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StructNeRF: Neural Radiance Fields for Indoor
Scenes With Structural Hints

Zheng Chen , Chen Wang , Yuan-Chen Guo , and Song-Hai Zhang , Member, IEEE

Abstract—Neural Radiance Fields (NeRF) achieve photo-
realistic view synthesis with densely captured input images. How-
ever, the geometry of NeRF is extremely under-constrained given
sparse views, resulting in significant degradation of novel view
synthesis quality. Inspired by self-supervised depth estimation
methods, we propose StructNeRF, a solution to novel view synthesis
for indoor scenes with sparse inputs. StructNeRF leverages the
structural hints naturally embedded in multi-view inputs to handle
the unconstrained geometry issue in NeRF. Specifically, it tackles
the texture and non-texture regions respectively: a patch-based
multi-view consistent photometric loss is proposed to constrain the
geometry of textured regions; for non-textured ones, we explicitly
restrict them to be 3D consistent planes. Through the dense self-
supervised depth constraints, our method improves both the geom-
etry and the view synthesis performance of NeRF without any addi-
tional training on external data. Extensive experiments on several
real-world datasets demonstrate that StructNeRF shows superior
or comparable performance compared to state-of-the-art methods
(e.g. NeRF, DSNeRF, RegNeRF, Dense Depth Priors, MonoSDF,
etc.) for indoor scenes with sparse inputs both quantitatively and
qualitatively.

Index Terms—Neural radiance fields, neural rendering, novel
view synthesis.

I. INTRODUCTION

NOVEL view synthesis (NVS) for indoor scenes plays an
important role in VR and AR applications, such as virtual

navigation through buildings, tourist sites, and game environ-
ments. However, people often have to devote extensive efforts
to collecting and processing large amounts of input data in order
to produce satisfying results [12], [21], [25]. It remains to be
a problem how to synthesize photo-realistic novel views given
limited indoor images [7], [16], [22], [25], [36]. Recently, Neural
Radiance Fields (NeRF) [21] emerges as a promising technique
for NVS. NeRF uses a continuous multi-layer perceptron (MLP)
to encode the radiance and density of a 3D scene and then synthe-
sizes novel views through differentiable volumetric rendering.
It achieves photo-realistic results even when representing some
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scenes with complicated geometry and appearance. Neverthe-
less, sparse indoor scene inputs bring several innate challenges
to NeRF. First, reconstructing the geometry and appearance of
objects or scenes becomes an ill-posed problem with insufficient
inputs. Even though NeRF can well fit the training images at
the pixel level, the geometry is indeed inaccurate and leads to
unsatisfying renderings at test viewpoints [7]. The necessity of
“inside-out” view capture for indoor scene images exaggerates
this issue [12]. Compared with “outside-in” viewing scenarios
for outdoor scenes or standalone objects, adjacent views would
have less overlap with each other given the same number of
images [25]. Second, indoor scenes contain many textureless
regions such as walls, floors, tables, and ceilings, making it hard
for NeRF to find enough cross-view 3D correspondences.

Several recent studies [7], [25], [34] leverage depth priors
to improve the performance of NeRF in novel view synthe-
sis. DSNeRF [7] adopts the sparse depth point cloud from
COLMAP [26] to directly constrain the depth rendered by NeRF.
However, the depth from Structure-from-Motion (SfM) is both
sparse and noisy. Dense Depth Priors [25] further utilizes a depth
completion network to predict dense depth maps, which are
then used to guide the sampling and depth prediction of NeRF.
However, the depth completion network introduces view incon-
sistency and generalization issues. To overcome these problems,
we present StructNeRF, a technique that takes inspiration from
recent self-supervised depth estimation methods [15], [37] and
incorporates structural hints naturally contained in multi-view
inputs, which turns into easy-to-adapt regularizations for NeRF
geometry without any additional networks or data. StructNeRF
considers the huge differences between textured and textureless
regions and tackles them separately. Inspired by the insight of
NeRF++ [39], we notice that the ability of NeRF to model the
appearance of view-dependent effects leads to the ambiguity
between its 3D shape and radiance (shape-radiance ambiguity).
To reduce this ambiguity, we ensure that the same 3D region in
different views is view-consistent by leveraging a patch-based
multi-view consistent photometric loss based on depth warping.
The resulting depth constraints are therefore dense and view-
consistent. Patch-based photometric loss works well for textured
regions, but it fails to discriminate non-textured regions that are
common in indoor scenes, such as floor, walls, tables and ceiling.
At the same time, we notice these regions are almost planes, so
we further restrict them to be planar. To be more specific, we
segment each input view into superpixels and group them as
plane priors (Most superpixels are planes as shown in Fig. 4).
Then the co-planar constraint [15] is applied to constrain the
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Fig. 1. Qualitative comparison of novel view synthesis and depth estimation given only a sparse set of indoor images. StructNeRF demonstrates superior
performance over state-of-the-arts. We propose two structural hints: patch-based multi-view consistency at textured regions and planar consistency at non-textured
regions, significantly improving the synthesis and geometry of radiance fields without any additional data or networks.

