions. However, even smooth
transitions between dance phrases cannot be always guaranteed in
such methods, as noted by Duan [2020]. It is clear that graph-based
frameworks are more powerful and flexible in arranging action units,
while providing much more controllability and interpretability.

3 CHOREOGRAPHIC-ORIENTED CHOREOMUSICAL
EMBEDDING

3.1 Background

Music and dance have been inextricably interwoven since time im-
memorial and their relationship has evolved with human civilization.
The study of choreomusical relationships has formed a discipline
called choreomusicology [Mason 2012], which summarizes the the-
ory and practice of dance choreography. Obviously, generating
dance motions which respect choreographic rules is essential to our
system. However, as in every other art form, the evaluation of dance
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aesthetics and choreomusical style and rhythm relationships is a
rather complicated matter, and difficult to formalize. Specifically,
style and rhythm are two interrelated factors in both music and
dance, relatively independently, yet closely correlated. On the one
hand, music and dance following the same rhythmic patterns might
present very different auditory and visual styles, and vice versa. On
the other hand, the distribution of rhythmic patterns is strongly
related to the musical and dance style: for instance, soothing music
tends to have a soft rhythm while rock music has a strong beat.

Properly formulating the choreomusical distance between music
and dance addressing the complex style and rhythm relationships is
of vital importance to music-driven dance motion synthesis. More-
over, such choreomusical relationships are preferably presented in
a disentangled way as this would significantly improve the sys-
tem’s interpretability and controllability. To this end, we use a
choreography-oriented choreomusical embedding framework—see
Fig. 3, which we explain next.

3.2 Choreomusical Style Embedding

Style consistency is a basic requirement for a dance composition.
Associating vigorous movements with soothing music would make
a peculiar dance. A straightforward way to keep style consistency
is to manually divide music and dance into various categories ac-
cording to style, and force the synthesis algorithm to pick dance
movements from the same category as the input music. However,
such a solution is actually insufficient to achieve a satisfactory result
as well as being difficult to put into practice. Firstly, the boundaries
between different music or dance styles are not always so clear.
Assigning style labels to music or dance requires tremendous exper-
tise. Secondly, the classification criteria for music and dance styles
are different, since they evoke auditory feelings and visual feelings
respectively. For instance, both music and dance can be classified
by genre, but most music or dance genres do not have an equivalent
tag in its counterpart. Thirdly, each main style of music or dance
contains numerous sub-styles (e.g., hip-hop can be further classed
as popping, locking, breaking, urban, etc.), making it even harder to
achieve style consistency by explicitly classifying music and dance
data.

To tackle this problem, we adopt a choreomusical embedding net-
work to implicitly model the connections between music and dance
styles. Our key idea is to map music and dance segments into a uni-
fied embedding space where segments conveying similar mood and
tone are closely clustered. Specifically, we first use unpaired music
and dance data to independently train two classification networks,
then paired data is utilized to transform the two feature spaces into
a unified embedding space, where items of music and dance remain
classifiable, while paired music and dance items stay as close as
possible.

The architecture is illustrated in Fig. 3 (left). We mainly adopt
the state-of-the-art music tagging network in [Choi et al. 2017] as
our backbone for the music encoding branch Ejy. It is composed
of four convolutional block layers and two GRU layers. Symmetri-
cally to Epf, we build a dance encoding branch Ep, except that the
convolutional blocks are replaced by graph convolutional blocks.
The general purpose of Ejs and Ep is to compress music and dance
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Fig. 3. Our choreographic-oriented choreomusical embedding network contains a choreomusical style embedding network and a choreomusical rhythm

embedding network.

sequences into two 32-dimensional embedding vectors, i.e., Zys and
Zp respectively. In our implementation, music data is downsam-
pled to 16kHz and represented as log-amplitude mel spectrograms
(computed with 96 mel bins and 160 hop size), while dance motion
data is represented by global joint positions (18 main body joints
are used, not including fingers and toes). A musical/dance phrase
is considered to be the minimum unit expressing a style, so we set
the input length to the length of a typical music or dance phrase,
8 seconds (i.e., 240 key frames in 30 fps dance motions). Therefore,
the input shape for Ey; is [1, 96, 800] and Ep is [3, 18, 240].

To benefit from the vast amount of unpaired music and motion
data, we employed a two-stage training procedure. In the first phase,
the music and dance branches are trained independently using all
labeled unpaired music and dance data. To better reflect latent sub-
styles in the learned embedding space, we also incorporate the
unsupervised deep embedding clustering (DEC) strategy proposed
by Xie et al. [2016], which encourages data in the feature space of a
classification network to be better clustered.

