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A B S T R A C T

This paper proposes LinkNet, a 2D-3D linked multi-modal network served for online
semantic segmentation of RGB-D videos, which is essential for real-time applications
such as robot navigation. Existing methods for RGB-D semantic segmentation usu-
ally work in the regular image domain, which allows efficient processing using con-
volutional neural networks (CNNs). However, RGB-D videos are captured from a 3D
scene, and different frames can contain useful information of the same local region from
different views. Working solely in the image domain fails to utilize such crucial infor-
mation. Our novel approach is based on joint 2D and 3D analysis. The online process
is realized simultaneously with 3D scene reconstruction, from which we set up 2D-3D
links between continuous RGB-D frames and 3D point cloud. We combine image color
and view-insensitive geometric features generated from the 3D point cloud for multi-
modal semantic feature learning. Our LinkNet further uses a recurrent neural network
(RNN) module to dynamically maintain the hidden semantic states during 3D fusion,
and refines the voxel-based labeling results. The experimental results on SceneNet [1]
and ScanNet [2] demonstrate that the semantic segmentation results of our framework
are stable and effective.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction1

Online scene understanding of RGB-D videos, i.e., recog-2

nizing semantic objects when RGB-D frames are being re-3

ceived, is essential for intelligent robot and autonomous driv-4

ing. At present, most works regard the online semantic under-5

standing task as the semantic segmentation of individual image6

frames. There have been many semantic segmentation meth-7

ods designed for 2D images based on deep convolutional neu-8

ral networks (DCNNs) [3, 4, 5, 6]. However, recognition on9

single frame would be easily affected by environment changes,10

such as distance, texture and lighting, resulting in unstable se-11

mantic segmentation results during the movement. As shown in12

Fig. 1, directly fusing semantic segmentation results of RGB-D13

images into the 3D point cloud results in significant ambiguities14

and inconsistencies, leading to poor segmentation performance.15

This is because the color input keep changing during the move-16

ment of camera, resulting in inconsistent global features across 17

frames. 18

In recent years, depth has become a common additional in- 19

put for RGB images with the development of range sensors. 20

This additional modality provides geometric details, which are 21

beneficial to supplement the color information [7]. Directly re- 22

garding the depth as an extra input channel for the deep neu- 23

ral network in addition to the RGB has been proved to be 24

less effective [8, 3]. Besides, various visual SLAM (Simul- 25

taneous Localization and Mapping) works [9, 10, 11] have 26

been proposed for dense 3D reconstruction. Semantic segmen- 27

tation directly for 3D scenes can satisfy spatial consistency. 28

However, most semantic segmentation frameworks for point 29

cloud [12, 13, 14, 15, 16, 17] are designed for offline use taking 30

a complete reconstructed 3D point cloud as input, and cannot 31

be directly adapted to online semantic segmentation. 32

In this paper, we introduce LinkNet, a 2D-3D linked multi- 33
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(a) Fused by single-frames (b) Ground-truth

Fig. 1. An example showing the instability of single-frame semantic seg-
mentation. (a): fused output of frame-based semantic segmentation results
generated by DeepLabV3+ [18] with voting strategy, (b): ground truth se-
mantic segmentation. Semantic labels are indicated by different colors.