depth of those regions. Additionally, we apply warm-up training
to reduce the negative impact of noisy sparse point clouds from
COLMAP, which helps StructNeRF to better utilize the sparse
depth information. We evaluate our method on three indoor
datasets: ScanNet [6], NYUv2 [29], SUN3D [35], using only
sparse inputs. Results show that our proposed structural hints
and training strategy together enable StructNeRF outperform
existing per-scene training methods (only use data of target
scene without additional training). Compared to Dense Depth
Priors [25] that utilizes external data to train their depth estima-
tion networks (we call data-driven methods), our method still
shows comparable performance on their pretrained datasets and
surpass them on other ones. A demonstration of the comparisons
can be found in Fig. 1.

The contributions of our paper can be summarized as the
following:

1) By introducing patch-based multi-view consistent loss into
NeRF, StructNeRF obtains dense and view-consistent depth
constraints, without pretraining on external data.

2) StructNeRF re-projects points in textureless regions into
the 3D space and enforce them to be planes with the plane
consistency loss in NeRF. Therefore, the reconstructed planes
are more flat and the rendering quality is also improved.

II. RELATED WORK

In this section, we briefly review Neural Radiance Field with
sparse inputs and self-supervised depth estimation.

A. Neural Radiance Fields With Sparse Inputs

Based on implicit neural representations, Neural Radiance
Fields (NeRF) [21] encoded 3D scenes into a continuous multi-
layer perceptron (MLP) and achieved photorealistic novel view
synthesis. A growing number of NeRF extensions then emerged,
e.g., reconstructing without camera poses [19], [33], modelling
non-rigid scenes [23], [24], unbounded scenes [40], handling
reflections [11], [30] and super-resolution [31]. When the scene
is observed by sparse views, NeRF would however estimate

a wrong density distribution, which is specifically reflected
as some artifacts in the rendering process, such as “floaters”.
Here we give a detailed review of NeRF-based methods in both
object-level and scene-level when the inputs are sparse.

Given sparse object-level views, several recent works [3],
[4], [13], [14], [36] synthesized novel views using a pretraining
with an optional per-scene optimization strategy. The pretrained
network is however not suitable for indoor scenes due to the
domain gap. Other methods impose regularizations on NeRF
geometry, for example, RegNeRF [22] samples unobserved
camera poses and regularizes patches rendered from those views
with a depth smoothness loss and a trained normalizing flow
model respectively. InfoNeRF [16] utilizes regularization based
on information theory to improve view synthesis. However, both
InfoNeRF [22] and RegNeRF [22] do not guarantee multi-view
consistency. And all these object-level approaches never take
into account the characteristics of the indoor scenes that we
mentioned in Section I.

With regard to scene-level, recent studies like Nerfing-
MVS [34], DSNeRF [7] and Dense Depth Priors [25] proposed
to introduce depth priors to resolve the unconstrained geometry
problem in NeRF from different aspects. Without additional
network or training, DSNeRF [7] utilizes the sparse depth in-
formation from COLMAP [26] directly to constrain the depth
rendered. NerfingMVS [34] instead trains a monocular depth
estimation network to get scene-specific depth priors for guiding
NeRF sampling. Similarly, Dense Depth Priors [25] leverages
a pretrained depth completion network to predict dense depth
maps for each view individually, which are then used to both su-
pervise the rendered depth and guide NeRF sampling. However,
there are two obvious problems in Dense Depth Priors. First,
the depth completion network is not view-consistent because
each view is processed individually. Second, it also suffers from
generalization issues as it relies on labeled training data such as
ScanNet [6].

