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Abstract—Benefiting from advances in large-scale pre-training,
foundation models, have demonstrated remarkable capability in
the fields of natural language processing, computer vision, among
others. However, to achieve expert-level performance in specific
applications, such models often need to be fine-tuned with domain-
specific knowledge. In this paper, we focus on enabling vision-
language models to unleash more potential for visual understand-
ing tasks under few-shot tuning. Specifically, we propose a novel
adapter, dubbed as lusterAdapter, which is based on trainable
multiple prototypes clustering algorithm, for tuning the CLIP
model. It can not only alleviate the concern of catastrophic for-
getting of foundation models by introducing anchors to inherit
common knowledge, but also improve the utilization efficiency
of few annotated samples via bringing in clustering and domain
priors, thereby improving the performance of few-shot tuning. We
have conducted extensive experiments on 11 common classification
benchmarks. The results show our method significantly surpasses
the original CLIP and achieves state-of-the-art (SOTA) perfor-
mance under all benchmarks and settings. For example, under the
16-shot setting, our method exhibits a remarkable improvement
over the original CLIP by 19.6%, and also surpasses TIP-Adapter
and GraphAdapter by 2.7% and 2.2%, respectively, in terms of
average accuracy across the 11 benchmarks.

Index Terms—Parameter-efficient tuning, vision-language mod-
els, foundation models. adapter, deep learning, clustering.

I. INTRODUCTION

ORIGINATING from natural language processing (NLP),
foundation models [1], [2], [3] (a.k.a., large models

(LMs)) have shown potential in unifying the modeling of various
tasks and achieving general intelligence to some extent. Inspired
by the success of foundation models in NLP, some vision and
multi-modal foundation models, such as CLIP [4], BLIP [5] and
SAM [6], have also emerged, making great progress on various
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tasks such as recognition, detection, segmentation, tracking,
and generation. This paper primarily centers around CLIP, a
multi-modal foundation model designed for image recognition.

The remarkable performance of foundation models stems
from two crucial technologies: large-scale pre-training [1], [7]
and small-scale fine-tuning [8], [9]. In the pre-training stage,
generative or contrastive unsupervised learning methods are
usually adopted to allow a model to learn general knowledge
from large-scale data. At this time, due to the lack of specific
domain knowledge for downstream tasks, a foundation model
often exhibits only average performance on those tasks. In order
to enhance the foundation model and make it achieve expert-
level performance for a specific task, a fine-tuning process is
necessary. Different from the pre-training stage, the fine-tuning
phase usually relies on small-scale domain-specific data. Thus,
tuning foundation models to make them become expert models
under the setting of a few domain-specific samples is an im-
portant research topic. In this paper, we focus on developing
a novel adapter that enables the tuning of a foundation model
into an expert model using only a few annotated samples from
a specific domain.

During the tuning stage, there are two key challenges: deal-
ing with catastrophic forgetting of the foundation model and
efficiently utilizing domain-specific annotated samples. Some
previous works have made great efforts to address the above
challenges. Existing approaches can be broadly categorized
into the following groups: prompt engineering [10], [11], [12],
adapters [8], [9], [13], and in-context learning [14], This paper
aims to advance the state-of-the-art adapter design. Previous
methods utilizing an adapter represented by LoRA [15] mainly
focus on designing a light-weight neural network that is friendly
for few-shot fine-tuning. For instance, CLIP-adapter [8] is the
pioneer to employ an adapter for the CLIP model. It learns
suitable linear classifier weights for both text and image branches
of the CLIP model. TIP-adapter [9] proposes a training-free
adapter based on the concept of cache, which takes catastrophic
forgetting into consideration and significantly improves the per-
formance of CLIP. Different from earlier methods, we propose a
clustering-based adapter, which not only considers how to avoid
catastrophic forgetting of the foundation model by introducing
anchor points, but also aims to effectively use limited annotated
samples by bringing in priors.

As shown in Fig. 2, we observe two crucial phenomena in the
clustering process. Phenomenon (I) is summarized from Fig.
2(a) and (b). In the case of a single prototype per class, it can
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Fig. 1. Comparison with previous methods on ImageNet benchmark. It can be
observed that our method (ClusterAdapter) outperforms all competitors on all
11 benchmarks. Note: CLIP is zero-shot setting while other methods are 16-shot
settings.

Fig. 2. The partition boundary of the binary classification problem under
different situations. The original classes are colored green and red respectively.
The blue star points are the clustering prototypes of different partitions. The
figure is divided into three rows, each row is a comparison of two situations to
illustrate a phenomenon. The first row demonstrates that for only one cluster
prototype per class (a), the classification boundary will be a straight line, which
can not fit the real partition boundary well for complex distributions. Multiple
cluster prototypes per class would give a better partition boundary (b). The
second row illustrates that increasing the number of prototypes for each class
can produce a more precise partition boundary (d). The last row shows too many
cluster prototypes for each class will lead to overfitting (e).

only work well for the linearly separable case. As for linearly
inseparable cases, we can adopt multiple prototypes (corre-
sponding to multiple different lines) per class to obtain a curved
boundary. The principle behind this is that multiple line seg-
ments can be used to approximate a curve. We summarize
phenomenon (II) from Fig. 2(c), (d), (e), and (f). Though more
prototypes allow us to obtain a finer boundary, it would also
be likely to lead to overfitting at the same time. The general
classification methods usually group one class of objects around
a single center (a.k.a., one-hot vector). This assumption holds
when inter-class differences are large and intra-class differences
are small, which assumes the distance between different cate-
gories is large and thus the categories are easy to be separated; in
other words, they can be separated by a line. However, such an
assumption is often violated with real image data, especially for
fine-grained classification tasks, where inter-class differences
are relatively small, which can be separated by a curve instead
of a line. According to curve subdivision theory, an arbitrary
curve can be approximated by multiple lines. Thus, we attempt
to obtain a curve boundary by using multiple cluster prototypes.