modal neural network framework for effective online semantic1

segmentation that tightly connects the fused 3D geometric in-2

formation and RGB streams during online 3D reconstruction.3

The key observation is that, as the projection of the 3D world,4

although the information sensed in the image space can change5

due to the conditions of lighting, views, etc., these multi-view6

images should always be consistent with the same underlying7

3D geometry. The main two issues are how to extract an ef-8

fective feature from the reconstructing 3D scene and how to9

establish connections among consecutive frames to facilitate a10

temporally consistent feature representation.11

According to the online 3D fusion, we can establish 2D-3D12

links between 2D images and the fused 3D point cloud to ex-13

change information between the two domains. The benefits of14

linking 2D and 3D information are two-fold. On the one hand,15

it allows to download the geometric features on the 3D point16

cloud and map them to the image domain, such that the multi-17

modal convolutional neural network (CNN) can be applied to18

improve the performance of image semantic segmentation. On19

the other hand, the point cloud reconstruction process will be20

accompanied by a large number of voxel fusion, allowing image21

domain information corresponding to the same 3D location to22

be effectively aggregated, which can provide features from dif-23

ferent views to strengthen temporal consistency of the semantic24

segmentation.25

More specifically, we convert the segmentation problem of26

multi-frame images into a multi-voxel classification problem,27

where each voxel receives continuous observations (i.e., fea-28

tures) from the live RGB-D streams. We thus exploit a recurrent29

neural network (RNN) to dynamically process such sequential30

information. We maintain the hidden semantic state of each31

voxel in the point cloud, and continue to download and upload32

with the support of 2D-3D links. RNN has certain memory abil-33

ity, and can make the semantic segmentation results more sta-34

ble and accurate. For 3D information input in LinkNet, we de-35

signed DHAC geometry descriptors, including ‘distance from36

wall’, ‘height from ground’, ‘angle between normal and grav-37

ity’, and ‘curvature’. These definitions all have semantic rele-38

vance or context relevance. The reason why we did not directly39

adopt the 3D coordinates as input is that the coordinate values40

are highly related to the starting position, and it is difficult to41

apply normalization in online system.42

It is worth mentioning that LinkNet refines the semantic seg-43

mentation results through 3D reconstruction. At the same time,44

there are some works [19, 20, 21] that target at improving 45

the quality of scene reconstruction with the help of semantics. 46

These works can also output online semantic segmentation, but 47

they essentially perform the semantic segmentation in the im- 48

age domain, and do not take 3D information into account. The 49

main contributions of this paper are as follows: 50

• We propose an online multi-modal semantic segmentation 51

network, named LinkNet, for RGB-D streams, which com- 52

bines the appearance information of the 2D image domain 53

and the geometric descriptors extracted from the partially 54

reconstructed 3D point cloud. 55

• We design a lightweight geometric feature, called DHAC 56

(distance, height, angle and curvature), which is invariant 57

to lighting and views, and can be calculated in real-time. 58

This feature is demonstrated to be effective in our online 59

semantic segmentation, and can also be useful for other 60

applications. 61

• We establish a mechanism for pixel-level / voxel-level 2D- 62

3D links that provides multi-view sequential features for 63

voxels. We demonstrate its usefulness when feeding them 64

to an RNN for stable and accurate online semantic seg- 65

mentation. 66

2. Related Work 67

2.1. Image Semantic Segmentation 68

Semantic segmentation of images based on deep neural net- 69

works has made significant achievements. The iconic end-to- 70

end work is the Fully Convolutional Network (FCN) proposed 71

by Long et al. [3]. The design of FCN uses a well-known 72

encoder-decoder architecture, which is also the basic architec- 73

ture of most current image segmentation networks. Noh et 74

al. [22] optimized semantic segmentation by designing a de- 75

convolutional neural network. Oliveira et al. [23] applied the 76

fully convolutional neural network to the field of human body 77

part detection and achieved significant results. Following these, 78

U-Net [24], SegNet [25], PSPNet [26] and the DeepLab se- 79

ries [4, 27, 6, 18] have continuously enriched the design of fully 80

convolutional neural networks for image semantic segmenta- 81

tion. 82

Among them, ERFNet [28], AdapNet++ [29] and 83

DeeplabV3+ [18] are the most advanced network frame- 84

works. In addition to the image pyramid network mentioned 85

above, HRNet [30] maintains high resolution representation 86

during feature learning. The above methods only use the 87

image color information that is easily affected by environment. 88

Recently, Kundu et al. [31] proposed virtual MVFusion that has 89

made progress in 2D image segmentation through smarter view 90

selection and virtual rendering of reconstructed point clouds. 91

However, this method is only suitable for offline environment 92

and requires complete scene information. In this paper, we 93

perform online multi-modal learning with extra geometric 94

features to break through the limitations of color domain. 95
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2.2. Multi-modal Network with Depth1