Compared with previous methods, StructNeRF leverages
patch-based multi-view consistent depth loss to obtain dense
supervision for NeRF without any depth completion network
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Fig. 2. We exploit the inherent structural hints in sparse views to improve the performance of NeRF in novel view synthesis. First we utilize the structure-from-
motion to obtain camera parameters and sparse point clouds. The sparse point clouds are used to constrain the depth of NeRF at keypoints featuring a warm-up
training scheme. For regions with rich textures, we utilize the patch-based photometric loss for self-contained dense depth supervision. We also propose a planar
consistency loss to regularize the depth of non-texture regions with the assistance of superpixel segmentation.

and additional data (unlike Dense Depth Priors [25]). Besides,
we are the first to utilize a 3D planar consistency loss to further
improve the quality of view synthesis in texture-less regions,
which is also complementary to the multi-view patch-match loss.

B. Self-Supervised Depth Estimation

Self-supervised depth estimation methods are proposed to
ease the demand for large-scale labeled training data. SfM-
Learner [43] is a pioneering work that supervises the geometry
estimations from a depth estimation network by photometric
loss. To solve the issue of dynamic objects, optical flow methods
are used to compensate for the moving pixels. Semantic masks
provided by pretrained semantic segmentation models are also
utilized to handle dynamic objects [20]. The approaches do not
get satisfactory results in indoor scenes because they do not take
into account the non-texture regions.

MovingIndoor [42] is the first self-supervised depth estima-
tion approach focusing on indoor scenes. The authors propose
to use the sparse flow via matching with SURF [2] to initialize
the optical flow estimation network, SFNet. In the training
process, sparse flows are propagated from textured regions to
non-textured regions through iterations and finally transformed
into dense flows, which are then used to supervise the depth esti-
mation network. P 2 Net [37] leveraged a patch-based multi-view
consistency photometric error to constrain the depths. Other
methods also adopt structural regularities such as co-planar
constraints to improve depth estimations [15], [18], [37].

Motivated by these self-supervised indoor depth estimation
approaches, we propose to utilize the structural hints naturally
embedded in indoor scenes to constrain the depth of NeRFs,
i.e., the patch-based multi-view consistency loss from [37] and
planar consistency loss from [15]. However, previous work
mainly focus on the depth estimation task, we are the first to
introduce these priors in NeRF and demonstrate that they can
significantly resolve the unconstrained NeRF geometry issue
and enable higher quality view synthesis.

In detail, our method differs from P2Net [37] and PLNet [15]
in the following aspects: (1) StructNeRF is based on NeRF,
which operates only on multi-view inputs of a single scene
while still demonstrates the effectiveness of using the priors of
indoor scenes. However, P2Net [37] and PLNet [15] are based
on CNN and require large-scale datasets to train. (2) Previous
work and ours focus on different tasks. StructNeRF is primarily
used for novel view synthesis by regularizing the geometry.
P2Net and PLNet [15] can only be used for depth estimation. (3)
P2Net [37] implements patch-based multi-view consistent loss
based on sparse key points. We found that the method based on
sparse key points is insufficient for NeRF because the key points
only account for a small portion of textured regions. In contrast,
StructNeRF adopts the method of random sampling in the whole
image domain directly.

III. METHOD

StructNeRF facilitates indoor novel view synthesis given
only sparse input images, the framework of which is shown
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in Fig. 2. First, we obtain sparse point clouds and camera
parameters from Structure-from-Motion (SfM). We then in-
corporate self-supervised depth estimation methods into the
optimization of NeRF by imposing patch-based multi-view con-
sistent photometric loss (Section III-B) and planar consistency
loss (Section III-C). Lastly, we observe that while point clouds
from SfM could serve as sparse depth priors for NeRF, it suffers
from noisy estimation, for which we adopt a warm-up training
strategy to gradually decay its contribution to the entire opti-
mization (Section III-D). Before introducing our method, we
briefly revisit NeRF [21] in Section III-A.

A. Preliminaries

Neural Radiance Fields (NeRF) represents a scene as a con-
tinuous neural volume using a multi layer perceptron (MLP)
fθ : (x,d) → (c, σ) with θ as the learnable parameters, where
x ∈ R3 and d denotes a 3D position abd the view direction,
σ ∈ R and c ∈ R3 the corresponding density and radiance.

NeRF is an emission-only model, which means the color of
a pixel only depends on the radiance along a ray with no other
lighting factors. Therefore, according to volume rendering, the
color along the camera ray r(t) = o+ td that shots from the
camera centero in directiond can be approximated by numerical
quadrature

Ĉ(r) =

∫ tf

tn

T (t)σ(t)c(t)dt, (1)

where T (t) = exp(− ∫ t

tn
σ(s)ds).

