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Abstract�We present SyNoRiM, a novel way to jointly register multiple non-rigid shapes by synchronizing the maps that relate learned
functions defined on the point clouds. Even though the ability to process non-rigid shapes is critical in various applications ranging from
computer animation to 3D digitization, the literature still lacks a robust and flexible framework to match and align a collection of real,
noisy scans observed under occlusions. Given a set of such point clouds, our method first computes the pairwise correspondences
parameterized via functional maps. We simultaneously learn potentially non-orthogonal basis functions to effectively regularize the
deformations, while handling the occlusions in an elegant way. To maximally benefit from the multi-way information provided by the
inferred pairwise deformation fields, we synchronize the pairwise functional maps into a cycle-consistent whole thanks to our novel and
principled optimization formulation. We demonstrate via extensive experiments that our method achieves a state-of-the-art performance
in registration accuracy, while being flexible and efficient as we handle both non-rigid and multi-body cases in a unified framework and
avoid the costly optimization over point-wise permutations by the use of basis function maps.

Index Terms�3D point cloud, non-rigid registration, functional map synchronization

Ç

1 INTRODUCTION

THE prevalence of reliable 3D data capture fueled count-
less applications impacting from movie industry to

robotics. In a wide variety of these applications, one needs
to capture (in 3D) non-rigidly moving objects from multiple
angles or over time [1], [2]. This leads to a dynamic, multi-
scan alignment problem, further obstructed by the presence
of occlusions, ambiguities, and noise.

Solving this challenging task fostered the development of a
plethora of temporal, mesh-based dynamic non-rigid registra-
tion algorithms (e.g. [3]). However, these methods suffer from
two main limitations: (1) the data provided by 3D sensors
hardly come in mesh format, let alone the difficulty associated
with preserving the mesh topology. Signed distance field based
reconstruction methods like [4] can overcome some of these
problems, but (2) they still assume a streaming depth map and
fail to maintain correspondences, which are critical for defining
non-rigid deformations. In addition to those nuisances, a drift-

free alignment almost surely demands a global optimization
step, which exploits all possible loop closure constraints in the
form of a graph optimization [5] or bundle adjustment [6].

In this paper, we set off in pursuit of alleviating both of
these issues. In particular, we (1) leverage unstructured point
cloud representations for maximal generality and flexibility;
(2) assume a fully connected graph in lieu of the sequential
order, incorporating drift reduction in the early stages. Addi-
tionally, compared to rigid motion [7], [8] or pure as-rigid-as-
possible [9] deformation, our relaxed assumptions allow for
more general object dynamics. In particular, we propose
SyNoRiM framework, synchronization for non- rigid multi-
way registration. Input to SyNoRiM, is a collection of point
cloud scans containing a potentially non-rigidly deforming
object. We then seek to recover a coherent and consistent 3D
scene flow, originating from any source shape to a latent tar-
get shape that is to be discovered simultaneously. We start
by a motion coherence observation [10] that pairwise corre-
spondences between natural shapes are smooth and band-
limited, i.e. nearby points in the source point cloud should
map to nearby points in the target (except for topological
changes and occlusions). This allows us to substitute the
point-wise matches between pairs of scans by linear maps of
learned smooth functions defined on the points. Such notion of
a functional map was first introduced in the geometry process-
ing community [11] for estimating correspondences between
isometric meshes. Unfortunately, due to the lack of proper
basis functions, an extension to point cloud analysis is not
trivial [12]. In SyNoRiM we propose to directly learn the
bases from a large-scale training corpus, either in a fully-
supervised or unsupervised fashion. Such bases learned by
neural networks are found to be robust to occlusions, partial-
ity, and errors in the initialization because an end-to-end
training informs the bases about the shape context while the
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inherent smoothness enables meaningful extrapolations of
the target coordinate functions. A subsequent functional map
synchronization algorithm coerces the maps to be globally
consistent, by making use of the information that individual
observations are essentially samples from a common under-
lying surface. Based on this, we finally refine the pairwise
deformations eliminating the ambiguities. An illustrative
figure is shown in Fig. 1.

In summary, our contributions are:

1) We propose, to the best of our knowledge, the first
end-to-end data-driven framework to learn consis-
tent registration between multiple, possibly partial
point cloud observations of non-rigidly moving bod-
ies / objects.

2) Our deep network can learn potentially non-orthog-
onal functional bases on point sets without requiring
to define Laplace-Beltrami operators (LBO). Func-
tional maps between such bases can match non-iso-
metric shapes.

3) We propose a novel functional map synchronization
algorithm enforcing cycle-consistency among the
pairwise deformation fields, estimated in isolation.
This harmonizes the 3D flows into a coherent whole
and thus enables multiway registration.

We demonstrate the efficacy of our algorithm through
extensive evaluations on both rigid and non-rigid scenarios,
showing superior performance on all datasets.