Depth input is more resistant to interference caused by envi-2

ronment changes, which is an important feature in the study of3

semantic segmentation. With the increasing popularity of range4

sensors, some multi-modal networks have been proposed to im-5

prove semantic segmentation. Early works such as Couprie et6

al.’s [8] and Long et al.’s [3] directly treated the depth value as a7

new information channel and aligned with the color information8

for synchronous training, but the improvements were limited.9

Most of the recent works [7, 32, 33, 34] instead used multiple10

independent encoders for RGB and depth input to learn multi-11

modal features. Hazirbas et al. [35] designed FuseNet and Jiang12

et al. [36] proposed RedNet to integrate the features of the depth13

encoder into the color encoder from bottom up to achieve multi-14

modal training. Park et al. [37] designed RDFnet with top-down15

multi-level feature fusion through multi-scale and multi-modal16

feature blocks. Xiang and Fox [38] proposed DA-RNN that17

makes frame association through depth and KinectFusion [9].18

The SSMA framework designed by Valada et al. [29] is an adap-19

tive method based on self-supervision. In this paper, we pro-20

pose a better geometric feature descriptor, i.e., DHAC, which21

is generated from the point cloud and invariant to lighting and22

views. Moreover, our multi-modal fusion can take advantage of23

different modalities.24

2.3. Deep learning on 3D point cloud25

3D point cloud learning is a research hotspot in recent years.26

As the pioneer of point cloud learning, PointNet [12] uses27

global feature aggregation to realize point-wise point cloud fea-28

ture learning. Then PointNet++ [39] uses spatial neighborhood29

information to enhance local features. DGCNN [40] uses the30

embedding feature domain to construct a dynamic graph, and31

proposes EdgeConv to implement an order-independent convo-32

lution. There are also many work to define the convolution op-33

eration for point clouds. PCNN [41] performs 3D convolution34

by constructing a local voxel domain. Cai et al. [42] used lo-35

cal depth mapping to project the point cloud onto the tangent36

plane to perform 2D convolution. PointCNN [13] specifies the37

input order of point cloud subsets by learning the arrangement38

matrix and uses 1D convolution for feature extraction. In ad-39

dition, MCCNN [43] and PointConv [14] use Monte Carlo es-40

timation to simulate the convolution operation. Recently, the41

Transformer [44], which is widely popular in the field of natu-42

ral language learning, has begun to be extended to point cloud43

learning, thanks to the input order independence of the self-44

attention mechanism. PCT [45] is a classic migration work45

of Transformer. It directly applies the attention mechanism to46

global feature learning, and uses neighborhood embedding and47

Laplacian matrix-based offset-attention to optimize the perfor-48

mance. PointASNL [46] uses the attention mechanism to ex-49

tract local features. PointGMM [47] proposes MLP splits and50

attentional splits to achieve shape completion. The above meth-51

ods are all run in an offline manner, and special segmentation52

and resampling are required for large-scale 3D scenes. More53

comprehensive surveys on this topic can be found in [48, 49].54

RGB

(2D Image)

Depth
registration

Point Cloud

DHAC

(3D Feature)

download

Encoder Decoder

Feature

State

RNN
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Upload/download

Fig. 2. Pipeline of LinkNet. The red dashed box represents the multi-
modal CNN, which takes 2D channels (RGB) and 3D channels (DHAC) as
input and generates semantic features. The black dashed box represents an
RNN module, which downloads/uploads hidden states through 2D-3D links
between 2D pixels of RGB-D images and 3D voxels of the reconstructed
point cloud.