Based on the above observations and to address the limitation
of using a single center to represent a class, we reformulate the
few-shot fine-tuning of CLIP for visual classification as a clus-
tering process using multiple prototypes to represent one cluster.
Specifically, we propose a learnable cluster classifier (LCC) to
learn the multiple clustering prototypes for each category in an
end-to-end manner by using the gradient descent algorithm. In
the clustering process, we adopt a representation that uses the
combination of a frozen anchor and a trainable bias for each
clustering center. The frozen anchor is used to inherit common
knowledge from the foundation model to avoid catastrophic for-
getting, and the trainable bias is applied to learn specific domain
knowledge based on few-shot annotated samples. Meanwhile,
we randomly drop some cluster prototypes during the clustering
process to avoid overfitting, as demonstrated in Fig. 2(e).

Besides, to improve the data efficiency of fine-tuning, we
introduce two priors. The first one is that the CLIP embeddings
should be modulated for a particular domain (or dataset). As
shown in Fig. 4, due to the fact that CLIP is trained on an
extensive web-scale, heterogeneous dataset, features from CLIP
need to be refined to make them more applicable in a specific
domain. For example, CLIP has seen both sunny and rainy
days from its pre-training stage. In the fine-tuning stage, we
hope CLIP can handle rainy data well. In this situation, CLIP’s
features for sunny days should be suppressed and features for
rainy days should be enhanced. To achieve this, we present a
domain attention module to enhance or suppress features from
the foundation model for domain adaptation. The second prior is
to improve the learning of cluster centers. We consider two types
of cluster centers: those belonging to the same category and those
that are of different categories. Obviously, we desire the distance
between cluster centers of different categories to be maximized.
As for centers of the same category, our objective is to prevent
multiple prototypes from collapsing into one prototype, which
will make us lose the advantage of multiple prototype clustering.
So, we need to maintain a margin distance between the centers of

Authorized licensed use limited to: Tsinghua University. Downloaded on January 11,2025 at 16:51:48 UTC from IEEE Xplore.  Restrictions apply. 



11188 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 12, DECEMBER 2024

Fig. 3. Diagram illustrating the ClusterAdapter fine-tuning process. (a) shows the entire end-to-end training process; (b) shows how to set visual cluster prototypes
given labeled domain-specific examples; (c) shows how to set the text cluster prototype for each class. Orange and blue colors denote trainable and frozen modules,
respectively. A© means the additive aggregation.

Fig. 4. Domain attention. CLIP is aimed to perform well in general domains,
which means it needs to activate all features to cover various scenarios. To adapt
to a specific domain, our domain attention emphasizes important features and
suppresses irrelevant features.

the same category. To achieve the above goals, we design a prior
cluster loss (PCL). By taking into account the aforementioned
two priors, we can improve the utilization efficiency of annotated
samples in the fine-tuning stage.

The main contributions of this paper are:

� We reformulate CLIP’s fine-tuning process as a multi-
center-per-class clustering problem and present a novel so-
lution, namely ClusterAdapter, to boost CLIP’s adaptation
capability with a few annotated samples.

� In order to overcome the challenge of catastrophic forget-
ting and improve data efficiency in the fine-tuning process,
we propose three new modules: learnable cluster classifier,
domain attention module, and prior cluster loss.

� Extensive experiments show that our ClusterAdapter
clearly surpasses previous adapters and prompt methods
on 11 commonly used benchmarks in terms of average
accuracy. For instance, as shown in Fig. 1, it outperforms
TIP-Adapter and GraphAdapter by 2.7% (78.5% versus
75.8%) and 2.2% (78.5% versus 76.3%), respectively.

II. RELATED WORK

A. Foundation Models

Foundation models (a.k.a., Large models (LMs)) such as
GPT-4 [2],CLIP [4], DALL-E [16], [17], SAM [6], and
LLaMA [3] have emerged as powerful tools for the intelligent
processing of data in various modalities including text, images,
videos, and audio. For instance, the GPT series of models [1], [2]
are employed to handle natural language tasks such as dialogue
and machine translation. Some multi-modal models [4], [5], [18]
are applied to visual understanding. Models like DALL-E [16]
and Imagen [19] are used for image generation. The wide use of
foundation models has greatly improved the performance and
generalization of previous models on various tasks. We believe
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the success of foundation models is attributed to two essential
processes: large-scale pre-training and specialized fine-tuning.

We focus on a specific vision-language foundation model, i.e.,
CLIP [4], which is trained on large-scale image-text pairs. It has
been widely used in various tasks, including classification [8],
[9], [20], detection [21], [22], segmentation [23], [24], [25], [26],
[27], visualization [28], and generation [29], [30]. The CLIP
model is more of a generalist due to its pre-training on large-scale
and heterogeneous data. However, directly applying the CLIP
model to downstream tasks often gives only average perfor-
mance. Fine-tuning the model has the potential to significantly
improve performance on domain-specific tasks. In contrast to
the web-scale text-image pairs freely available on the Internet,
acquiring a large number of samples for a specific task is usually
challenging. Hence, we focus on the setting with limited labeled
samples in the fine-tuning process. In other words, we aim to
improve the fine-tuning process of CLIP to enable it to become
a domain-specific expert model with only a small number of
annotated examples.