2 RELATED WORKS

Point-Set Registration. Finding reliable alignments between
point clouds plays a fundamental role for many down-
stream tasks. Rigid registration estimates a single transfor-
mation matrix through either heuristic searches [13] or
learned local/global descriptors [14], [15], [16], [17], [18],
while common non-rigid registration techniques aim to best

align the clouds under the various data terms [19], [20], [21]
and regularizations [4], [9] with different deformation rep-
resentations [22], [23]. In this paper we consider the general
non-rigid deformation scheme and also demonstrate results
on hybrid ones such as multibody [24], [25], [26]. On the
other hand, scene flow describes the transition between two
point clouds using a three-dimensional vector field and is a
low-level task agnostic of the deformation type. Existing
techniques [27], [28], [29], [30] handle the task via accurate
modeling of the point-wise features as well as its neighbor-
hood context, and reach a good performance for cluttered
scenes or driving scenarios, but is not robust under large
deformations and ambiguities [31].

Function-Based Correspondence. In the field of geometry
processing, the use of functional techniques is a recent trend
for building reliable correspondences between 3D shapes
(e.g., discretized manifold meshes). First introduced in [11],
such methods compute the LBO eigenvectors as basis func-
tions and infer a linear transformation of a subset of bases
to indicate low-rank shape mapping. Many extensions have
been vastly explored such as hierarchical matching [32],
partial-to-full handling [33] or integration into deep learn-
ing frameworks [34], [35] with either supervised or unsu-
pervised [36], [37], [38] methods. Contrarily in the domain
of point set analysis, such methods are less popular despite
a few [39], [40], [41]. Notably, [40] also propose to learn a
linearly-invariant embedding as bases, yet their learning
scheme is different from ours and they are not robust to par-
tialities or occlusions, which are commonly observed in
point cloud data. We further highlight that the idea to proj-
ect natural signals to lower dimensions has also been par-
tially explored in the vision community [42], [43].

Synchronization on 3D Geometry. Though initially estab-
lished as a theory for clock systems, synchronization has
now been widely used in many vision tasks such as struc-
ture from motion [5], [44], [45], semantic segmentation [46],
correspondence refinement [47], [48] and multiway rigid/
multibody registration [7], [49], [50]. By enforcing cycle con-
sistencies within a system, the relative measurements are
globally harmonized thanks to the averaging of local noise.
In the field of 3D geometry analysis, analyzing and synchro-
nizing spectral functional maps [51] from a mesh collection
are widely applied to full shape matching, either with low-
rank factorization [52], limit shapes extraction [53], coarse-
to-fine strategy [54] or joint point-spectrum optimiza-
tion [55]. In contrast, our novel synchronization formulation
is tailored for the bases learned from raw point clouds that
are free of the geometric impositions like (near-)isometries
and directly takes correspondences into account, robustly.

3 OVERVIEW

Problem Formulation. The input to our method is a point
cloud graph G :… ðV; EÞ, whose vertices V represent the
input set of K point clouds V :… fXk 2 RNk�3; k 2 ‰1; K�g
and the edges E :… fðk; lÞ; Xk 2 V; Xl 2 Vg represent the
graph connectivity. By default we assume G to be fully-con-
nected. The output of our method contains all the pairwise
per-point 3D flow vectors F :… fFkl 2 RNk�3; ðk; lÞ 2 Eg. The
flow vectors naturally induce the non-rigid warp field from
Xk to Xl as WklðXkÞ :… Xk þ Fkl, optimally aligning the given

Fig. 1. SyNoRiM overview. (a) Input point clouds. (b) Synchronized
canonical functions H (visualized via Principal Component Analysis; see
Section 5 for details). (c) Scene flow estimations for all pairs (here only
two sets of flow, ! and ! , are shown for brevity). (d) Registered
(accumulated) point clouds by gathering warped points from other
inputs.
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point cloud pairs by deforming the source onto the target.
We additionally encourage the cyclic consistency of the esti-
mates F , defined loosely as:

Wk1k2 � . . . � Wkp�1kp � Wkpk1 … I; 8ðk1; . . .kpÞ 2 CðGÞ; (1)

where CðGÞ are the set of cycles in the G and I is the identity
warping. The domain of the above composed warp map is
the union region ðXk1 ; . . . ; XkpÞ.

Method Summary. Our method begins by establishing
sparse point-level putative correspondences using a corre-
spondence generator gð�Þ (Section 4.2). In the meantime, a
basis network ’basis is applied independently to each input
point cloud to generate a set of basis functions defined on
the points (Section 4.3). Given the sparse correspondences
and bases we can compute the initial pairwise functional
map matrices. The technique to recover flows from the
matrices is realized through another network ’refine (Sec-
tion 4.4). We then feed the initial map estimates into a syn-
chronization module that jointly optimizes for all pairwise
functional mappings, considering the cycle consistency
(Section 5), before utilizing the ’refine module once more to
get the optimized deformations. The full pipeline is illus-
trated in Fig. 2.

4 PAIRWISE FUNCTIONAL REGISTRATION

4.1 Preliminaries on Functional Maps
Given two (abstract) shapes Sk and Sl in the form of smooth
continuous manifolds, a functional map Tkl : L2ðSlÞ 7!
L2ðSkÞ maps from the space of square-integrable real-valued
functions (L2-space) defined on Sl to Sk. Such an operator is
proved to be linear [11], i.e., Tklða1f1 þ a2f2Þ … a1Tklðf1Þ þ
a2Tklðf2Þ, where f1 and f2 are functions defined on Sl and a1
and a2 are the coefficients.