The training losses for music and dance embedding are:

Lm = /‘IILm + AZLdec
Ly =MLg+ A2Lgec

where Ly, Ly are the classification losses (i.e., cross-entropy loss) of
music and dance respectively, Lge. is the the KL divergence loss de-
fined in Equation (2) of [Xie et al. 2016], and A; and A, are balancing
weights. Then, in the second phase, two branches are jointly trained
using synchronized music and motion pairs, where the training loss
is defined as:

1

Lstyle = 3Lg + A4Lm + A5L; @)
where L, and L; are the classification losses, L, is the MSE loss
between Zyr and Zp, and As, . . ., A5 are weights. Through these two
phases of training, we can map any music and dance segments into

a unified choreomusical embedding space, where style consistency
between music and dance can be measured by the Euclidean distance
between the corresponding embedding vectors.

3.3 Choreomusical Rhythm Embedding

Body movements should be coordinated with musical rhythms in
a well composed dance. In music theory, the term rhythm is often
expressed in terms of the musical meter. Meter refers to the organi-
zational patterns of beats, while a beat is the basic temporal unit of
music. Accordingly, we can use beat and meter for dance motions.
Typically, musical beat corresponds to pulses of sound in music,
while dance beat corresponds to pausing or sharp turning of body
movements. Formally, meter is indicated by time signature (i.e., 2/4,
3/4, 4/4 and etc.), where the upper number depicts the number of
beats in a bar, and the lower denotes the tempo duration of a beat.
For instance, a 4/4 time signature contains four quarter note beats
in each bar.

Unlike style, rhythm can be clearly represented using musical
notation. However, matching dance movements to musical rhythm
is still a difficult task. Music usually includes multiple instrumental
tracks and vocals, while dance movements often involve many si-
multaneously moving joints. Each musical track or body joint thus
has its own beat pattern, and locating the true beat pattern which
should be coordinated to is a challenging task. For example, chore-
ographers may prefer to follow drum beat, piano melody or human
vocals in different parts of the music when composing a dance to it.
To better understand the rhythmic relationships between music and
dance, we asked professional artists to manually specify the beat
patterns of dances in our database. We could thereby retrieve the
beat patterns of a music from its synchronized dance. By analyzing
their labelling results, we found that beat patterns in each meter can
be mathematically represented as a binary vector, which we refer
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Fig. 4. Rhythm signature examples. Even bits denote the presence of regular
beats, while odd bits depict half beats. Consecutive zeros indicate a legato.

to as rhythm signature, a natural comprehensive form of unified
choreomusical rhythm embedding.

Since all dance motions in our dataset are structured in four-
beat meters, the proposed rhythm signature consists of 8 bits in
our system (see Fig. 4). In each rhythm signature, even bits denote
the presence of regular beats (1 : present, 0 : not present) which
correspond to the evenly-spaced standard beats indicated by the time
signature, while odd bits depict half beats (1 : present, 0 : not present)
which account for the rhythmic points in-between two regular beats
(usually caused by ties, rests, or dots, or simply because the adjacent
beat is constructed from multiple smaller beats). Consecutive zeros
in a rhythm signature indicate a legato, or smooth period in music
and dance motions. The distance between two rhythm signatures
can be defined using Hamming distance, the number of bit positions
in which the two bit patterns differ. To put more emphasis on regular
beats, we allocate different weights to different bits when calculating
Hamming distance: 1.0 for regular beats and 0.5 for half beats.

Theoretically, there are 28 = 256 types of rhythm signature. How-
ever, statistical analysis of the labeled data showed that the number
of common rhythm signatures is only about 13. Another interest-
ing discovery was that the distribution of rhythm signatures varies
greatly with dance type. For instance, Chinese traditional dances
tend to have more legatos while hip-hop dances tend to have more
half beats. This illustrates the interweaving relationships between
style and rhythm. Based on the above ideas, we designed a rhythm
signature classification network to effectively acquire choreomusical
rhythm embeddings for music and dance.