NeRF is optimized by sampling random rays from all training
images and minimizing the rendered and ground truth pixel color
in L2 norm

LColor =
∑

‖Ĉ(r)−C(r)‖22 (2)

B. Patch-Based Multi-View Consistency

The ability of NeRF to model the appearance of view-
dependent appearance leads to the ambiguity between its 3D
shape and radiance [39]. To reduce the shape-radiance ambigu-
ity, we leverage multi-view consistency explicitly to supervise
the depth of every pixel for each view.

To begin with, we render the depth of a given pixel with the
formulation proposed in the original NeRF paper. The depth of
the ray r(t) = o+ td can thus be calculated as the following:

D̂(r) =

∫ tf

tn

T (t)σ(t)tdt, (3)

After we sample points (or pixels) pti from the pixels of the
target view It, the original point-based warping process back-
projects the extracted points to the source views Is by

pt→s
i = KMsM t−1

(D̂(pi)� (K−1pti)), (4)

where K denotes camera intrinsic parameters. Ms and Mt are
the camera extrinsic parameters of the source view Is and the
target view It respectively. D̂(pi) is the rendered depth at the
pixel pi.� represents Hadamard Product. (Here D̂(pi) = D̂(pti)

and we ignore the subscript t of D̂(pi) for convenience.)

Fig. 3. Point-based and patch-based warping operations. Point-based oper-
ation warps pixel-by-pixel and suffers from severe false matching. However,
patch-based operation warps a pixel together with its support domain from the
target view to the source view, leading to more robust representations in the
depth estimation task. This figure is adopted from [37].

Nevertheless, point-based representation is not discriminative
enough and may cause false matching because many pixels have
the same intensity values in an image. Similar to self-supervised
depth estimation [37], we define a support domain Ωpi

as the
local window surrounding the sampled point pi. Photometric
loss is calculated over each supported domain instead of an
isolated point, with which the depth of NeRF can be more
accurate because the sampled points combined with their support
domains are more unique (Fig. 3).

With more robust depth warping and cross-view matching
enabled by the support domain, like [10], [37], we propose to
adopt a photometric loss over the support domain Ωpi

, which
is the combination of an L1 loss and a structure similarity loss
SSIM [32].

LSSIM = SSIM(It[Ω
t
pi
], Is[Ω

t→s
pi

]) (5)

LL1 =
∥∥It[Ωt

pi
]− Is[Ω

t→s
pi

]
∥∥
1

(6)

Lph = αLSSIM + (1− α)LL1, (7)

where support domain Ωpi
is defined as the local window sur-

rounding the sampled point pi. It[Ωt
pi
] defines the pixel values at

Ωt
pi

in the target view It via a bilinear interpolation.Ωt→s
pi

defines
the region after warping the support domain Ωt

pi
from the target

view It to the source view Is. And α is a weighting factor that
is set to 0.85 empirically. By definition, Lph is patch-based and
multi-view consistent.

Dense depth constraints are proved to be more beneficial to
the geometry of neural radiance fields [25]. Therefore, unlike P 2

Net [37], we sample points directly from the whole image instead
of the keypoints [8]. Our experiments also show that dense
sampling results in better performance than that of sampling
from keypoints (See Section IV-E). More importantly, in contrast
to Dense Depth Priors [25], we achieve dense depth constraints
free of any depth completion network which relies on external
dataset training and have potential generalization problem.

C. Planar Regularization With Superpixels

Although patch-based photometric loss works well for tex-
tured regions, it fails to discriminate non-textured regions that
are common in indoor scenes, such as floor, walls, tables and
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Fig. 4. Superpixel extraction (right) of two indoor images (left), colors repre-
sent different regions. We can see that most extracted regions are planes.

ceiling. We further observe that those non-textured regions are
mostly planar. Therefore, how to inform StructNeRF of the
planar constraints of a scene is the core concern.

Inspired by self-supervised depth estimation [15], [37], we
aim to first identify 2D planes in input images by adopting the
Felzenszwalb superpixel segmentation algorithm [9]. Specifi-
cally, we extract superpixels from each view and define regions
with area larger than a threshold as planes (We set it to be
1000 pixels in our experiments empirically) because those non-
textured regions often span over a larger area. Fig. 4 provides
examples that most of the segmented regions are planes.