Every function fk on Sk (or fl on Sl) can be represented as
a linear combination of basis functions ffk;mg (or ffl;mg): fk …P

m hk;mfk;m; fl …
P

m hl;mfl;m, with hk;m and hl;m being the
coefficients. Moreover, most natural functions defined on
shapes can be approximated by linearly combining a finite
set of M bases, if correctly chosen. A functional map matrix
Ckl 2 RM�M can be then defined as a replacement for Tkl, and
satisfies Tklðfl;ml

Þ …
PM

mk…1ðCklÞmk;ml
fk;mk

, where ðCklÞmk;ml
denotes the element at the mk-th row and the ml-th column.
We can then re-write the relation fk … TklðflÞ in linear

algebra as hk … Cklhl, where hk :… ‰hk;1; :::; hk;M �>, hl :…
‰hl;1; :::; hl;M �>. This re-formulation admits various com-
putation tools available for optimization. We refer read-
ers to a full tutorial provided in [56] for more in-depth
discussions.

Discretization on Point Clouds. As points are samples from
the surfaces, we can define real-valued functions on each
point cloud (e.g., Xk) as a column vector in RNk . Horizon-
tally stacking the set of M basis functions ffk;mgM

m…1 gives a
full-rank compact basis matrix Fk 2 RNk�M . The pairwise
linear functional map matrix Ckl, when left-multiplied with
Fk, linearly re-combines the bases from Xk and yields the
transferred set of bases Fl from Xl to Xk, i.e., FkCkl � PklFl,
where Pkl is the point-wise permutation matrix between the
two point clouds. For other arbitrary functions f 2 RNk , their
coordinates under the bases are given by Fþ

k f, where �þ is
the Moore-Penrose pseudo-inverse operator.

4.2 Generating Putative Correspondences
We estimate deep features Dk 2 RNk�F for each point cloud
in V using a sparse-convolution-based [57] feature descrip-
tor network ’desc : Xk ! Dk. Given a pair of descriptors
Dk and Dl, we construct the soft permutation matrix
Pd

kl :… softmaxðP̂d
klÞ 2 RNk�Nl and compute the scene flow

as follows:

Fd
kl :… Pd

klXl � Xk;

ðP̂d
klÞij :… �

1
td kðDkÞi: � ðDlÞj:k; (2)

where td is a trainable parameter with the initial value of 1.0
and a minimum value of 0.02. softmaxð�Þ performs softmax
normalizations over all the rows of P̂d

kl so that the output
Pd

kl becomes row-stochastic (i.e., each row sums to 1). The
flow loss Lf introduced in Section 4.5 will be used to super-
vise ’desc until convergence. Remarkably, such a simple
strategy, similar to [29], already produces the flow Fd

kl. How-
ever, such an estimation is corrupted with noise, occlusions,
and inconsistencies hence performing a lot worse than our
full pipeline. This is verified through the ‘Ours (’desc only)’
baseline in the experiments, where we simply map each
point to its nearest neighbor in the space of Dk.

After ’desc is trained, it is fixed and we define the corre-
spondence generator as gpd :ððXk; FkÞ;ðXl; FlÞÞ ! ðFðklÞ

k ; FðklÞ
l Þ,

Fig. 2. Method. During training, our method is supervised in a pairwise fashion. We first train 	1 ’desc (i.e., gpd) to establish putative correspondences
between each point cloud pair. We then estimate a set of basis functions fFkg for each point cloud using ’basis to obtain 	2 the initial functional map
C0

kl before refining the 3D flow estimates with ’refine. During test time with multiple inputs, we estimate the map set fC0
klg for all pairs. 	3 The estimated

maps are subsequently synchronized to optimize cycle consistency among the inputs. Finally, 	4 3D flows are estimated from the optimized functional
maps fC?

klg as our final output. The registered point cloud is a fusion of all initial point clouds warped by the estimated flows.
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which selects corresponding rows (i.e., matched points) from
the input bases Fk and Fl (detailed below), and produces
FðklÞ

k 2 RIkl�M and FðklÞ
l 2 RIkl�M , where Ikl is the number of

matches. The row indices are determined by a nearest neigh-
bor search performed on the descriptors Dk and Dl with
cross-check, and the rows are matched if the L2 distance of
the descriptors is smaller than a conservative threshold of 0.3.

4.3 Computing Basis Functions
The basis functions fFkg play a critical role on the power of
learned representations. For triangulated shapes where con-
nectivity information is provided, bases can be easily
formed via the standard method of decomposing the graph
Laplacian [51]. Similarly, for point clouds one can also build
a mesh structure such as a k-NN graph or intrinsic Delau-
nay triangulation [58] before computing the bases. How-
ever, the latter can be problematic because the constructed
graph would have no notion of semantics or geodesics,
leading to redundant or erroneous function approximation.
Instead, we propose to learn the basis functions directly
from point clouds using a sparse-convolution-based [57]
neural network ’basis : Xk ! Fk. Basis functions learned in
such manner are both (1) accurate, i.e. focus only on the
flow properties we are interested in, and (2) compact with
no redundancies, as will be demonstrated in Section 6,
which allows achieving higher accuracy even with a small
number of bases.