The architecture of this network is illustrated in Fig. 3(right); it
comprises three blocks. There are two separate feature extraction
blocks for music Epsg and dance Eppg respectively, each constructed
with two convolutional layers and one dense layer. Finally there is
a shared block, Erg for rhythm signature classification, constructed
with three dense layers. Style embedding vectors of the correspond-
ing music segment Zyr and dance segment Zp are concatenated
with the feature vectors extracted by Eygr and Epg respectively,
since statistical correlations between style and rhythm have already
been observed. It is noteworthy that there are some differences
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Fig. 5. Without considering style compatibility, improper edges may appear,
resulting in a lovely motion switching to a sexy or cool motion as illustrated
in the figure.

between the style and rhythm embedding branch. Firstly, the goal
of rhythm embedding is to determine explicit rhythm signatures
rather than latent vectors, because rhythm signatures have a clear
definition and thus provide more interpretability and controllability
to our system. Secondly, the tempo unit used for rhythm embedding
is set to one bar (i.e., 2 seconds in our system) rather than phrases,
as rhythm signatures are defined in terms of bar. Here, the style
embedding of a bar refers to the style embedding of the phrase it
belongs to. Thirdly, as beats are reflected by pulses changes in music
and speed/direction changes in joint movements, it is not necessary
to train the network from low-level original signals. Instead, we
feed the network with certain extracted features. Specifically, the
spectral onset strength curve [Bock and Widmer 2013] and RMS
energy curve for music (dimension: [2, 200]); the motion kinematic
curve, two hand trajectory curvature curves and two foot contact
curves for dance (dimension: [5, 60]). The motion kinematic curve is
computed using the weighted angular velocity function proposed by
Shiratori et al. [2006]. The hand trajectory curvature curve records
the curvatures of the trajectories of the two wrist joints, and the foot
contact curve records contact information between both feet and
the floor. All blocks in this network are jointly trained using labelled
paired music and dance data with the following loss function:

Lrhythm = A6Lgr + A7Lmr 3)

where Ly, and Ly, are the classification loss for dance and music
respectively, and Ag and A7 are weights. To penalize large predic-
tion errors, as well as conventional cross-entropy loss, we add the
weighted Hamming distance between the predicted rhythm signa-
ture and the ground truth rhythm signature when calculating L,
and L.

4 CHOREOGRAPHY-ORIENTED DANCE SYNTHESIS

As noted, comprehensive controllability is of great importance in
a production-ready tool. Therefore, we adopt a graph-based mo-
tion synthesis framework. A typical graph-based motion synthe-
sis framework contains two key steps: motion graph construction
and graph-based optimization. In this section, we explain how the
learned choreomusical embedding and other choreographic rules
are incorporated into our graph-based motion synthesis framework.

4.1  Motion Graph Construction

A motion graph is a directed graph where each node denotes a
motion segment in the database while each edge depicts the cost
of transition between two adjacent nodes. Conventional graph-
based dance motion synthesis systems typically segment dance
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motions into motion beats, and calculate the transition cost based
on the distances between joint positions and movement speeds.
However, this would pose two problems: first, correlations between
motions within a dance meter are ignored; second, such metrics fail
to account for style compatibility between motions (see Fig. 5).

In our system, these issues are addressed by introducing choreo-
graphic rules. Instead of dance motion beat, each node in our motion
graph corresponds to a dance motion meter. The learned style em-
bedding vector and labeled rhythm signature are also attached to
each graph node. To make better use of existing data and to encour-
age more diverse synthesised results, dance motion meters in our
database are augmented in three ways (see Fig. 6):

e mirroring: dance movements are mirrored left to right;

o blending: the upper and lower body movements in two differ-
ent meters are blended to create a new motion meter;

e shuffling: motion beats in two different meters are shuffled
to create two new motion meters, e.g., ‘1234’ and ‘abcd’ may
produce ‘12cd’ and ‘ab34’ if they can be stitched smoothly.

The mirroring operation is applied to all motion meters in the
database, while blending and reshuffling are very conservatively per-
formed. i.e., only between meters with the same rhythm signature
and very close style encodings. All motions augmented through
blending and reshuffling were manually checked. New nodes are
created in the motion graph for all valid augmentations.

Style compatibility is also respected in our motion graph. Specif-
ically, the edge transition cost between two nodes Dy and Dy is
defined as:

T(DP’ Dq) = ATy + AT, 4)
Where T is a regular motion transition cost, computed as the
summed distance of positions (meters), rotations (radians) and speeds
(meters per second) between main joints (18 joints here) in transi-
tional frames of two adjacent nodes, and T; is the Euclidean distance
between two style embedding vectors. Ag and Ag are weights. An
edge is created in the graph if the transition cost between adjacent
nodes is below a threshold d7. A higher d7 results in more edges in
the graph, which increases the diversity of the results, but may also
cause artifacts as bad transition edges may also be included in the
graph.