2.4. Online Semantic Segmentation 55

RGB-D videos have similar regular structure as ordinary 56

videos. However, there is not much research on video- 57

oriented deep neural networks for semantic segmentation, be- 58

cause multi-frame input will cause a burden to the design of the 59

network. Zhang et al. [50] stacked the video frame data, then 60

divided it into supervoxels, and finally trained to process the 61

video with a 3D convolutional neural network in units of voxels. 62

Shelhamer et al. [51] proposed the Clockwork network. This 63

work assumes that the changes in the pixel domain caused by 64

time changes are drastic, while the semantic changes are slight. 65

Luc et al. [52] proposed the SegmPred model to predict the se- 66

mantics of the upcoming frame through an adversarial network. 67

These methods are based on the adaptation of improvement on 68

2D images, and no 3D geometric information is considered. 69

Another common way is 3D semantic reconstruction. Se- 70

manticFusion designed by McCormac et al. [20] uses semantic 71

information as an aid to achieve more accurate scene recon- 72

struction. Rünz et al. [21] proposed MaskFusion, in which in- 73

stance segmentation results were used to track and reconstruct 74

moving objects. Yang et al. [19] also used the semantic dis- 75

tribution of pixels to optimize the pose estimation. Zhang et 76

al. [53] combined SSMA [29] on images and PointConv [14] 77

on point clouds to optimize the voxel-wise semantic labeling. 78

These methods can output scene semantic information online, 79

but the semantic segmentation results are generated by related 80

networks designed for the RGB image and the voxel in the re- 81

construction process. Their semantic segmentation results thus 82

do not fully consider the 3D geometric and multi-view informa- 83

tion. Our work aims to optimize semantic segmentation using 84

3D reconstruction. 85

3. Method 86

Fig. 2 shows the pipeline of our 2D-3D LinkNet. LinkNet 87

takes live RGB-D video frames and camera poses as input, and 88

outputs pixel-wise semantic predictions and semantic segmen- 89

tation results of 3D point clouds online. First, we use point 90
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（a）RGB-D

（c）Point cloud (20 frames)

（b）Point cloud (1 frame)

（d）Point cloud (100 frames)

Fig. 3. Point cloud fusion of depth images using camera poses. The scale
of the scene and the density of the point cloud will increase as the number
of registered frames increases.

cloud fusion to establish the 2D-3D links between the 2D im-1

age and the 3D point cloud. Secondly, the geometric features2

generated from the 3D point cloud are downloaded to each3

frame, which are then used to output the semantic features via4

multi-modal learning. Finally, we refine the semantic features5

and achieve stable semantic segmentation predictions through a6

RNN module with the help of 2D-3D links.7

3.1. Mapping between the RGB-D Image and Point Cloud8

Before going deeper into the point cloud fusion, we briefly
introduce the transformation between the image coordinates
and camera coordinates. Given an aligned RGB-D image with
the color channels C and depth channel D defined in domain
I ⊂ R2. Suppose the camera intrinsic matrix is K ∈ R3×3,
we can transform a pixel i: I(i) = (ui, vi) in the image space
into a 3D point pi = (xi, yi, zi) ∈ R3 in the camera space using
homogeneous coordinates as follows:

pT
i = fK(i) · (ui, vi, 1)T ,

fK(i) = D(i) ·K−1. (1)

Fig. 3 (a-b) show an example of converting an RGB-D image9

into a 3D point cloud.10

3.2. Point Cloud Fusion11

By processing multi-frame data {It}, where t is the frame12

(time) index, we can obtain the voxel set {Vt} corresponding to13

each RGB-D frame. However, the coordinate system of each14

frame is independent to each other. Here we need to use point15

cloud registration to estimate the relative pose between frames16

and fuse voxels from different views.17

Assuming that the global camera pose of the frame data at
time t is Tt ∈ SE3, the converted point cloud data is Vt. The
specific relationship is as follows:

Vt = {Vi = (xi, yi, zi, t, fi, si, li), i ∈ It},

(xi, yi, zi, 1)T = Tt · (pi, 1)T , (2)

View 1 View 2

View 3 View 4

Point cloud

Fig. 4. Example of 2D-3D Links. The colors of dotted arrows represent
different categories of objects.

where Vi represents the stored information for the voxel cor- 18

responding to the pixel i, (xi, yi, zi) is the position of the voxel 19

in the global space, t is the latest timestamp of the voxel, pi is 20

the 3D position in the camera space corresponding to pixel i, 21

fi is a geometric feature descriptors that will be introduced in 22

Sec. 3.3, and si refers to the hidden semantic state stored on 23

the point cloud to memorize the point cloud semantic label li at 24

the voxel. There is no need to store colors in voxels, because 25

each frame has its own color information, which will change 26

due to different camera views or lighting conditions. Besides, 27

the voxel already contains more reliable semantic information 28

in si. It is worth noting that the camera pose can be solved by 29

various SLAM or 3D reconstruction methods (as a byproduct 30

of these algorithms), which is not the main focus of this paper. 31

In most cases, we directly use the pose information provided by 32

the 3D benchmark. 33

Assuming that the registered point cloud set before t is St−1,
the current frame point cloud is Vt. We need to design fusion
rules St = f use(St−1,Vt) to produce the fused point cloud.
Specifically, voxels Va and Vb are to be fused into a single voxel
Vc if the following conditions are satisfied:

Va ∈ S
t−1

Vb ∈ V
t

Grid(xa, ya, za) = Grid(xb, yb, zb)

Grid(x, y, z) = (b
x
ε
c, b

y
ε
c, b

z
ε
c) (3)

where ε is the size of the voxel unit, and it is set to ε = 2cm in
this work. We update the fused voxel Vc as follows:

Vc = f use(Va,Vb) = (xb, yb, zb, tc, fc, sa, la)

(tc, fc) =
(ta, fa), (tb − ta) < 1sec.

(tb, fb), otherwise
. (4)

As above, during the voxel fusion process, we limit the update 34

frequency of feature generation to improve efficiency (i.e., only 35

recalculating geometric features when the time elapsed is over 36

1 second). Fig. 3 shows an example of the point cloud fusion. 37
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Obviously, the more frames we fuse, the more reliable and ac-1

curate geometric shape information and richer context are to be2

obtained.3

Through point cloud fusion, we can obtain a series of 2D-3D4

links. These links specify a unique corresponding 3D voxel for5

each pixel. As shown in Fig. 4, we can establish the associa-6

tion among pixels of multi-views through the point cloud, and7

provide sequential data input for semantic prediction of voxels.8

3.3. DHAC Geometric Descriptor9

Color information is easily affected by the environment, such
as lighting, weather or view-point, which induces instability for
semantic segmentation. Besides, existing work [7] shows that
encoding depth information through HHA features can improve
performance. We thus propose DHAC, a 3D geometric descrip-
tor satisfying spatial consistency. As an upgraded version of
HHA, DHAC is more capable of describing scenes. Given a
point pi = (xi, yi, zi) in a point cloud P, its DHAC descriptor fi
is calculated as:

fi = (di, hi, ai, ci)
di = min{‖pi − p j‖, p j ∈ BB(P)}
hi = zi · ~g

ai = ‖ arccos(~ni · ~g)‖ (5)