In order to train ’basis, we compute the optimal functional
maps as

C0
kl :… argmin

C
EklðCÞ; (3)

where

EklðCÞ :…
XIkl

i…1
r kFðklÞ

l;i: � FðklÞ
k;i: Ck

� �
; ðFðklÞ

k ; FðklÞ
l Þ

… g ðXk; FkÞ; ðXl; FlÞð Þ: (4)

Here, gð�Þ is a putative correspondence generator detailed
earlier. The rows of FðklÞ

k and FðklÞ
l are indexed via ð�Þi:. Dur-

ing training we use the strategy similar to [59] by randomly
instantiating g either with the ground-truth ggt (if provided)
or the predicted one gpd with a probability of 50%. We
empirically observe the positive impact of this on final per-
formance. During test time, when ground-truth information
is not available, we simply let g … gpd. rð�Þ is the Huber
robust function [60] used for outlier rejection that individu-
ally treats each summand i. The scale of rð�Þ is chosen to be
0.05 and empirically we do not observe any significant dif-
ference using more advanced adaptive scales such as the
median absolute deviations [61]. After obtaining C0

kl we
feed it into the method in Section 4.4 to compute the flow
vectors, and supervise the networks using the loss function
defined later in Section 4.5.

4.4 Recovering Flows From Functional Maps
Given a computed functional map matrix Ckl, which
could either be C0

kl or the optimized one C?

kl from Section 5,
one can again compute the soft permutation matrix Pkl:…
softmaxðP̂klÞ between the two clouds and extract the flow as:

Fn
kl :… PklXl � Xk;

ðP̂klÞij :… �
1
t

kðFkCklÞi: � ðFlÞj:k: (5)

However, as pointed out before, Pkl is row-stochastic and
the warped position PklXl hence never extends beyond the
convex hull of Xl, which is detrimental for computing flows
for occluded points. An alternative way to compute the
flow is to treat the target positions Xl themselves as three
functions and map their coordinates via Ckl, evaluated as:

Ff
kl :… FkCklFþ

l Xl � Xk: (6)

Note that the ground-truth mapping already implies
FkCkl � PklFl as noted in Section 4.1. However, the two
methods for computing flows are fundamentally different,
conceptually: Ff

kl elegantly handles the issue of occlusions
because the mapping allows us to map unknown positions
to valid ranges given the continuity of the bases, leading to
a learned extrapolation scheme via band-limited regulariza-
tion. Nevertheless, the truncated basis may over-regularize
the positions in geometrically-complicated parts and limit
the representation power of the flows. In contrast, Fn

kl can
perform well on those regions thanks to notion of point-
wise correspondences.

Hence, we combine the best of the two worlds by an addi-
tional refinement network ’refine which digests the concate-
nation of the two, along with Xk, and outputs the residual:

Fkl :… Fn
kl þ ’refineð‰Xk; Ff

kl; Fn
kl�Þ: (7)

The refinement network ’refine is instantiated with a
sparse-convolution-based network, which works in a coarse-
to-fine fashion by first aligning the general cloud structure
with Ff

kl and then fixing small-scale detailed errors by consid-
ering the information from Fn

kl. The smoothness property of
such networks also helps prune predicted outliers as already
demonstrated by previous works (e.g. [29]). A comparison
between the different flows is shown in Fig. 6.

4.5 Loss and Training
We train our network in two steps, where: (1) We train the cor-
respondence generator g described in Section 4.2 using a flow
loss Lf only, and (2) we jointly train ’basis and ’refine (Sec-
tions 4.3 and 4.4) end-to-end adding the consistency loss Lc, i.e.:

Lf þ �cLc: (8)

Notably, the argmin operator in (3) is differentiated by
computing the solution with Iteratively Reweighted
Least Squares (IRLS) and unrolling the re-weighting iter-
ations. We provide the details of this algorithm in
Appendix C, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2022.3164653.

Flow Loss Lf . If ground-truth annotations Fgt
kl are pro-

vided, we can directly use:

Lf;sup :… kFkl � Fgt
klk

2
F; (9)

where k � kF denotes Frobenius norm. Otherwise, we use the
self-supervised loss inspired from [28]:
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Lf;unsup :…
X

type2fchamfer;smooth;lapg

�typeLtype; (10)

where for conciseness, the respective loss terms Ltype, the
weights being �type, are defined in Appendix A. We evalu-
ate both settings using either Lf;sup or Lf;unsup in our experi-
ments (see Section 6.1 for details). The more general Lf
refers to both for convenience.