4.2 Graph-based Optimization

In the graph-based framework, each synthesized motion corre-
sponds to a path in the motion graph. Therefore, in our system,
synthesizing dance motions for the input music can be viewed as
finding optimal paths, satisfying various choreographic rules, in the
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graph (see Fig. 7). Given an input piece of music, we first divide
it into bars using the automatic musical bar detection algorithm
suggested in [Gainza 2009]. Then we retrieve all musically mean-
ingful phrases using the music segmentation and similarity labeling
method proposed by Serra et al [2012; 2014]. Similar bars within a
phrase are further detected (having spectrogram difference within a
small threshold) and given an identity ID. Overall, each bar M; in the
music is given a structural tag (A%, A%, B% and Bg in Fig. 7), where A
depicts the phrase identity ID, the subscript and the superscript de-
note its index and meter identity ID in the phrase respectively. Then,
for each meter M; in the music sequence M = {M;|i = 1,...,n} we
obtain its style embedding Zy, and the top K possible rhythm sig-
natures {R} ..., R]I\(/I_ }. The goal of our system is to assign a dance
motion node D; in the motion graph to each musical meter M; so
that the following cost is minimized:

c= Alchdm + i tho i+1) +§ch<z NG
i<j
where Cy, C; and Cs are the data term, transition term and structure
constraint term respectively, A19, 111 are weights, and { is a large
penalty coefficient.

Data term. Cy4(i) accounts for the style and rhythm matching
cost between music meter M; and dance motion meter D;, and is
defined as:

K
Ca(i) = 112Gz (Zm,, Zp,) + A3 minGr (Ryy . Rp,) — (6)

where G; and G, are style embedding distance and rhythm signature
distance between music/dance meters respectively, and A2 and 113
are two weights.

Transition term. C;(i) ensures a smooth transition between ad-
jacent motion segments in the synthesized motion, and equals the
transition cost stored on graph edges: C;(i,i + 1) = T(Dj, Dit+1).

Structure term. Cs addresses structural consistency between mu-
sic and dance. Choreographers often use motion repetition to echo
the repetitive structure in music. For instance, repeated musical
phrases (e.g., verse and chorus) most likely correspond to repeated
movements, while identical bars in a phrase often correspond to
symmetrical movements. Derived from these choreographic rules,
we include two structural constraints. For repeat constraint, D; and
Dj should be the same motion if M; and M; belong to different
phrases while the phrase identity ID and index ID are the same. And
for mirror constraint, D; and D; should be two mirrored motions, if
M; and M belong to the same phrase and their meter identity ID
are the same. For each pair of D; and Dj, Cs(i, j) is set to 1 if any of
the constraints is violated:

0, if D; and Dj satisfy the constraints;

Cs(i,j) = {1, otherwise. 7

Other practical requirements can also be turned into constraints
and easily incorporated into this framework. The optimal dance
motion sequence can be efficiently synthesized using a dynamic
programming algorithm [Forney 1973]. By running it multiple times
and skipping used movements, different dance motions for the same
input music can be easily produced.

ACM Trans. Graph., Vol. 40, No. 4, Article 145. Publication date: August 2021.
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Fig. 7. Choreography-oriented dance synthesis process. We use several choreography-oriented constraints including a data term, a transition term, and
repeat/mirror constraint to synthesize high-quality dance motions meeting professional aesthetic requirements. Each differently colored music segment
represents a musical phrase with 4-8 bars. For simplicity, we only show two signatures and one style embedding for each musical phrase.

5 EVALUATION

We now evaluate our method. We first demonstrate the setup of our
system, followed by a quantitative and qualitative comparison to
several state-of-the-art methods. Then, we make an overall anal-
ysis of the performance and efficiency of our system, and finally,
demonstrate the promising controllability of ChoreoMaster.

5.1 System Setup

In this section we introduce our dataset and system environment.

Table 1. Style distribution of our music and dances. Each piece is labeled
with a two-dimensional style attribute.

Style 1 Duration | Style 2 | Duration

Chinese 20.7h | Mild 214h

. | Japanese 40.8 h | Excitin 329h
Music Er?glish 18.7h Neutraig 48.2h
Korean 223h | - -

Anime 7.5h | Sexy 1.6h

Hip-Hop 5.4 h | Lovely 5.9h

Dance | K-pop 39h | Cool 54h
Tradition 3.1h | Gentle 2.7h

- — | Other 43h

Table 2. Rhythm signature distribution in labeled results.