Without specific regularization, NeRFs may fail to preserve
the planar properties across different views, i.e. the depth map
of planar regions is not flat. We propose to further impose the
planar constraint to StructNeRF for non-textured regions using
the planar consistency loss [15]. From each plane, we randomly
sample 4 pixels, i.e., a, b, c and d. With the rendered depth of
StructNeRF, we then transform them to 3D points A, B, C, and
D in the camera coordinate with the following equation

P = D̂(pi)� (K−1pi), pi ∈ {a, b, c, d} , P ∈ {A,B,C,D} ,
(8)

where K denotes the matrix of camera intrinsic parameters. pi
is the selected pixel and P is the corresponding 3D point.

As shown in Fig. 5, the cross product of AB−→ and AC−→

should be perpendicular to the plane where A, B, C and
D is located. Therefore, AD−→ should be perpendicular to
AB−→ ×AC−→. The planar consistency loss is computed by

Lpc =
1

Np

Np∑
i=1

∣∣∣ −→
AiBi ×

−→
AiCi ·

−→
AiDi

∣∣∣ , (9)

whereNp denotes the number of 4-point sets we randomly select
from planes.

As shown in the experiments, StructNeRF achieves better per-
formances both in terms of depth estimation and view synthesis
for planar regions with the proposed plane regularization.

Fig. 5. Camestration process. We first re-project points a, b, c, d in a 2D plane
to the 3D coordinates, then enforce the cross product of AB−→ and AC−→ to
be perpendicular to AD−→. This figure is inspired by [37]

D. Training Strategy

As introduced in DS-NeRF [7], we also leverage the depth
of sparse keypoints extracted by COLMAP [26], [27] to su-
pervise the geometry of the neural radiance field, which is
view-consistent in nature

Lsparse =
∑

xi∈Xj

wi

∣∣∣D̂(rij)− (Mjxi) · [0, 0, 1]T
∣∣∣2 , (10)

where the keypoint in camera j is reprojected using camera
extrinsic parameters Mj and then is projected onto its unit
camera axis [0,0,1]. We also introduce a hyperparameter wi to
adaptively adjust the weights of keypoints to reduce the negative
influence of unreliable keypoints, determined by the reprojected
error from COLMAP estimation. Supposing a 3D keypoint xi

is visible in camera j, the reprojected error eij is the distance in
pixels between the camera coordinates KMjxi and detected 2D
keypoint in camera j. Thus, the confidence weight of a keypoint
can then be measured by the total reprojected error ei =

∑
j eij

wi = exp

(
−
(ei
ē

)2
)
, (11)

where ē denotes the mean absolute error of all the keypoints in
a scene.

We optimize the depth of neural radiance field by the weighted
combination of patch-based multi-view consistency photomet-
ric loss, planar consistency loss and sparse depth loss from
COLMAP as follows:

LDepth = λphLph + λpcLpc + λsparseLsparse (12)

The overall loss function of StructNeRF is therefore

LTotal = LDepth + LColor, (13)

Warm-up Training: During our training, we found that when
we use fixed weights for Lsparse over all iterations, the re-
sults were disturbed by the inaccurate points. Naively reducing
Lsparse would only diminish the benefits of the accurate points,
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TABLE I
COMPARISONS WITH OTHER METHODS

so we adopt a warm-up training strategy. Specifically, we intro-
duce the sparse depth loss item Lsparse only in the first half of
the training (λsparse = 0.05). In the remaining iterations, we set
λsparse = 0 and letLph andLpc refine the depths of pixels where
noisy points are located. By setting λsparse = 0, the noisy point
clouds will not have an impact on NeRF anymore in the later
training process. With warm-up training, we strike a balance of
utilizing the sparse depth priors and avoiding noises of point
clouds.

IV. EXPERIMENTS

A. Evaluation Metrics

We use peak signal-to-noise (PSNR), the structural similarity
index measure (SSIM) [32] and the learned perceptual image
patch similarity (LPIPS) [41] to measure the quality of synthe-
sized RGB novel views by comparing them with the ground
truth. Besides, we also include two other metrics to demonstrate
the effectiveness of our reconstructed geometry over previous
methods. We use depth root-mean-square error (Depth RMSE)
for measuring the predicted depth maps and the ground truth.
Also, the Plane Mean Deviation is used to evaluate the flatness
of planes for the predicted depth [15]. It is defined the distance of
the measured point cloud to the fitted plane. We use the mean de-
viation to measure the flatness of planes for the predicted depth.
Since the depth from NeRF is in a relative scale, different from
the absolute ground truth depth from sensors. We therefore align
the predicted depth to the ground truth according to conventional
practice [43] because the deviation is scale-variant.