B. Few-Shot Fine-Tuning

Few-shot learning (FSL) aims to train models only from a
few training examples. Traditionally, FSL approaches can be
categorized into three types [31]: meta-learning [32], transfer
learning [33], and hybrid approaches [34]. Recently, a new
paradigm a.k.a., parameter-efficient tuning, emerged, which is
based on foundation models. The goal of parameter-efficient
tuning is to enable the foundation model to learn domain-specific
knowledge and become an expert in the target domain with
only a few labeled samples. These techniques can be roughly
divided into three categories: adapter [9], [13], [35], [36],
[37], [38], which advances the foundation models by tuning
lightweight neural networks; prompt engineering [10], [11],
[12], [39], which boosts foundation models by improving their
input prompts; and in-context learning [14], [40], which aims to
provide informative samples to solve downstream tasks.

Our proposed method belongs to the parameter-efficient tun-
ing paradigm, and is most relevant to adapters. Adapter-Bert [41]
is the pioneer in this field, which proposes the concept of
adapter, and has achieved great success in NLP. After that, a
series of adapter-related works in NLP are proposed, including
LoRA [15], AdapterFusion [42], and AdapterDrop [43]. Re-
cently, some CLIP-based adapter methods have also emerged.
Clip-adapter [8] is the first work to finetune the CLIP model,
which uses feature adapters to finetune both visual and lan-
guage branches of CLIP. TIP-adapter [9] constructs a key-
value caching model to enable efficient retrieval of knowledge.
APE [44] analyzes the inter-class disparity in the downstream
data and decouples the domain-specific knowledge from the
CLIP-extracted features. GraphAdapter [45] proposes a dual-
modality structure knowledge approach through the construc-
tion of a dual knowledge graph. CALIP [46] enhances the
cross-modal alignment between images and text by using at-
tention mechanisms. The previous work most related to our
work is the TIP-adapter [9], since it also stores and uses features
from the CLIP visual encoder. Different from TIP-adapter, we

formulate the fine-tuning process as a clustering problem and
propose clustering losses to enhance the adapter. Furthermore,
we propose new domain attention architecture and priors to
overcome the catastrophic forgetting of CLIP and improve data
efficiency in the fine-tuning process.

C. Clustering Methods

Clustering is a commonly used technique in machine learning
to group data points into multiple clusters based on pre-defined
similarity measurements. Several well-known clustering algo-
rithms include k-means [47], DBSCAN [48], Gaussian mixture
models, spectral clustering, etc. Recently, trainable clustering
methods (a.k.a., deep clustering) [49] have emerged, which
exploit deep neural networks to jointly learn feature repre-
sentations and cluster assignments. Deep clustering has been
applied to numerous tasks such as object detection [50], semantic
segmentation [51], self-supervised learning [52], cross-domain
alignment [53], [54], among others [55]. For more details about
deep clustering, readers are referred to this survey [49].

Our method also belongs to deep clustering methods. We treat
the fine-tuning of a foundation model for visual recognition as a
supervised clustering problem and give an efficient solution. Dif-
ferent from most previous methods, which fit curve boundary by
introducing kernel function or improving the similarity metric,
we focus on fitting curve boundary with multiple line segments.
Unlike presetting the kernel function, which is applicable for
limited boundary shapes, we can approximate any curve freely
according to curve subdivision theory. To the best of our knowl-
edge, this is the first attempt to approach parameter-efficient
tuning from the perspective of deep clustering. We hope our
solution can bring new insight and advance the development of
this field.

III. CLUSTERADAPTER

In this section, we first provide a brief overview of the CLIP
classification process and reformulate it as a clustering process.
After that, we explain the details of each component of our
ClusterAdapter, including learnable cluster classifier, domain
attention, and prior cluster loss, along with a detailed expla-
nation of the motivations behind them. It is worth noting that
all parameters of the original CLIP, including text encoder and
image encoder are frozen during the training process.

A. Problem Formulation

CLIP [4] is a popular vision-language model, which proposes
a new paradigm for visual representation learning. First, it is
trained on large-scale image-text pairs to align the image and text
domains. Then, it can perform image recognition by calculating
and comparing the the similarity between the image embedding
and different text prompt embeddings. For instance, given an
image Ximg, we can obtain its image feature Fimg by using
CLIP’s image encoder. Meanwhile, some text prompts, which
contain category information such as “a photo of a dog”, are also
encoded into features Ftexts. Then, we can calculate the cosine
similarity between Ximg and Ftexts, and choose the text category
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with the largest cosine similarity as the image’s category. Though
CLIP presents powerful generalization for zero-shot classifica-
tion, its performance is usually mediocre in specific domains.
The objective of this paper is to enhance the ability of CLIP for
classification in specific domains by effectively leveraging only
a limited amount of labeled data from those domains.