R Ratio Rm Ratio Rm Ratio
00000001 | 20.1% | 00000101 3.9% | 00010001 4.2%
00010101 4.3% | 01000001 3.8% | 01000101 4.5%
01010001 3.8% | 01010101 | 30.1% | 01010111 6.4%
01110111 5.2% | 01111111 4.6% | 11111101 3.8%
11111111 5.3% - - - -

Database. Our motion resources consist of high-quality dance
mocap resources and MikuMikuDance (MMD) resources collected
from the anime community. In total, we have 19.91 hours of dance
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motions, of which 9.91 hours have paired music. By utilizing the mo-
tion augmentation techniques described in Section 4.1, our database
dance motion was expanded to 2.56 times. We additionally collected
a large music dataset containing 1,954 songs with a total duration
of 102.5 hours. The dance and music are semi-automatically seg-
mented into bars and phrases. All music and dances are labeled with
two-dimensional styles, as shown in Table 1. The labels in Table
1 came from a large collection of candidate tags. We kept them
because the annotations from different people using these labels
were relatively consistent, so more convincing. ChoreoMaster does
not rely on the necessity or sufficiency of a specific tagging system,
because these tags are not used as hard matching constraints in the
synthesis process. All dances were manually labeled with rhythm
signatures by professional artists; rhythm signatures of music that
has synchronized dances could thereby be obtained; rhythm signa-
tures whose frequency is less than 0.5% were considered to be noises
and were manually reclassified as another common signature. In
total we kept 13 rhythm signatures, distributed as shown in Table
2. Certain rhythm signatures are more frequent in certain styles of
dance: for example, rhythm signature 00000001 occurs 44.8% of the
time in traditional dances, but only 11.9% of the time in hip-hop
dances. Besides, we randomly divided the music-dance pairs into
three parts, i.e, the training set (80%), the validation set (10%) and
the test set (10%).

System Environment. We set the hyperparameters to: A4, ..., 13 =
0.7,0.3,0.5,0.5, 5,04, 06, 1,15, 1, 2,1, 1.5, 6 = 20,K = 3,{ = 1000.
M, ..., A7 are involved in the embedding framework and were qual-

itatively optimized using grid search; details are given in the supple-
mental document. Ag, ..., 413 and d1 control the synthesis process
and may be adjusted by the user according to desire for smoothness,
novelty and importance of style and rhythm consistency. Default
values of s, ..., A13 and d were determined by consulting profes-
sional artists. Our experiments show that ChoreoMaster works well
for parameters within a wide range. All networks were trained us-
ing PyTorch on a P40 GPU server. Our dance synthesis system was
tested on a desktop with a 3.20GHz i7-8700 CPU, 16GB RAM and
a GTX 1080Ti GPU. Eys and Ep were trained using the Adam and
SGD optimizers respectively, and the number of clusters in DEC was



set to 12 for music and 20 for dance. Epgr, Epym, Ers were trained
using the SGD optimizer. We trained with a batch size of 64 and a
learning rate of 0.001, for 500 epochs. In total, 14 hours were taken
to train the embedding networks, 13 hours for style embedding and
1 hour for rhythm embedding.

5.2 Comparisons

In this section, we compare our method to several alternative dance
generation methods to demonstrate the advances made by our sys-
tem. We start with a brief introduction to these methods, followed by
a quantitative comparison, and a qualitative evaluation via a compre-
hensive user study. Further details are given in our supplementary
material.

We chose two traditional dance synthesis methods and three
recent state-of-the-art 3D dance synthesis methods based on gener-
ative models for comparison. Lee et al. [2013] proposed a traditional
dance synthesis method that retrieves candidate motions by evalu-
ating similarity between input music clips and existing music clips.
Fukayama et al. [2015] built a probabilistic model to optimize the
dance sequence for the input music. Yan et al. [2019] proposed
CSGN, which constructs skeleton sequences from latent variables
using graph convolutions, and used it to generate 3D dance motions.
Sun et al. [2020] proposed the DeepDance method, a GAN-based
cross-modal association framework for 3D dance generation. Li
et al. [2021] utilized a cross-modal transformer-based model for
music-conditioned 3D dance generation.

Since currently we do not have access to the code or data of
[Fukayama and Goto 2015] and [Li et al. 2021], we synthesized
dances using the same music and compared with the results showed
in their released demo videos, which can be found in our supplemen-
tary video. Additionally, we also carried out an ablation study by
removing the style embedding, rhythm embedding and structural
constraints in turn to generate results. Since these methods can
only deal with music-dance pairs, to make the comparison fair, all
methods were given our music-dance pairs with a duration of 9.0
hours for training, and the remaining 0.91 hours were left for testing.
Besides, rhythm annotations were also used for data segmentation
(in Yan et al. [2019] and Sun et al. [2020]) and beat detection (in Lee
et al. [2013]). The comparisons were made upon the automatically
generated dance results for 30 music clips with a duration of 30-90s,
among which 20 clips were from the testing data. Fig. 8 illustrates
one of the comparison results and more results are showed in our
supplementary video.