where di refers to the distance between pi and walls, computed10

as the shortest distance between pi and the bounding box (BB)11

of the 3D point cloud, hi is the height along the direction of12

gravity ~g, ai is the angle between the normal ~ni and gravity ~g,13

and ci is the curvature.14

Normal ~ni and curvature ci can be estimated by the Principal15

Component Analysis (PCA) algorithm. Note that PCA normal16

estimation requires neighborhoods of a certain size that can be17

retrieved by a KD-tree. However, the KD-tree data structure is18

hard to build online, and its K-Nearest Neighbor (KNN) search19

algorithm is also time-consuming. Instead of maintaining a20

global KD-tree, we dynamically maintain the KNN for each21

voxel during the 3D reconstruction process, which is initialized22

and updated according to the 2D neighbors of the correspond-23

ing pixel. Specifically, we choose the 5 × 5 neighbors around24

each pixel as the candidates for voxel KNN. In this work, all the25

K value of KNN is set to 16.26

Strictly speaking, in the start-up phase, di and hi will grad-27

ually change with the update of the scene, so they do not hold28

the view invariance completely. Nevertheless, they still have29

very good consistency. In the multi-modal learning process, we30

map fi back into the 2D image domain to generate the DHAC31

images. As shown in Fig. 5, the DHAC descriptors can char-32

acterize the geometric features well and are almost consistent33

among different viewpoints. All these descriptors are highly34

semantic related or context related. Therefore, DHAC can ef-35

fectively improve network performance.36

3.4. LinkNet37

The detailed architecture design of our LinkNet is shown in38

Fig. 6. Our LinkNet consists of two main modules: a multi-39

modal network and an RNN module.40

（a）RGB （b）Depth （c）DHAC

Fig. 5. Examples of DHAC images. (a) (b) are the raw color and depth im-
ages. (c) DHAC images (distance, height, angle and curvature are mapped
to RGBA channels).

The multi-modal network is intended to generate the multi- 41

modal feature for the input color and depth data, which is de- 42

veloped from FuseNet [35]. Although any suitable multi-mode 43

network can be used as the backbone of LinkNet, we adopt 44

the FuseNet here by considering the trade-off between the per- 45

formance and the efficiency. We extend the input channel of 46

its depth encoder to support multi-modal learning of RGB and 47

DHAC images via ‘RGB Encoder’ and ‘DHAC Encoder’, re- 48

spectively. The 5-layer convolution design of the encoders is 49

referenced from VGG16 [54]. Each output of ‘DHAC Encoder 50

layer’ will be added to the output of the corresponding layer 51

of ‘RGB Encoder’ to achieve multi-modal feature fusion (as 52

illustrated by the red dotted arrow in Fig. 6). The final multi- 53

modal feature Fm is decoded through a 5-layer ‘Multi-Modal 54

Decoder’. For more detailed network framework, please refer 55

to [35]. 56

Another core module of LinkNet is a 2D-3D linked RNN
module. This module is designed to learn a temporally con-
sistent feature representation for stable semantic prediction
through the 2D-3D link between 2D images and the underly-
ing 3D geometry. Specifically, for each pixel i of frame It,
we first find its linked voxel V j using the method introduced in
Sec. 3.2. We then feed the output feature of that pixel, Fmt

i,
from the previous multi-modal feature network and the voxel
state st−1

j (including the hidden state and cell state), which is
stored in the corresponding 3D voxel, into an RNN. The RNN
generates the output feature ot

i for pixel i and updates the voxel
state as follows:

(ot
i, s

t
j) = RNN(Fmt

i, s
t−1
j ). (6)

If there is no pixels in frame t linked to voxel Vx, then st
x will

be equal to st−1
x . Our RNN module is formed by two stacked

standard Long Short-Term Memory(LSTM) modules [55] with
the dimension of their hidden state and cell state set to 64. Their
initial value is set to 0 and updated over time through valid 2D-
3D links. The output feature from the RNN is further fed into a
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Fig. 6. The architecture of LinkNet. The input RGB-D streams together with the proposed DHAC feature are fed into the RGB Encoder and DHAC
Encoder, followed by a multi-modal decoder to generate the multi-modal feature. Before being sent to a Score layer for a temporally consistent semantic
prediction, this multi-modal feature is refined by an RNN module with the help of the “voxel state” of the 3D point cloud that can be downloaded and
uploaded via 2D-3D links (blue dotted arrows).