To achieve our goal, we first reformulate CLIP classification
from the perspective of clustering. CLIP itself can be viewed
as a special case of clustering, where each class has only one
text prototype as the cluster prototype. It classifies images by
calculating the cosine similarity between the image feature and
each class’s text cluster prototype. For CLIP, this process can be
formulated as

A = argmax
k∈1,2,...,M

Sk, (1)

Sk =

〈
Fimg

‖Fimg‖ ,
μk

‖μk‖
〉
. (2)

Here, S k denotes the cosine similarity, calculated by the inner
product 〈·, ·〉, between the image feature and the k th cluster’s
text prototype μk. A ∈ {1, 2, . . .,M} is the assigned class for
the input image among a total of M classes.

As shown in Fig. 2(a) and (b), a single prototype per class
is only suitable for linear boundaries. We intend to improve the
CLIP classification process by fitting curved boundary, which
can be achieved by transforming it into a multi-prototype clus-
tering process. To achieve the above transformation, we refor-
mulate the CLIP classification process and define the clustering
process with multiple clustering prototypes. As shown in Fig. 3,
given an image Ximg, our goal is to assign a class label (1 out
of M classes) to the image. We first obtain the image feature
Fimg ∈ RD by using the visual encoder. Besides, for each class
i ∈ {1, 2, . . .,M}, we preset some cluster prototypes, including
image cluster prototypes μI

ij ∈ RD, j ∈ {1, 2, . . ., NI} and text
cluster prototypesμT

iq ∈ RD, q ∈ {1, 2, . . ., NT }, whereNI and
NT are the number of image prototypes and text prototypes for
the corresponding class, respectively. Then, we can calculate
the similarity between input image feature Fimg and the multiple
cluster prototypes of each class as follows and obtain the final
assignment A:

SI
k =

NI∑
j=1

f(Fimg, μ
I
kj), (3)

ST
k =

NT∑
q=1

g(Fimg, μ
T
kq), (4)

Sk = c(SI
k,ST

k ), (5)

A = argmax
k∈1,2,...,M

Sk. (6)

Here, f(·, ·) and g(·, ·) are the functions to compute similarity
from input image feature to image cluster prototypes and text
cluster prototypes, respectively. c(·, ·) is an aggregation function
that combines the two kinds of similarities to get the overall
similarity Sk to class k. A is the final assigned class label
to image Ximg, which is the class that has the highest overall

similarity to the image. Under above formulation, CLIP is a
special case where NI = 0, NT = 1, and g(·, ·) is the cosine
similarity. As for our method, which is dedicated to to finding
suitable functions f(·, ·), g(·, ·), and c(·, ·) as well as image
prototypes μI and text prototypes μT to better complete visual
recognition task under the setting of having a limited number
of labeled domain-specific data examples. Since this process is
similar to traditional clustering methods like k-means, in that it
seeks appropriate cluster centers or prototypes to group similar
objects together, we name our proposed method ClusterAdapter.

B. Learnable Cluster Classifier

As shown in (3)–(6), the critical components of the clustering
process are the similarity functions f(·, ·) and g(·, ·), as well
as the image (or visual) prototypes μI and text prototypes μT .
We introduce their details in this section. It is worth noting that
the entire process is differentiable. In other words, all learnable
parameters are obtained through the end-to-end training.

1) Visual-Based Clustering: Since all visual prototypes have
the same form, without loss of generality, we choose a prototype
in the kth class for demonstration. Specifically, for the kth class
havingNI learnable visual prototypes, each prototype comprises
two integral components: an anchor point and a learnable bias.
As shown in Fig. 3(b), the anchor point of a prototype comes
from the image feature obtained from CLIP’s image encoder
for one of the available labeled domain-specific examples; the
anchor point is frozen during fine-tuning. Its role is to inherit the
knowledge of pre-trained CLIP model to prevent the catastrophic
forgetting. It is worth noting that each anchor point is selected
from our training set (a.k.a., our few labeled samples), and we
do not bring any extra samples here. The bias for the prototype
is learnable and initialized to 0, which is used to refine the model
to be more adaptive for the specific domain. Therefore, a visual
prototype can be defined as

μI
kj = AnchorIkj + bIkj , j ∈ {1, 2, . . ., NI}. (7)

The combination of frozen anchor and learnable bias allows
our algorithm to learn and refine on the basis of the foundation
model. Therefore, it improves the performance of the model in
specific domains while preventing catastrophic forgetting of the
model. Another key component is the similarity function f(·, ·).
We choose the weighted cosine similarity function, defined as
follows:

SI
k =

NI∑
j=1

wj

〈
Fimg

‖Fimg‖ ,
μI
kj

‖μI
kj‖

〉
. (8)

Here, wj is the learnable weight, and both μI
kj and Fimg are

normalized for the cosine similarity computation. As shown
in Fig. 2(e) and (f), too many cluster prototypes may cause the
overfitting problem. To avoid this, we randomly drop some pro-
totypes in each training iteration. In other words, we randomly
set some wj = 0 in each training iteration.

2) Text-Based Clustering: The text prototypes come from
two sources. First, we manually construct sentences for a cat-
egory, such as “a photo of a {category}”. Second, we use an
LLM, e.g., CuPL [56], to generate more diverse prompts. A text
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TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS ON IMAGENET DATASET

UNDER DIFFERENT SHOT SETTINGS

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON IMAGENET DATASET

UNDER DIFFERENT BACKBONES

prototype also comprises a frozen anchor point and a learnable
bias

μT
kq = AnchorTkq + bTkq, q ∈ {1, 2, . . ., NT }. (9)

The weighted cosine similarity is again used to compute the
text similarity ST

k , which is the similarity between input image
feature Fimg and the text cluster prototypes of any class k. Since
there are already multiple visual prototypes, it can support us
to perform the multi-prototype clustering. Here, we set NT = 1
by default; that is, we use one text prototype and multiple visual
prototypes per class.