Quantitative Evaluation. We adopt several evaluation metrics to
quantitatively compare these methods, as shown in Table 3. These
metrics are:

1. FID score. Fréchet inception distance (FID) [Heusel et al. 2017]
was used to measure how close the distribution of generated dances
is to that of the real ones. Following [Lee et al. 2019], we trained a
motion auto-encoder on our dance dataset as the feature extractor.
The FID in Table 3 shows our generated dances are much closer
to the real ones than other methods, as our framework addresses
much more choreographic disciplines.

2. Beat accuracy. This measures how accurately the motion beats
are aligned to the music beats, represented by the ratio of aligned
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Table 3. Comparison of our method to Lee et al. [2013], Yan et al. [2019]
and Sun et al. [2020]. We also compare results of our method without style
embedding (w/o EC), rhythm signature (w/o RC) or structural constraints
(w/o SC).

Method FID Beat Accuracy Diversity
Real Dance 2.7 92.6% 83.5
Lee et al. [2013] 245 38.4% 75.1
Yan et al. [2019]  94.6 8.2% 56.2
Sun et al. [2020] 87.4 12.7% 64.1
Ours (w/o EC) 20.5 85.2% 72.4
Ours (w/o RC) 17.9 58.3% 76.5
Ours (w/o SC) 18.5 83.8% 78.3
Ours 16.8 88.4% 77.9

beats to all music beats. We used the labeled music rhythm signa-
ture as the ground-truth, and used the motion rhythm detection
method proposed in [Shiratori and Ikeuchi 2008] to detect the mo-
tion kinematic beats. Table 3 shows that with the help of learned
choreomusical rhythm embedding, ChoreoMaster achieved the high-
est beat accuracy of all methods. Results not using rhythm signature
are much lower, showing the effectiveness of the rhythm signature.

3. Diversity. We follow [Lee et al. 2019] to evaluate the average
feature distance between generated dances for different music in-
puts. The same feature extractor used in measuring FID was again
used. Our method achieves the highest diversity score, as shown in
Table 3. Furthermore, the results without the structural constraint
are slightly higher, because the structural constraints impose some
motion repetition.

User Study. Since evaluating dance quality is very subjective, we
also performed a user study to help us qualitatively evaluate our
method. We used 30 test music clips, and invited 35 participants,
10 of whom being choreographers or artists, to rate the following
factors from 0 to 10: (1) dance realism (ignoring the music), (2) music-
to-dance style consistency, (3) music-to-dance rhythm consistency
and (4) music-to-dance structural consistency.

Results are shown in Fig. 9. Our method achieves higher scores
than other methods, and is close to real dances. We can see that the
generative models (Yan et al. [2019] and Sun et al. [2020]) achieve
low scores throughout, since most of their dance results appear to
be ‘dull’ and ‘blurred’, lacking aesthetic appeal, and having many
artifacts. The results generated by Lee et al. [2013] are much better,
but their dances show poor correlation with the music.

T-test results (see the supplementary materials for details) show
that significant improvement is achieved by using the style embed-
ding, rhythm embedding and structural constraints. Our method
outperform the one without EC by more than 43% and 28% respec-
tively for artists and normal users, outperforms the one without
RC by more than 40% and 32% respectively for artists and normal
users. and outperforms the one without SC by more than 34% and
28% respectively for artists and normal users. In comparison, the
ground-truth only outperforms our results by no more than 6% and
2% respectively for artists and normal users.

ACM Trans. Graph., Vol. 40, No. 4, Article 145. Publication date: August 2021.
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Fig. 8. Dance motions generated by four different methods for a traditional Chinese song.
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Fig. 9. User study results for ordinary users (above) and for choreographers and artists (below). Our method achieves higher scores than Lee et al. [2013], Lee

et al.[2019], Yan et al. [2019] and Sun et al. [2020].

Since some music-driven 2D dance generative models have re-
cently been proposed by Lee et al. [2019] and Ren et al. [2020], we
also made a comparison with these methods, by projecting our 3D
dance into 2D. Results are shown in the supplementary video.
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5.3 System Analysis

In this section, we make an over all performance analysis of the
learned choreomusical embeddings, and then consider the efficiency
of our system.



Before Joint Training After Joint Training
b
. Y N
'Y 3
Ahay RS ﬁ ° Ao
4 ab

£, 08 ,
AA %‘é\ \A * P ‘ )
‘Aﬁﬂg é%&g 8“ “& 2"?&0 Qé%)

/] 1 :
oy - T
A A0
4

@ Music A Motion WM Anime WM Hip-Hop M K-Pop M Tradition

Fig. 10. T-SNE visualization of the choreomusical style embedding of mu-
sics and dances from the test set. Left, right: results before and after joint
training. The embedding of music-dance pairs becomes much closer after
joint training.