Score layer to predict the semantic label lti online:

Labels = {lti} = argmax{Score({ot
i})} (7)

This Score layer is composed of two convolution layers sand-1

wiching a dropout layer. The kernel sizes of convolution layers2

are set as [3 × 3] and the probability of dropout is 0.2. Please3

note that the convolution layer here is not equivalent to the fully4

connected layer, because its kernel size is not [1 × 1].5

4. Experiments and Results6

Implementation Details. We trained the backbone network7

(composed of the RGB encoder, DHAC encoder and the Multi-8

Modal decoder), and the RNN module (i.e, the two stacked9

LSTMs and the Score layer), separately. Cross-entropy loss10

function is adopted during the training of both backbone net-11

work and the RNN. The initial learning rates of the backbone12

network and RNN module training are set to 2e − 3 and 5e − 5,13

respectively. They will decrease by 10% for every 500,000 it-14

erations. The training batch size of the backbone network is set15

to 12, and of course, the batch size of RNN module is 1. For all16

input data, we resize it to a resolution of 320 × 240 pixels. This17

is because it is the resolution of depth maps for most range sen- 18

sors, and a low resolution input can also speed up the inference. 19

The number of epochs for training will be introduced later. 20

We evaluate LinkNet through both a synthetic dataset, i.e., 21

SceneNet RGB-D [1], and a real scan dataset, i.e, ScanNet 22

v2 [2]. Although our work can predict voxel-wise semantic 23

labels, the quality of 3D reconstructed point cloud will be af- 24

fected by the selected fusion algorithm. Therefore, we mainly 25

evaluate the semantic segmentation of 2D images. 26

4.1. Timings 27

All experiments are performed on a computer with an In- 28

tel i7-8700K CPU, 64GB RAM and an Nvidia GeForce GTX 29

1080 Ti GPU (11GB on-board memory). Code written with 30

Jittor [56] implementation will be available at: https:// 31

github.com/archershot/linkNet. 32

In the case of a single GPU, the average runtime per frame of 33

our work is about 56ms (i.e., 18FPS), of which the LinkNet in- 34

ference time is about 45ms per frame and the DHAC descriptor 35

computation (including 2D-3D link generation) is about 11ms 36

per frame. The system efficiency can be further increased to 37

23FPS using multi-GPU with streaming optimization. This ef- 38

https://github.com/archershot/linkNet
https://github.com/archershot/linkNet
https://github.com/archershot/linkNet
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ficiency is at the same level as most online 3D reconstruction1