As shown in Fig. 3(c), a weighted combination of GPT-3
generated texts and manually constructed template texts is used
to derive the anchor point for the one text cluster prototype (or
center). Thus, μT

kq can be simplified to μT
k .

After obtaining the text-based clustering similarity ST
k and

visual-based clustering similarity SI
k, we can combine the two

similarities by the aggregation function c(·, ·), defined in the
same way as in TIP-adapter [9]

Sk = c(SI
k,ST

k ) = 100 · ST
k + α · exp(β · (SI

k − 1)). (10)

Here, α and β are hyperparameters, which are set to different
values for different datasets.

C. Prior Cluster Loss

Besides the cross-entropy classification loss, to enhance the
effectiveness of clustering and make full use of the annotated
samples, we introduce inter-class and intra-class priors to the
clustering process. For clustering, one rule is to strive for larger

distances among cluster prototypes of different classes. We
can use the InfoNCE loss [57] to achieve this goal. For text
prototypes, the inter-class loss can be summarized as

LossTinter = InfoNCELoss(μT ) (11)

= −
M∑
k=1

log

⎛
⎜⎝ exp(〈 μT

k

‖μT
k ‖ ,

μT
k

‖μT
k ‖ 〉 · 1

τ )∑M
j=1 exp(〈 μT

k

‖μT
k ‖ ,

μT
j

‖μT
j ‖ 〉 · 1

τ )

⎞
⎟⎠ . (12)

Here, τ is the temperature coefficient. Similarly, the InfoNCE
loss can be used for inter-class image prototype distances, re-
sulting in the inter-class loss for image, LossIinter.

For cluster prototypes of the same class, our objective is
to prevent them from collapsing into a single point; instead,
we intend to maintain a margin distance between them. To
achieve this, we also impose an InfoNCE loss. The difference
is that when the cosine similarity of two prototypes in the same
category is greater than a preset margin, we no longer calculate
the intra-class loss between them. This process is defined as

LossIintra =

{
InfoNCELoss(μI), d ≤ margin,

0, d > margin.
(13)

Here, d denotes the distance between different prototypes, which

can be computed as d = 〈 μI
ki

‖μI
ki‖

,
μI
kj

‖μI
kj‖

〉, i �= j. We set the margin

distance to 0.5 by default; in other words, when the angle
between them is less than or equal to 60◦, we hope to constrain
them to increase the angle through the InfoNCE loss, and vice
versa, the loss will no longer be calculated. In this way, we can
obtain the intra-class loss for image prototypes LossIintra. Since
by default, we consider only one text prototype per class, there
is no need to consider intra-class text prototype loss. Finally, the
overall loss can be written as

Loss = Losscls + w1LossTinter + w2LossIinter + w3LossIintra.
(14)

Here, Losscls is the cross-entropy classification loss; w1, w2 and
w3 are the weights balancing different losses, which are set to
0.5, 10 and 20, respectively, by default.

D. Domain Attention

As shown in Fig. 3(a), before entering the clustering classifier,
we incorporate a domain attention module to modulate CLIP
features for domain adaptation. Our intention of designing do-
main attention is shown in Fig. 4. As shown on the left of Fig. 4,
CLIP is trained on web-scale data, which makes it a general
model for various domains. However, if we want CLIP to be a
domain-specific model, we need to enhance or weaken certain
features of CLIP to make it adapt to a specific domain, as shown
on the right of Fig. 4. For example, CLIP has seen day and
night scenes during training. However, in our specific domain,
we only need to process night scenes, so we need to enhance the
features for night scenes and suppress the features for day scenes.
Thus, our assumption is that for a particular domain (dataset),
the feature dimensions that need to be emphasized or suppressed
are consistent. We thus adapt the general feature from CLIP to
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Fig. 5. Comparison with previous few-shot fine-tuning methods on 11 datasets under 1,2,4,8,16-shot settings. Our method significantly surpasses existing methods
under different settings, achieving new state-of-the-art.

TABLE III
THE TOP-1 CLASSIFICATION ACCURACY (%) USING EVA-CLIP ACROSS 11 BENCHMARKS
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a specific domain using a domain-specific attention

gate = (ReLU(attn))p, (15)

Output = gate · Input. (16)

Here, attn is a trainable vector of the same dimension as the
input CLIP feature and p is a hyper-parameter. We experimen-
tally find that our method performs well when p is greater than 3.
With the ReLU and power function, our attention can enhance or
suppress different features. Specifically, when a certain dimen-
sion l needs to be enhanced, the gate will learn a large value;
otherwise, the gate will learn a small value until it is completely
suppressed (a.k.a., gatel = 0). Since the above method plays
a role in emphasizing or suppressing some features, which is
consistent with the goal of attention, we thus call it domain
attention.