B. Datasets

To evaluate our method, We train and test our model on
three multi-view indoor scene datasets in terms of novel view
synthesis: ScanNet [6], NYUv2 [29] and SUN3D [35]. We use
only the RGB data for training and the ground truth depth are
only used for evaluation.

For each scene of the datasets above, We take one frame
every 10 or 20 frames from each video in the datasets evenly

for training and evaluation. And we run COLMAP [26] over
no more than 28 frames to obtain the poses and point clouds.
Among the sampled frames, 8-th, 16-th and 24-th frames are
used as the test views, and the rest are used as the training views.
The interval frames are 20 frames between testing views and the
nearest training views. In our experiments, we found that other
baselines struggle in this setting because the views are sparse
while our method can still get good results.

For ScanNet [6] and SUN3D [35], the image resolution is
468× 624 after we down-sample and crop the dark borders from
calibration. For NYUv2 [29], the image resolution is 545× 415.

C. Implementation Details

We set λph = 0.025 and λpc = 0.025 and λsparse = 0.05 in
all the scenes of each dataset. N is set to 2, and we take the
previous two frames and the posterior two frames of the target
view as the source views, which is the same as [37]. We use the
Adam optimizer [17] with learning rate 0.0005 and sample rays
in batches of 1024. The radiance field is optimized for 100 k
iterations. We use the same MLP architecture in all experiments
as NeRF [21] for fair comparison.

D. Comparison With Existing Methods on Indoor Scenes

We compare StructNeRF with existing methods for novel
view synthesis given sparse inputs in the indoor scenes. The
baselines include two categories: methods trained by per-scene
optimization without external data and methods with data-driven
depth priors (we call data-driven methods).

1) Comparison With Per-Scene Optimization Methods:
Per-scene optimization methods include vanilla NeRF [21],
DSNeRF [7], RegNeRF [22]. We ran all the methods on the three
datasets, ScanNet, SUN3D and NYU. The results are shown in
Table I and Fig. 8.

StructNeRF is comparable with RegNeRF [22] on NYUv2.
Although the optimizations of RegNeRF on unseen poses can
still work for indoor scenes, StructNeRF is more robust for
indoor scenes relatively because it takes the priors of indoor
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Fig. 6. Comparisons with per-scene optimization method on the test views
from NYUv2, ScanNet and SUN3D scenes. “GT” denotes Ground Truth.
“GT (original)” and “GT (crop)” mean the original and cropped ground truth
respectively.

scenes into consideration. This experiment demonstrates the
effectiveness of StructNeRF.

Quantitative comparison in Table I shows that our method
outperforms NeRF and DSNeRF in all the metrics. The visual-
ized results of comparisons are listed in Fig. 6. NeRF produces
the worst results because its geometry is extremely uncon-
strained (See Fig. 6). DSNeRF has only sparse depth priors from
COLMAP, it often produces artifacts in the depth-unconstrained
areas. Wrong color and geometry are produced by DSNeRF, e.g.,
visible in the chairs (Sample 5 in Fig. 6). In contrast, StructNeRF
renders more accurate depths and colors because StructNeRF
learns two structural hints which supervise the geometry of
NeRF at textured and non-texture regions respectively. Besides,
We found that StructNeRF is more robust to the outliers in
the sparse depth input (Example 2 and 4 in Fig. 6), while the
unnecessary floaters are very obvious for DSNeRF.

2) Comparison With Data-Driven Methods: In addition
to the per-scene optimization methods, we also compared

Fig. 7. Comparisons with data-driven method on the test views from NYUv2,
ScanNet and SUN3D scenes. DDP-NeRF denotes Dense Depth Priors [25].
“GT” denotes Ground Truth. “GT(original)” and “GT(crop)” mean the original
and cropped ground truth respectively.

Fig. 8. Comparisons with RegNeRF [22].
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Fig. 9. Comparisons with MonoSDF on the test views from NYUv2, ScanNet
and SUN3D scenes. “GT” denotes Ground Truth. The first two rows are from
NYUv2. The next two rows are from ScanNet. The last two rows are from
SUN3D.

StructNeRF with some data-driven methods: MonoSDF [38] and
Dense Depth Priors (DDP-NeRF) [25].