Consistency Loss Lc We impose the pairwise consistency
loss [37] as:

Lc :… kC0
klC

0
lk � IMk2

F; (11)

where IM is the identity matrix with size M � M. This loss
regularizes the compound mapping from functions on Xk to
functions on Xl and its backward forms an identity, ensuring
a local consistency of the learned bases. Additionally, we
tried other regularization terms over the bases, such as Lap-
lacian commutativity [11]1 or descriptor preservation [62]
but empirically no improvement is observed.

4.6 Discussions
Further Notice of F and C. Examples of the learned basis func-
tions are visualized in Fig. 3. Remarkably, the learned bases
F and the functional map matrix C are not constrained to a
particular geometric structure, e.g., orthonormality F>F … I
or orthogonality CC> … I, which hold only under isometric
deformations with full geometry for meshes. The coarse-to-
fine structure of F is not enforced either: the network finds
its own way of representing high-frequency bases via learn-
ing small differences. Empirically we find that enforcing any
of these regularizations harms the performance. On the other
hand, unlike most existing works (e.g., [34], [40]) that formu-
lates (4) by projecting probe functions Pk; Pl via C0

kl :…
argminCkCFþ

l Pl � Fþ
k Pkk, our method is more robust due to

the per-match outlier filtering and gets rid of the trade-off
between the flexibility of probe functions and the compact-
ness of the bases for flow estimation.

Special Case: Affinity Bases. For large-scale scenes with
multiple moving rigid objects as often observed in the case
of autonomous driving, the resulting flow can be effectively
regularized by constraining the basis structure. Specifically,
if the segmentation of S rigid bodies (each indexed by s) is
known beforehand (e.g., acquired via [8] or semantic

segmentations), instead of learned ones, we can manually
define the basis functions as:

8s; ðFkÞ:;4s:4sþ4 … diagðGk … sÞ Xk 1‰ �; (12)

where diagð�Þ is the diagonal matrix of an indicator vector,
Gk 2 RNk are the rigid body indices corresponding to Xk and
the final bases Fk 2 RNk�4S are split into S blocks (as visual-
ized in the inset as a 2D example). Note that the resulting
map Ckl 2 R4S�4S not only shows the affine transformation
matrices in its 4 � 4 sub-blocks, but the sparsity of the sub-
blocks also reveals rigid-body-level permutations. As a dem-
onstration of the effectiveness of such bases, we provide eval-
uations on driving scenes in Section 6.6.

5 FUNCTIONAL SYNCHRONIZATION

For a geometrically coherent outcome, we further ask the
loops in G to be closed. Note that this step happens only
during test time after the pairwise networks are trained. In
our setting of functional mappings, this amounts to enforc-
ing the cycle-consistency [48]:

Ck1k2 . . . Ckp�1kpCkpk1 … I; 8ðk1; . . . kpÞ 2 CðGÞ: (13)

It can be easily shown by construction that the above formu-
lation is equivalent to defining a set of V canonical functions
Hk … ‰h1

k; . . . ; hV
k � 2 RM�V on each point cloud Xk, expressed

as the coordinates under Fk. By enforcing the canonical func-
tions to evaluate the same for the corresponding regions on
different shapes, we define the following cycle consistency
energy:

EcycleðfHkg; fCklgÞ :…
X

ðk;lÞ2E

kHk � CklHlk2
F : (14)

Note that a naı̈ve solution will collapse to Hk … 0 8k, so an
additional orthonormality constraint is added as H>H … IV ,
where H :… ‰H>

1 ; . . . ; H>
K �> 2 RKM�V . This constraint elimi-

nates the trivial solution by fixing the gauge and encourages a
larger functional space spanned by the canonical functions.

Additionally, we define the data term as the summation
of all pairwise energies:

EdataðfCklgÞ :…
X

ðk;lÞ2E

EklðCklÞ; (15)

with Ekl defined in Eq. (4). Recall that during test time we
set g (needed in Ekl) to gpd without any reliance on ground-
truth information. The solution to the problem

argmin
fHkg;fCklg

EcycleðfHkg; fCklgÞ þ EdataðfCklgÞ; (16)

gives us the synchronized functional maps fC?

klg as well as
one possible set of canonical functions. After the

Fig. 3. Learned bases visualization. We visualize for two shapes (left) a
chosen subset of its M bases. The basis range is normalized.

Fig. An illustration of affinity bases.

1. This means to project the Laplacian operator L to the current
bases via FþLF.
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optimization, we re-use the technique described in Sec-
tion 4.4 to recover F as our final output, by feeding in the
optimized result fC?

klg instead of fC0
klg.

Analysis. In our formulation, each summand Ekl in Edata
of Eq. (15) now contains the robust function rð�Þ whose resid-
ual not only reflects the alignment with the current pairwise
map, but also the consistency among all the maps in G, related
by fHkg. Remarkably, compared to existing point-based syn-
chronization techniques (e.g. [7]), the use of functional maps
is lightweight reducing the number of variables from the order
of OðN2Þ to OðM2Þ where M 
 N . Besides. its additional
degree-of-freedoms endow us with more flexibility in repre-
senting non-rigid transformations compared to, e.g. [50].