Table 4. Style classification accuracy for the first and second style dimen-
sions (Accuracy 1, 2) and the Euclidean embedding distance of music-motion
pairs.

rll;lfiiltlllllrdg Type | Accuracy 1 | Accuracy 2 | Distance
Separate | Motion 72.4% 67.4% 1464
Training | Music 95.1% 78.3%

Joint Motion 70.5% 65.7% 0.316
Training | Music 90.8% 77.1%

Choreomusical Style Embedding. The purpose of our choreomusi-
cal style embedding network is to map the music and dance phrases
into a unified latent space where segments of similar style are as
close as possible. Here we evaluate its performance by showing the
classification accuracy in Table 4 and a T-SNE visualisation of the
choreomusical style embedding in Fig. 10. After the separate train-
ing, the style embeddings of music and dance are already classifiable,
but the embeddings of paired data are far from each other. After the
joint training step, we can see from Fig. 10 (right) that the paired
music and dance have become much closer in the embeddings space,
while the classification accuracy has only dropped slightly, showing
that our choreomusical style embedding network have successfully
reached it purpose.

To evaluate the impact of DEC [Xie et al. 2016], we additionally
trained a style embedding network with the DEC loss removed from
Equation 1. In our experiments, no obvious difference was found
regarding the style classification accuracy of music/dance between
the networks trained with and without a DEC loss. However, clusters
of latent sub-styles were clearly better reflected in the feature space
of the network trained with a DEC loss. Fig. 11 illustrates such
distribution difference on music data.

Choreomusical Rhythm Embedding. We next evaluate the perfor-
mance of our choreomusical rhythm embedding network. Table 5
shows the top-1 and top-3 classification accuracy of the network
with or without the style embedding. The classification accuracy in-
creases after joint training and the style embedding also contributes
to the results, justifying our design of the shared network of Egg
and using the style embedding as input. We also note that the top-1
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Fig. 11. T-SNE visualization of music distributions in the feature space of
the classification network trained without DEC loss (left) and with DEC

loss (right).
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Fig. 12. Weighted Hamming distance of top-3 rhythm signatures after joint
training with style embedding. Most distances are below 1.0.

Table 5. Top-1 and top-3 classification accuracy of our choreomusical
rhythm embedding network with or without style embedding.

Training w/o Style w/ Style
Type
Method Top-3 | Top-1 | Top-3 | Top-1
Separate Motion | 60.6% | 31.8% | 67.8% | 40.9%
Training Music | 68.6% | 44.9% | 76.7% | 54.3%
Joint Motion | 66.6% | 36.9% | 73.8% | 47.1%
Training Music | 75.4% | 51.3% | 82.3% | 59.1%

accuracy is not so high, while the top-3 accuracy is much higher. We
calculate the minimum weighted Hamming distance to the ground
truth in top-3 rhythm signatures for music and dance motions in
the test set. The distributions are showed in Fig. 12, from which we
can see that most of the values are less than 1.0. Therefore, we use
the top-3 results during our graph optimization process, i.e., K = 3
in Equation 6.

Speed. Our system is highly efficient and only needs a few seconds
to synthesize a high-quality dance. The synthesis time is nearly
linear to the motion duration, music duration and number of edges
(determined by the transition threshold §7). We tested the speed
using paired dance motion data (9.91 hours) and all dance motion
data (19.91 hours), and two different settings of dr (i.e., 20 and
12); results are shown in Table 6. The time required to infer the
choreomusical style and rhythm embeddings for input musics are
less than 0.05s, thus omitted from the table. We also illustrate the
distributions of node in-degrees and out-degrees of the constructed
19.91 hours’ motion graph (see Fig. 13) to show their sparsity.
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Table 6. Dance synthesis time required for different sizes of motion graph,
different edge density, and different music durations.

Motion Edge Music | Synthesis
Duration Count Duration Time
61s 09s
103k =2
0911 03k (91 =20) |72 1.88s
’ 61s 2.2s
248k (61 = 12
Or =12) —45 45
61s 33s
328k (51 = 20)
1991h 148 s 6.4s
’ 61s 5.7s
728k (67 =12
Or =12) 755 11.2s
Sparsity of Motion Graph
30 328k Edges 3L7 B Out-degree
225 233 245 I In-degree
g.zo
£15
§ 10
5
(a)o’ 0 (1,51  [6,10] [1115] [16.20] [21,25] [26,30] [310]
25! 728k Edges 242 522 m= Out-degree
320 mmm In-degree
g 16.9 15.1
g1s 123 121 13.9 13.8
310
s
b)Y’ o 1,51  [610] [11,15] [16,20] [21,25] [26,30]  [31,9]

Fig. 13. Sparsity of the motion graph built on 19.91 hours of dance motions.
(a): 328k edges; (b): 728k edges.