IV. EXPERIMENTS

A. Experimental Settings

We conduct experiments on 11 commonly used clas-
sification benchmarks, including ImageNet [58], Caltech-
101 [59], DTD [60], EuroSAT [61], FGVC [62], Flow-
ers102 [63], Food101 [64], OxfordPets [65], StandfordCars [66],
SUN397 [67], UCF101 [68]. For each benchmark, we randomly
choose 1, 2, 4, 8, and 16 samples from its training set for
fine-tuning the CLIP model using our ClusterAdapter method.
The training preprocessing involves randomly cropping the input
images, where the size of the crop varies from 0.5 to 1.0 of
the original image size. The cropped images are then resized
to a specific dimension, namely 224x224 pixels. Subsequently,
the images undergo a horizontal flip with a probability of
0.5. Finally, each channel of the images is normalized. Then,
we evaluate the fine-tuned model by using all data in the
test set and report the Top-1 accuracy. Besides, we conducted
out-of-distribution experiments on the ImageNet-V2 [69] and
ImageNet-Sketch [70] datasets. Both quantitative and qualitative
experiments are shown in this section. For a fair comparison,
we adopt CLIP with ResNet50 [71] backbone as our default
encoder, which is the same as previous methods. In addition,
in order to demonstrate the generalizability of our method,
we further conducted experiments with different backbones,
including ResNet-101 [71] and ViT-B [72]. Experiments are
based on Jittor [73] and Pytorch [74].

B. Comparison With State-of-the-Art Methods

Comparison with SOTA methods under different shots: We
choose some representative methods from prompt engineering
or adapters for comparison, including TIP-Adapter [9], CLIP-
Adapter [8], GraphAdapter [45], etc. For a fair comparison, all
methods adopt the same backbone ResNet-50 as image encoder.
As shown in Table I, our method outperforms CLIP by 6.8%
in Top-1 accuracy and surpasses the previous SOTA method
APE [44] by 1% on the ImageNet dataset under a 16-shot set-
ting. Besides, under different shots settings, our ClusterAdapter
outperforms other methods on the ImageNet dataset. To facilitate
a clearer comparison between our method and other approaches,

TABLE IV
COMPARISON WITH PREVIOUS STATE-OF-THE-ART METHODS UNDER

OUT-OF-DISTRIBUTION SETTING (16-SHOT), WHERE THE MODELS ARE

TRAINED ON THE IMAGENET AND EVALUATED ON IMAGENET-V2 AND

IMAGENET-SKETCH BENCHMARKS

we present results across various datasets and diverse settings
in Fig. 5. It demonstrates that our method significantly outper-
forms previous methods under various settings. For example,
under the 16-shot setting, our method outperforms the original
CLIP by 19.6% (78.5% versus 58.9%) and surpasses previous
SOTAs, i.e., TIP-Adapter and GraphAdapter by 2.7% (78.5%
versus 75.8%) and 2.2% (78.5% versus 76.3%), respectively, in
terms of average accuracy across the 11 benchmarks. It is worth
noting that we have a greater improvement than the TIP-adapter,
which shows that it is not enough to just directly use the original
features of the visual encoder and the clustering processing is
critical for this situation.

Comparison with SOTA methods under different backbones:
In order to demonstrate the generalizability of our method,
we construct experiments with the same shots (a.k.a., 16-shot)
and different backbones. As shown in Table II, our Cluster-
Adapter clearly surpasses all previous methods with different
backbones, including ResNet-50, ResNet-101, ViT-B/32 and
ViT-B/16. Furthermore, we also test our method on the advanced
image-text model EVA-CLIP [75]. We conducted experiments
on 11 benchmarks based on the EVA-CLIP-B and EVA-CLIP-L
models under the 16-shot setting. As shown in Table III, Cluster-
Adapter demonstrates a remarkable improvement over the orig-
inal EVA-CLIP and also outperforms the TIP-Adapter across
the 11 benchmarks. This demonstrates the strong generalization
of our method, which can serve as a plug-and-play method for
different backbones.

Comparison with SOTA methods with out-of-distribution set-
ting: Out-of-distribution is also an important way to demonstrate
the generalization of proposed methods. Its settings are to train
on a certain dataset and test on another new dataset. We con-
duct this experiment by training on the ImageNet dataset and
evaluating our model on ImageNet-V2 and ImageNet-Sketch
datasets. As shown in Table IV, our ClusterAdapter demon-
strates excellent performance on both datasets and outperforms
previous methods, demonstrating that our method is robust and
more suitable for domain transfer.

Computational cost comparison with previous methods. For
a more comprehensive understanding of different methods, we
compare their computational overhead for different benchmarks
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TABLE V
COMPUTATIONAL COST COMPARISON WITH PREVIOUS METHODS

TABLE VI
ABLATION STUDIES CONDUCTED ON THE IMAGENET DATASET UNDER THE

16-SHOT SETTING, USING RESNET-50 AS THE BACKBONES

TABLE VII
ABLATION ON THE NUMBER OF VISUAL PROTOTYPES TO USE

and backbones. We report the number of trainable parame-
ters, actual training cost, including training time and training
memory, and actual inference cost, including inference time
and inference memory. The experimental results are shown
in Table V. Two conclusions about training and inference can be
obtained from the table. During training, our method has similar
or even shorter training time than previous methods. Besides,
our method also has a comparable training parameter with the
previous method TIP-Adapter. However, our method takes up
more training memory than other methods. The reasons are two
aspects: a) We use multiple contrastive losses to constrain the
relationship between cluster centers, which accounts for most
of the additional memory overhead and can be saved in the
inference stage; b) We need to compute some cosine similarity
in this process, which accounts for a few additional memory
overhead and cannot be saved in the inference stage. When
the number of categories increases from 196 to 397 (Stanford
Car dataset versus SUN397 dataset), these two shortcomings
will be slightly more obvious during the training stage. Despite
this, we believe that these additional overheads on memory are
within an acceptable range. In addition to the training overhead,
we think that the inference overhead is more important for the
method, because in actual applications we only need to deploy