Numerical Optimization. Inspired by [46], we use an alter-
nating method to solve Eq. (16). Specifically, we iterate over
optimizing fHkg with fixed fCklg and optimizing fCklg with
fixed fHkg until convergence. Details of the solver are
deferred to Appendix B.

Basis Preconditioning. While we do not regularize the columns
of Fk to be orthogonal during the training of ’basis, optimizations
related to it can be highly ill-posed due to the emergence of near-
parallel columns. This is due to the use of pseudo-inverse that
implicitly factors out the high-frequency bases from the network
output, which by nature tends to produce over-smoothed
results. Such a phenomenon, though does not affect network
training without synchronization (i.e. Section 4), jeopardizes the
convergence and stability when jointly optimizing Eq. (16). In
order to mitigate this issue, during test time, we explicitly lever-
age orthogonality as a means of preconditioning by performing
the singular value decomposition (SVD) as Fk … USV> and
replace Fk with U as the new set of basis functions. Note that
Eqs. (5) and (6) are calibrated during training to engulf the origi-
nal basis scale from the raw network output, hence the multiplier
SV> should be applied back after synchronization to recover the
final 3D flow vectors.

6 EXPERIMENTS

6.1 Dataset and Settings
Datasets. State-of-the-art methods for non-rigid registration
or matching usually evaluate on different datasets with dif-
ferent settings. In order to provide a comprehensive and fair
evaluation, we experiment with a full spectrum of possible
input data, ranging from partial to full point clouds, from
non-rigid human/clothes/animals to multi-body articulated
objects, and from synthetic to real-world scenes. To this end,
we extend the following datasets [63], [64], [65], [66], [67] to
the task of multi-way non-rigid registration (hence the prefix
Multi-Point Cloud used below). For all the datasets we keep
only the points from the foreground deforming objects.

� MPC-CAPE is sampled from CAPE [63], [64] dataset,
which contains scanned sequences of clothed human
using a commercial 3dMD scanner. Raw scans are
cropped using a fixed-height horizontal plane to remove
the static ground points. We randomly sample non-con-
secutive K-frame snippets from the sequences and
obtain the ground-truth flow from the fitted template
mesh skinned via a Linear Blend Skinning [68] scheme.

� MPC-DT4D is from the DeformingThings4D [65] data-
set, with hundreds of dynamic sequences of

humanoids and animals whose skeletons and motions
are designed by experts. We extract the partial point
clouds by synthetically scanning the object under dif-
ferent motions. We ensure that the (instance, action)
tuples never overlap when we create the splits.

� MPC-DD [66] contains partial views captured with a
real RGB-D camera. The scene flows are provided
by the original dataset via non-rigidly tracking the tem-
porally densely-sampled frames. The provided object
masks are used to remove the static background points.
We use the original validation set as our test set and split
the original training set for training and validation, with-
out instance overlap between the splits.

� MPC-SAPIEN [67] consists of simulated, realistic,
articulated object-level models that are commonly
observed in daily life. We follow the data generation
and sampling strategies implemented in [7], which
ensure that there is no instance overlap between the
splits.

Statistics of the dataset splits are shown in Table 1.
Metrics. The main metric for evaluating our flow quality

is the (1) L2 Error, also termed as Mean Absolute Error
(MAE), or End-Point Error (EPE), i.e., the average norm of
the flow error vectors over all points. We also include met-
rics from the scene flow [69] community but adapt their
thresholds to our object-level setting. Specifically, we add:
(2) 3D Accuracy Strict (AccS), the percentage of points
whose relative error < 5% or < 2cm, (3) 3D Accuracy
Relaxed (AccR), the percentage of points whose relative
error < 10% or < 5cm, and (4) Outlier Ratio, the percent-
age of points whose relative error > 30%.

In datasets with occlusions, we additionally compute all
the metrics both for non-occluded points and the full point
clouds. We subsequently collect the statistics among all the
KðK � 1Þ pairs of the metrics and report the mean value
and standard deviation (�), the latter of which shows the
consistency of the estimates among all individual pairs, as
desired in the multiway setting.

Baselines. We compare the performance of SyNoRiM
against a number of baselines grouped by the learning strat-
egy. Hereinafter, we use the underlined names for brevity:

� Non-learned: Coherent Point Drift method ( CPD) [20],
Group-wise unnormalized information potential with
R�enyi’s entropy ( GUIP)[70], and Non-Parametric Part
( NPP) [71] using up to 25 RJ-MCMC sample steps;

� Supervised: Consistent ZoomOut ( CZO) [54] where
we replace the original Laplacian-Beltrami basis
functions with the non-manifold one in [58] (the

TABLE 1
Dataset Statistics

Dataset # Train / Val. # Test Partial Non-rigid Real

MPC-CAPE [63], [64] 3015 / 798 209 - � �y

MPC-DT4D [65] 3907 / 1707 1299 � � -
MPC-DD [66] 1754 / 200 267 � � �
MPC-SAPIEN [67] 530 / 88 266 - - -

We report the number of training, validation and test samples used in the
quantitative evalutions.
y: For train/val we use the points sampled from the parametric meshes while for
test we use the raw-scanned point clouds.
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number of bases is set to 80), scene flow estimation
methods including FLOT [29] and PointPWC-Net (
PWC) [28], MultiBodySync ( MBS) [7] where for non-
rigid case we remove the motion segmentation mod-
ule and apply only the weighted permutation syn-
chronization with downsampled 512 points, and
EmbAlign [40] which also estimates point cloud
bases.