The results of MonoSDF are presented in Table I and
Fig. 9 demonstrate that StructNeRF significantly outperforms
MonoSDF. Despite MonoSDF’s incorporation of monocular
depth and normal priors to enhance the geometric quality of
neural SDF, these priors are estimated per-scene and thus are
not multi-view consistent. In contrast, our approach incorporates
a patch-based multi-view consistency loss, which guarantees
cross-view consistency and is conducive to the view synthesis
task. And StructNeRF renders more accurate colors because
StructNeRF is also constrained by co-planar consistency at
non-texture regions.

We also compared our method to the recent work (Dense
Depth Priors [25]) that uses the depth completion network to
complete depths from sparse depth inputs and then uses them to
supervise the geometry of NeRF. Different from our method,
the depth completion network of Dense Depth Priors needs

Fig. 10. w/o patchmatch and w/ patchmatch. ((7) of Section III-B).

to be pretrained on a large-scale indoor dataset ScanNet in a
supervised way. The completed dense depths for new scenes
are pre-calculated by the depth completion network and used to
supervise the depth of NeRF when training NeRF on the new
scenes. Like NeRF [21], our method is only optimized on the spe-
cific scene without additional training. Note we didn’t include
a comparison with another relevant work NerfingMVS [34]
because it fails on most scenes for reasons we explained in the
appendix, available online.

The results in Table I show that, with the dataset prior,
Dense Depth Priors is better than StructNeRF on ScanNet in
terms of Depth RMSE and Plane Mean Dev. But StructNeRF
still has comparable PSNR, SSIM and LPIPS compared with
Dense Depth Priors. We also find that our method is more
view-consistent than Dense Depth Priors (shown in the Example
1 and 4 of Fig. 7) because the predicted depths of the depth
completion network are not view-consistent.

E. Ablation Study

We conduct ablation studies on NYUv2 to further validate
the effectiveness of the different components in StructNeRF for
view synthesis and depth estimation. The quantitative results can
be found in Table II.

Patch-match: Omitting patch-match leads to inaccurate depth
and color in high-frequency areas. The ability of NeRF to model
the appearance of view-dependent appearance leads to the ambi-
guity between its 3D shape and radiance [39]. With multi-view
consistency, patch-match improves the geometry of textured
regions and reduces the artifacts in the edges such as the edges
of the billboard shown in Fig. 10. When it is omitted, the black
edge appears in a wrong place and its shape is wrongly estimated
because it lacks the corresponding geometry constraints.Lsparse

only provides the depth constraints ats sparse keypoints and Lpc

at non-textured regions. Patch-based multi-view consistency is
necessary for the textured regions other than keypoints.

Plane Regularization: Removing plane regularization causes
the geometry of textureless regions becomes less constrained,
leading to less sharp edges in RGB, as shown in Fig. 11. As a
result, the Depth RMSE and Plane Mean Dev degrades. In detail,
after we remove the plane regularization, the left white area is
mistaken for two planes and the colored edge between the white
and brown area is less clear. Since the white area corresponds to a
plane in StructNeRF represented by a superpixel, our proposed
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TABLE II
ABLATION STUDIES ON NYUV2 DATASETS

Fig. 11. w/o plane regularization and w/ plane regularization. ((9) of
Section III-C).

Fig. 12. w/o sparse and w/ sparse. ((10) of Section III-D).

planar consistency loss enforces flat geometry in this region,
which reduces the artifacts in both the color and depth. It
makes up for the insufficiency of patch-match in the non-texture
regions.

Patch-based versus Point-based Photometric Loss: We re-
place the patch-based multi-view consistency photometric loss
with the point-based one. It can be seen from Table II that
patch-based loss leads to a robust rendering quality.

Sparse Depth Priors: Excluding the sparse depth priors, we
observe that NeRF is more likely to fall into the local optimal as
shown in Fig. 12. Therefore, although sparse depth priors from
COLMAP contain many noises, our experiments show that they
are still indispensable for NeRF with sparse views.

Warm-up Training: Omitting the warm-up training strategy
and using the same λsparse across all iterations makes all the
metrics worse since the noises of point clouds become much
more obvious in the rendering results without the warm-up
training.

Dense-sampling: In this experiment, we sample at the key-
points extracted by [8] in patch-match to supervise the depth
of NeRF. We observe that sparse keypoint sampling leads to
under-constrained depth and worse rendering results (as shown

Fig. 13. w/o dense sampling and w/ dense sampling. (See the last paragraph
of Section III-B for details).

Fig. 14. Comparisons with DSNeRF for DTU [1]. “GT” denotes Ground
Truth. “GT(original)” and “GT(crop)” mean the original and cropped ground
truth respectively.