5.4 System Controllability

The controllability is of vital importance to a production-ready tool,
and artists may have various individual requirements using our
system. Here we briefly show how ChoreoMaster can adapt to some
common requirements. We provide examples in the supplementary
video.

Precise Control. The most common demand for artists is to have
precise control over the synthesized results, for instance, forcing
some specific dance motions to appear at specific locations in the
synthesized results (motions having specific semantic connections
with the music, for example), replacing unwanted motions without
affecting other movements in the synthesized dance sequence, or
specifying a custom trajectory to move along. ChoreoMaster can
easily support such control by adding extra user constraints to the
data term (i.e., Equation 6), specifically, forcing some user-specified
dance motion node to appear or not appear at some user-specified
temporal interval in the synthesized dance, or encouraging the
character’s root position to stay close to user-specified locations at
user-specified time points.

Range Control. Another common requirement is to restrict the
range of motion of the synthesized dances, to prevent dancers from
moving off the stage—the stage is always limited in the game or film
industry. This can be achieved by adding an extra range constraint
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to the cost function, penalizing motions violating the specified move-
ment ranges.

Novelty Control. As noted by [Berman and James 2015], dance mo-
tion graph can also be used to assist the creative process of dancers
and choreographers. In our system, this can be achieved by lowering
the edge transition threshold 7 (Section 4.1) and increasing the
transition weight 111 (Equation 5). Specifically, lower 67 and higher
A11 tend to encourage the system to use more original dance mo-
tions, while setting a larger d1 or smaller A1; encourages more novel
transitions (i.e., transitions not presented in the dance database) in
the results. We received numerous positive feedbacks from profes-
sional artists about deriving inspirations from the novel transitions
generated by ChoreoMaster.

6 LIMITATIONS AND FUTURE WORK

Although ChoreoMaster has successfully been put into practical use,
limitations remain. Currently, it cannot synthesize dance styles that
are absent from the database, like ballet, waltzes, etc. This can be
addressed by further expanding our dance database. Furthermore, as
noted in Section 3.3, all dance motions in our dataset are structured
in four-beat bars, as typically required by our artists. Therefore,
when dealing with three-beats-to-the-bar music, our system will
still match it to four-beat meter dance motions. Again, further data
acquisition can overcome this problem. Lastly, our system still can-
not handle the semantic relationships between dance motions and
music lyrics: human interaction is required to ensure semantic con-
sistency. It would be interesting to incorporate further techniques
into our system, like natural language processing modules.

7 CONCLUSION

In this paper, we have presented ChoreoMaster, a production-ready
music-driven dance motion synthesis system. It includes a novel
choreography-oriented choreomusical embedding framework to
explore the connections between music and dance in terms of
style and rhythm, using an annotated high-quality database. The
learned choreomusical embedding is then incorporated into a novel
choreography-oriented graph-based motion synthesis framework,
which can robustly and efficiently generate high-quality dance mo-
tions respecting various choreographic rules while also offering
great controllability to users. Experimental results demonstrate that
ChoreoMaster can robustly and efficiently generate diverse high-
quality dance motions widely recognised by professional artists.
ChoreoMaster has successfully produced many hours of dance as-
sets for several projects in Netease Games and to our best knowledge,
is the first production-ready tool for this purpose in the industry.
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A  NETWORK ARCHITECTURES

In this section, we describe the details of our network architectures.
All tensor sizes for each layer in our networks are shown in Tables 7
and 8.

Table 7. Network architecture of Epr and Ep

Epm Ep
Layer | Output Dim | Layer | Output Dim
Input | (1,96,800) | Input | (3,18,240)
MCB1 | (64,48,400) | DCB1 | (64,18,120)
MCB2 | (128,16,200) | DCB2 | (128,12,100)
MCB3 | (128,4,50) | DCB3 | (128,6,50)
MCB4 | (128,1,25) | DCB4 | (128,1,25)
GRU1 (256,25) GRU1 (256,25)
GRU2 (128,25) GRU2 (128,25)
Dense (32) Dense (32)
Output (32) Output (32)

Table 8. Network architecture of Eprr , Epr and Egrs

Emr Epr Egs
Layer | Output Dim | Output Dim | Layer | Output Dim
Input (2,200) (5,60) Input (64)
RCB1 (64,50) (64,30) Dense (128)
RCB2 | (128,10) (128,10) | Dense (128)
Dense (32) Dense (13)
Output (32) Output (13)
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