� Self-supervised: PointPWC-Net ( PWC-U) [28] with
the unsupervised loss, and RMA-Net ( RMA)[74]
with the proposed differentiable rendering loss.

For MPC-CAPE where full human bodies are captured,
we additionally compare to template-based methods 3D-
CODED [72] and PTF [73], as well as deep-functional-map-
based methods GeomFMaps [34] (supervised) and Deep-
Shells [36] (self-supervised), where bases are replaced with
[58]. For baselines that do not have a principled way of han-
dling multiple inputs, we treat each pair of the input point
clouds independently. Readers are referred to the appendix
for more descriptions of the baseline settings.

Parameter Settings. The networks ’desc, ’basis, and ’refine are
all trained using AdamW [75] optimizer with the initial
learning rate of 10�3 and a 30% decay every 50k samples.
’desc and ’basis are both 4-layer U-Net [76] with 32, 96, 64, 192
channels and 32, 64, 128, 256 channels respectively, while
’refine is a 2-layer small network with 32 and 64 channels. All
networks use InstanceNorm [77] as normalization. Further
details about the network architectures are illustrated in
Appendix D, available in the online supplemental material.
The initial t in Eq. (5) is chosen to be 0.1, and the weight for
Lc is �c … 5 � 10�3. For our self-supervised training scheme,
we balance the Chamfer/Laplacian/smoothness losses with
the weights 1.0/5.0/1.0, respectively. For benchmarking we
choose K … 4 and use M … 24 for all of our experiments

except for the one in Section 6.6. V is set to be M � 4 for
MPC-CAPE and M � 2 for all the other datasets.

6.2 Evaluations on MPC-CAPE
MPC-CAPE is mainly used to measure the fitting tightness
and the deformation quality of the warped point clouds. As
shown in Table 2, our method achieves a significant perfor-
mance boost, reaching a 21:1% and 16:2% lower error com-
pared to the nearest baseline under full supervision and
self-supervised scenarios, respectively.

Referring to the visualizations in Fig. 4, SyNoRiM is most
effective in point clouds with large changes, where tradi-
tional methods fail either due to wrong associations caused
by matching ambiguity or insufficient degrees of warps. For
learning-based methods: 3D-CODED and PTF rely on pre-
defined canonical human shape prior, which prevents them
from guaranteeing a tight fitting to the input points. CZO
builds strict point-level correspondences. Hence, it is not
capable of densifying the points and is error-prone once the
number of outliers from ’desc is large. Moreover, the approx-
imate point cloud bases, used also in GeomFMaps and
DeepShells, introduce further drifts. While PWC and FLOT
are trained using dense flow annotations and are free from
large systematic errors, they still yield noisy estimates and
result in shrunk artifacts in the detailed region. Compara-
bly, we use the limited-band bases to effectively regularize
the motions, while preserving local rigidity and details. By
explicitly projecting point-level matches onto smooth func-
tions, the generated warping is more accurate and robust to
noise. This is in contrast to EmbAlign, where the descriptors
are globally projected onto the bases, largely limiting the
distinctiveness of the point features. In the unsupervised
scenario, we are able to outperform PWC-U and RMA
thanks to the superiority of our matching representation

TABLE 2
Quantitative Comparison on MPC-CAPE Dataset Using Fully-Supervised and Self-Supervised Schemes

Supervision L2 Error # AccS " AccR " Outlier # Run Time (s)

CPD [20] - 7.06 � 2.46 2.5 � 2.1 42.0 � 20.3 90.8 � 5.5 1.03
GUIP [70] - 5.55 � 2.16 35.8 � 11.1 69.3 � 13.4 80.9 � 6.5 (28.2)
NPP [71] - 19.02 � 5.63 1.3 � 1.7 10.6 � 8.7 99.3 � 0.9 (70.0)

CZO [54] Full 2.04 � 0.27 64.2 � 7.5 94.2 � 1.9 51.1 � 10.7 (24.2)
3D-CODED [72] Full + Mesh 2.25 � 0.58 61.6 � 9.0 95.4 � 3.6 53.8 � 11.2 160z

PTF [73] Full + Mesh 2.52 � 0.54 47.9 � 12.8 91.4 � 5.7 57.8 � 9.6 100
PWC [28] Full 1.37 � 0.34 82.2 � 8.4 98.3 � 1.6 39.1 � 10.4 0.99
FLOT [29] Full 1.79 � 0.34 69.9 � 9.3 96.9 � 2.0 48.4 � 10.7 1.45
EmbAlign [40] Full 2.15 � 0.49 61.5 � 10.6 95.0 � 3.5 53.3 � 10.0 0.60
GeomFMaps [34] Full 2.52 � 0.25 54.3 � 6.2 88.1 � 2.0 54.4 � 10.7 1.40
MBS [7] Full 2.15 � 0.22 54.0 � 5.4 97.2 � 1.8 55.9 � 11.4 1.12
Ours (’desc only) Full 1.39 � 0.18 82.0 � 5.3 99.1 � 0.6 42.4 � 10.9 0.12
Ours Full 1.08 � 0.17 90.1 � 4.3 99.5 � 0.5 35.3 � 10.1 1.22