Fig. 6. Ablation study about trainable anchors or frozen anchors. FTTI denotes
frozen text anchors and trainable image anchors. TTFI denotes trainable text
anchors and frozen image anchors. TTTI denotes trainable text anchors and
trainable image anchors. FTFI denotes frozen text anchors and frozen image
anchors. In the case of FTFI, since there are no training parameters, the
performance does not change as the learning rate changes. All experiments
are conducted on the ImageNet dataset under 16-shot settings with ResNet-50
backbone.

the inference stage. During the inference stage, since we no
longer need to compute the loss function, our method achieves
better performance with similar overhead as other methods.
All the above experiments involving time and memory are
trained and tested on the same server, which is equipped with
an NVIDIA GeForce RTX 3090 GPU. In fact, our method has
low hardware requirements and can be effectively inferenced on
a single NVIDIA GeForce GTX 1080 Ti, or even on graphics
cards with lower computational performance. Please refer to our
code repository for deployment.

C. Ablation Study

In order to understand the factors contributing to performance
improvement, we conduct an ablation study on the ImageNet
benchmark with 16 annotated samples. We mainly conducted
ablation to study two aspects: the effect of different modules,
and the number of prototypes to use.

1) Effect of Different Modules: We first design a baseline
by using a linear probe of CLIP. Specifically, we add a trainable
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Fig. 7. Ablation study on different hyperparameters. All experiments are conducted on the ImageNet dataset under 16-shot settings with ResNet-50 backbone.

linear layer on top of the CLIP image encoder. The baseline gives
60.7% Top-1 accuracy on the ImageNet dataset. We then conduct
ablation studies by adding different modules, and the results are
reported in Table VI. The modules considered are text-based
clustering (TC), visual-based clustering (VC), prior cluster loss
(PCL), and domain attention (DA). From the results, one can see
that our method significantly outperforms the baseline with all
the proposed modules added (67.1% versus 60.7%). Modules
such as TC and VC are all important and contribute to the
performance of the overall method. The results also validate the
effectiveness of handling catastrophic forgetting of the founda-
tion model and utilizing multiple cluster prototypes and domain
attention to improve data efficiency.

2) Choice for the Number of Visual Prototypes: As discussed
earlier, the implementation of our method uses multiple visual
(i.e., image) cluster prototypes and one text prototype for each
class. We conduct an ablation study for the number of visual
prototypes to use, with results shown in Table VII. As we can
see, the number of prototypes does have an impact on the final
performance. Under the 16-shot setting, when the number of pro-
totypes is less than 16, the performance improves as the number
of prototypes increases. When it is greater than 16, the increase
in the number of prototypes does not bring further performance
improvement but causes more parameters and computational
overhead. Therefore, we set the number of visual prototypes to
be the same as the number of shots by default.

3) Frozen Anchors or Trainable Anchors: To verify the effect
of the proposed “anchor-bias” mechanism, aimed to prevent
forgetting, we construct experiments to let the anchors perform
forgetting. Specifically, we make the frozen anchors in both
text and image branches trainable. Meanwhile, we adjust the
learning rate of text and image anchors from 0.001 to 0.05. The
result shown in Fig. 6 demonstrates four scenarios: 1) Frozen

Fig. 8. Heat map visualizing similarity between input image features and their
corresponding class/cluster centers. (a) CLIP similarity matrix. Note that there
is only one text center for each of the visualized 10 classes on the horizontal
axis. (b) ClusterAdapter similarity matrix. Note that ClusterAdapter employs
multiple image and text prototypes for each class, thus the horizontal axis is
denser, and we show more input images too on the vertical axis.

text anchor and frozen image anchors (FTFI), 2) Frozen text
anchor and trainable image anchors (FTTI), 3) Trainable text
anchor and frozen image anchors (TTFI) and 4) Trainable text
anchor and trainable image anchors (TTTI). It reveals two con-
clusions: a) Training text anchor or image anchors separately
will lead to performance degradation and training them simulta-
neously will lead to greater performance degradation. In this sit-
uation, though the trainable parameters increase, we still observe
a drop in performance, indicating that the model indeed forgets
something. b) The larger the learning rate is, the more obvious
the model performance declines. We think this is because a larger
learning rate would lead to a faster forgetting speed. The above
two observations show the “anchor-bias” mechanism avoids the
problem of catastrophic forgetting to some extent and when we
disrupt this mechanism, the performance of the model will drop
significantly.
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Fig. 9. Visualization results on clustering centers and tested features. The first row (a.k.a., 1x) is the visualization results on the ImageNet dataset. The second
and third rows are the visualization results on the Stanford cars and SUN397 benchmarks respectively. The number at the top of each subfigure represents the
categories we randomly selected.