TABLE III
COMPARISONS WITH DSNERF ON OBJECT DATASETS

in Fig. 13). Dense sampling instead helps patch-match supervise
the geometry of most regions.

F. Comparisons on Other Datasets

1) Object Dataset: StructNeRF was also compared to
DSNeRF under Redwood and DTU datasets. The results pre-
sented in Figs. 14, 15 and Table III clearly demonstrate that
StructNeRF consistently outperforms DSNeRF on object-level
datasets. In the DTU dataset, all metrics of our method are
better than DSNeRF. When considering the Redwood dataset,
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Fig. 15. Comparisons with DSNeRF for Redwood [5]. “GT” denotes Ground
Truth. “GT(original)” and “GT(crop)” mean the original and cropped ground
truth respectively.

TABLE IV
COMPARISONS ON OUTDOOR SCENES OF ETH3D

Fig. 16. Comparisons on outdoor scenes of ETH3D.

StructNeRF achieves higher results in terms of SSIM and LPIPS,
and comparable PSNR values compared to DSNeRF. The
inclusion of patch-based multi-view consistency loss in NeRF
proves to be advantageous for enhancing NeRF’s geometric
estimation.

2) Outdoor Dataset: We apply StructNeRF to three outdoor
scenes of ETH3D [28] (courtyard, electro and terrace).

As shown in Tab IV, all the three methods struggles on
ETH3D, but all the metrics of our method are still higher than
NeRF and DSNeRF. And the visualization results (Fig. 16) also
show that StructNeRF is superior to NeRF and DSNeRF on
outdoor scenes. StructNeRF is more suitable for indoor scenes
because indoor scenes contains more textureless regions which
can be improved by plane consistency loss. Outdoor scenes con-
tain much less textureless regions. Besides, StructNeRF cannot
work on the reflective areas such as windows where NeRF and
DSNeRF cannot work as well with sparse views.

G. Time Analysis of StructNeRF

We ran NeRF and StructNeRF on scene0753_00 of ScanNet
for example. If we train NeRF for 1 million iterations, only

TABLE V
TIME ANALYSIS FOR NERF AND STRUCTNERF

LPIPS will be slightly better while PSNR and SSIM became
worse due to overfitting (See Table V).

We list the amount of training time NeRF and StructNeRF
needs on one 2080ti GPU. Our method needs the double amount
of time compared to NeRF because we need to perform extra
loss calculation.

It is a little hard to train a NeRF model and StructNeRF
model with exactly the same time. So we try to run NeRF for
more iterations to make approximate comparison. We noticed
that NeRF(200 k) and NeRF(300 k) are still inferior to Struct-
NeRF(100 k) because it already converges when training with
100 k iterations.

V. CONCLUSION AND FUTURE WORK

This paper proposes StructNeRF, neural radiance field with
self-supervised depth constraints for indoor scene novel view
synthesis with sparse input views. We are the first to apply struc-
tural hints from multi-view inputs to NeRF for view synthesis
and geometry estimation, specifically, patch-match and plane
regularization to constrain the depth of textured and textureless
regions respectively. In this way, it learns a view-consistent
geometry with dense depth constraints. Most importantly, we
doesn’t have the generalization problem which occurred in data-
driven methods, e.g., Dense Depth Priors [25]. Besides, we adopt
a warm-up training strategy to reduce the influence of noisy point
clouds from Structure-from-Motion. StructNeRF outperforms
state-of-the-arts without additional training [7], [21] both in
depth estimation and novel view synthesis. In terms of com-
parison to data-driven methods, i.e., Dense Depth Priors [25], it
still achieves comparable performance on the pretrained dataset
(ScanNet) and superior performance on other datasets (SUN3D
and NYUv2). StructNeRF raises the upper bound of rendering
quality of NeRF without external data given sparse input views.
Our work also motivates future research to further exploit the
structural hints in multi-view inputs for view synthesis and other
related tasks.

Limitations of StructNeRF include limited view-dependent
effects since the surfaces are observed by only a few input
views, which also happens in other baselines [7], [21], [25].
Also, our method in plane reconstruction is still inferior to
supervised data-driven methods, albeit we already surpassed
per-scene optimization ones significantly. In the future, We will
consider how to model the view-dependent effect in the sparse
input setting. We would also investigate how to incorporate the
rich priors of indoor datasets, possibly with a more generalized
NeRF trained across large-scale datasets.
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