PWC-U [28] Self 3.52 � 1.68 50.0 � 13.6 82.7 � 11.7 67.4 � 8.7 0.99
RMA [74] Selfy 5.47 � 2.29 29.5 � 15.0 67.9 � 15.5 83.4 � 7.0 1.60
DeepShells [36] Self 4.55 � 3.61 57.1 � 21.6 81.2 � 20.5 60.6 � 16.4 58.0
Ours (’desc only) Self 4.20 � 1.44 34.4 � 9.5 79.1 � 10.0 71.5 � 8.5 0.12
Ours ( w/o sync.) Self 3.07 � 1.37 53.9 � 15.3 88.1 � 8.7 60.3 � 11.0 0.32
Ours Self 2.95 � 1.29 55.5 � 15.0 89.1 � 8.0 59.1 � 11.0 1.22

# = " : Lower/higher is better (for the standard deviation being lower is always better). Supervision with ‘Mesh’ requires an additional template (or parametric)
human mesh as a canonical prior. ‘w/o sync.’ is inferred from the initial functional map matrices without synchronization. Boldfaced numbers highlight the best
and underlined numbers mark the tied first. Run time in (parentheses) denotes no GPU acceleration.
y: Fails to converge on our dataset if trained from scratch so we finetune from the pretrained model provided by the official repository.
z: Includes the time for best rotation selection and test-time Chamfer loss minimization.
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and the proposed learning strategy. Moreover, with the help
of the synchronization module, we reach a better estimation
by pruning inconsistent matches from the graph, reducing
the standard deviation of the L2 error by over 5.8%.

FAUST Challenge. To reinforce our results on CAPE, we
test our pairwise registration module (without synchroniza-
tion) on the online benchmark FAUST [78], where ground-
truth information is not accessible. We perform the evalua-
tion on the intra-subject challenge, which measures the reg-
istration error between 60 pairs of shapes, where each pair
consists of two full meshes of the same subject in different
poses. We directly test our pretrained model without fur-
ther finetuning on the points sampled from the input
meshes. The results are shown in Table 3. Our method ranks
3rd (as of Mar. 2022) among all published methods. The two
methods that surpass ours either require manually-labelled
landmarks during test time (DHNN [79]), or rely on artist-
designed canonicalization of a predefined human model
(DVM [80]). We are free of the above assumptions and out-
put the more general scene flow representation applicable
to different subject categories.

6.3 Evaluations on MPC-DT4D
Scanned by a virtual camera, MPC-DT4D contains challeng-
ing partialities and occlusions, the handling which is
an important yet often missing ingredient from many meth-
ods. Input shapes that overlap only partially can cause

catastrophic failure for some methods that are incapable of
modeling the flow into empty space, especially when large
deformations are present. Somewhat surprisingly, Table 4,
shows that none of the SoTA methods can effectively deal
with the hard problem setting presented in this dataset. On
the one hand, methods like CZO and FLOT build the point-
level correlation matrix (e.g. permutations), which results in
large errors on the boundaries of the point cloud. On the
other hand, the motion regularization implicitly introduced
in CPD and GUIP cannot be easily adapted to the various
kinds of input shapes. Moreover, the utilization of consis-
tency on the level of points renders MBS inapplicable under
such scenarios.

Comparably, as also shown in Fig. 5, we remark that in
our method, the learning of the basis functions constructs a
shared pattern of similar shapes under different views,
hence producing a good functional extrapolation of point
coordinates in a learned manner. By not operating on the
level of points, our synchronization module bypasses the
occlusion problem via aligning the globally-defined basis
functions, successfully reducing the error by 5.4% for the
full point cloud. Further challenging examples that can be
successfully tackled by our method are visualized in Fig. 6.

6.4 Evaluations on MPC-DD
As shown in Fig. 7, our method consistently outperforms
scene-flow based methods (19.4% / 29.2% lower L2 Error and

Fig. 4. Comparison of fully-supervised MPC-CAPE. Left: Color-coded per-point errors (0cm 10cm) are shown on the registered point clouds
by warping all points to a selected pose. Right: Registered point clouds using our inferred 3D flows. Dashed rectangles are the views to which we
warp other point clouds on the left side.

TABLE 3
FAUST Intra-Subject Challenge [78] Results (Top9)

DHNN [79] DVM [80] Ours SP [81] AtlasNetV2 [82] 3D-CODED [72] BPS [83] LBS-AE [84] FMNet [35]

Error (cm) 1.011 1.185y / 1.417 1.486 1.568 1.626 1.985 2.010 2.161 2.436

Methods are ordered from left to right according to their rankings.
y: Requires multi-view (72) input that requires multiple forward passes of the model. Costs �7s/pair.
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