4) Ablation Study on Different Hyperparameters: Here, we
conduct experiments on the ImageNet benchmark under 16-shot
setting with ResNet50 backbone to show how to choose the
hyperparameters of our method. The experiments involve 6
hyperparameters, including w1, w2 and w3 in (14), margin in
(13), and α and β in (10). For each hyperparameter, we conduct
10 experiments to sample uniform values within an interval.
For example, we sample from [0.5, 4.5] with a step of 0.5 to
obtain the setting for w1, i.e., {0.5, 1.0, 1.5, . . . 4.5}. As shown
in Fig. 7, the w1, w2, w3, and margin parameters have a slight
impact (about 0.1%–0.4%) on the results and demonstrate strong
robustness in our model. Besides, the α, β have a significant
impact (about 2%) on our model, which should be chosen
carefully according to the experiments.

5) Guideline for Training Our Model: After ablation on
different hyperparameters and experimental settings, we sum-
marize a training recipe for our method, which includes the
following key factors: (1) All modules proposed in our Cluster-
Adapter such as prior cluster loss (PCL), and domain attention
(DA) are necessary for improving our method; (2) When we
use the ”anchor-bias” mechanism properly, it will also have

a performance benefit. The secret is that the anchor should
be frozen. (3) An appropriate hyperparameter setting is also
the key to the success of the method. Here, we believe that
two hyperparameters, i.e., α and β in (10) for combining the
text-based and the visual-based clustering similarities, matter a
lot. We recommend performing a rough grid search on these two
parameters before applying our method to the new domain. This
also inspires us to develop an adaptive algorithm to automatically
select α and β in future work. For the other hyperparameters,
since they are not sensitive to the new domain, we just use the
default values.

D. Visualization

1) Similarity Matrix: In Fig. 8, we compare the feature sim-
ilarity matrix derived using the original CLIP model with that
derived using our ClusterAdapter fine-tuned model on EuroSAT
validation set. We can observe that the similarity matrix of CLIP
does not show a clear diagonal pattern, which means the sim-
ilarity values between image features and their corresponding
text cluster centers are not clearly higher than the similarities
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Fig. 10. Histogram of learned gate values for two different domains, showing
very different attention value distributions for the domains (a.k.a., different
benchmark datasets).

between mismatched pairs. Using our method ClusterAdapter,
the similarity matrix is much closer to being diagonal, indicating
the similarities between input image features and their corre-
sponding classes’ visual and text prototypes are high, which is
consistent with our design goal and shows the effectiveness of
our method. Naturally, we observe that our similarity matrix is
not perfect and there are some chunks far from the diagonal
line with high similarity. We believe that the reason for this
phenomenon is that the distributions of tested features and clus-
tering centers in high-dimensional space are interleaved, which
is clearly shown in Fig. 9(1c) and (1d). Therefore, mismatched
tested features and clustering centers may also produce a high
similarity. Furthermore, since our method takes multiple simi-
larities into consideration to determine the final classification,
the presence of a few unmatched tested features and clustering
centers only has a slight impact on the final performance.

2) Learned Domain Attention: We visualize the distribution
of the learned gate values (15) for different domains in Figs. 10

Fig. 11. Visualizing domain attention values for different feature channels.
The horizontal axis represents the feature channels. For clarity, we only show
the values for 35 evenly-spaced channels (out of a total of 1024). The vertical axis
represents different domains, and the activation degree represents the learned
gate value of domain attention.

and 11. One can observe from Fig. 10 that the gate values show
different distributions for different domains. Fig. 11 visualizes
selected channels of the actual gate values for different datasets,
and the learned values are clearly different between datasets.
These phenomena show that our motivation for domain attention
is reasonable, and domain attention does play a role in enhancing
or suppressing feature channels for different datasets.

3) Clustering Centers and Tested Features: To intuitively
demonstrate the effect of our method, we visualize the distri-
bution of cluster centers and tested features before and after
our training on three benchmarks, including ImageNet, Stan-
ford cars, and SUN397. For each dataset, we randomly choose
10 classes for ease of presentation. To show the effectiveness
of the method, it is necessary to visualize clustering centers
and tested features together and an effective algorithm should
yield a similar distribution between clustering centers and tested
features. Taking the visualization from the ImageNet dataset as
an example, as shown in Fig. 9(1a) and (1b), we can observe
three phenomena before training clustering centers and tested
features: 1) The distribution of clustering centers does not match
the distribution of tested features, which can lead to significant
performance degradation. 2) The distance between clustering
centers of the different categories is close, which will lead to
a decrease in discrimination between different classes. 3) The
distance between clustering centers of the same category is close,
which will cause a collapse problem and lead to the failure of
multiple clustering centers. Meanwhile, as shown in Fig. 9(1c)
and (1d), after training clustering centers and tested features
align well and the distance between clustering centers of the
same and different categories becomes apparent, which shows
that our method is effective and solves the aforementioned
problems. Furthermore, we show the feature visualization of
StanfordCars and SUN397 datasets in rows 2 and 3 of Fig. 9,
respectively. The results also support our conclusions obtained
from ImageNet dataset visualization.

V. CONCLUSION AND DISCUSSION

In this paper, we aim to improve the CLIP model to perform
better for domain-specific classification. To achieve this, we
reformulate the fine-tuning of the classification model as a clus-
tering process and propose an effective solution, ClusterAdapter.
We demonstrate that our proposed method achieves superior
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performance when compared to other few-shot fine-tuning meth-
ods. One limitation that we plan to address in future work is
exploring the use of multiple text prototypes for each class.
We will also want to extend our method to fine-tuning more
foundation models.
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