algorithms and meets the requirements of online applications.2

4.2. Results on the SceneNet RGB-D dataset3

SceneNet RGB-D [1] is a synthetic dataset containing 16,8654

indoor scans, and each scan contains 300 annotated RGB-D5

frames that are selected every 25 frames. The layout, tex-6

ture and lighting of the objects in this dataset are all randomly7

generated. SceneNet RGB-D contains 258 instance labels that8

are divided into 14 semantic categories according to the NYU9

Depth V2 [57] standard.The experiment follows standard train-10

ing/validation split reported in [1]. The number of training11

epoch for the backbone network is set to 20 with about 1 × 108
12

iterations and the one for the RNN module is set to 1 with about13

5 × 106 iterations.14

To demonstrate the advantages of our linked multi-modal15

network, we conduct extensive ablation studies: without the16

RNN module, and using single or combined modalities as in-17

puts. Fig. 7 shows examples of single-modal semantic segmen-18

tation results. Among these modalities, HHA is a feature cod-19

ing method based on depth and gravity estimation proposed by20

Gupta et al. [7]. This modality is more friendly to semantic21

segmentation than depth. It can be seen that the DHAC fea-22

ture, benefiting from its good geometric properties, can resist23

the interference of lighting, texture and view-point, making it a24

suitable presentation for semantic segmentation in challenging25

conditions. It contains richer information than other modalities,26

leading to better performance. Fig. 8 shows examples of multi-27

modal experiments. It can be found that multi-modal input can28

be complementary to each other in the semantic segmentation.29

Especially in a dark lighting condition, modalities other than30

color are essential for prediction, and the DHAC feature clearly31

shows the best effect.32

Table 1 lists the class-wise semantic segmentation results of33

different modal combinations. The results are evaluated with34

OA, mAcc and mIoU metrics. OA is the overall accuracy, mAcc35

is class-wise averaged recall, and mIoU is class-wise averaged36

IoU, which is defined as the ratio of the intersection and union37

between the prediction and ground-truth. Although the occur-38

rences of books are too low to be reliably classified, in most39

other categories, our LinkNet achieves a comprehensive im-40

provement, which has a significant improvement of 12% in41

mIoU compared to the base model FuseNet. This shows that42

both the DHAC feature and our RNN module contribute to the43

improvement of semantic segmentation.44

4.3. Comparisons on the ScanNet v2 dataset45

The ScanNet v2 dataset [2] contains 1,513 scans of real in-46

door scenes with various object categories. The 2D seman-47

tic segmentation training/test set (ScanNet25k) provided by the48

benchmark contains 19,466 images for training, 5436 images49

for validation and 2,135 images for testing. The training epoch50

of the backbone network is set to 200 with about 4 × 106 iter-51

ations. And the training epoch of the RNN module is set to 1052

with about 2 × 105 iterations.53

Table 2 shows the semantic segmentation results on the54

ScanNet v2 test set. All the results of selected 21 classes55

are drawn from the ScanNet leaderboard 1. We make com- 56

parisons with the representative works including Enet [58], 57

PSPNet [59], MSeg [60], FuseNet [35], AdapNet++ [29] and 58

SSMA [29]. Obviously, multi-modal methods have clear ad- 59

vantages, among which our LinkNet performs quite well. Com- 60

pared with FuseNet, LinkNet improves IoU by 3.1%. The 61

improvement of LinkNet on ScanNet v2 is relatively limited. 62

This is mainly because the ScanNet v2 test set just selects 1 63

frame every 100 frames. This reduces the number of available 64

2D-3D links, making it difficult to take full advantage of the 65

RNN module of our LinkNet. At present, LinkNet outperforms 66

SSMA [29] in about half of the categories, but the mIoU is 67

slightly lower than that of SSMA, mainly because of the gap in 68

the backbone network (i.e., FuseNet vs. SSMA, especially for 69

the category of book-shelf ). Although we can further improve 70

the performance by choosing SSMA as the backbone network 71

of LinkNet, it is difficult to meet the requirement of online 3D 72

reconstruction, since the running time of each frame of SSMA 73

is about 100ms. 74

4.4. Stability Analysis 75

To quantitatively evaluate how our LinkNet improves the 76

temporal consistency of semantic segmentation for online 77

streams, we compute the average semantic change ratio of pix- 78

els projected from the underlying 3D voxels among all consec- 79

utive frames on the SceneNet RGB-D validation set. We regard 80

this metric as the stability of the online semantic segmentation: 81

the lower the ratio is, the more stable the semantic segmentation 82

is. 83

We compare our LinkNet with FuseNet [35] as well as 84

FuseNet with DHAC feature. As shown in Table 3, 8.73% 85

of pixel labels are changed with FuseNet, while our LinkNet 86

achieves more consistent semantic segmentation result with 87

only 3.89% of label changes. In addition, DHAC also con- 88

tributes to stable segmentation due to its insensitivity to the 89

change of views. 90

4.5. Limitation 91

Our method also has some limitations. First, the feature re- 92

finement of LinkNet is preformed at the pixel level or voxel 93

level, instead of the instance level. This may corrupt the seman- 94

tic labeling results of the same instance, resulting in discontinu- 95

ity in semantic segmentation. A progressive clustering [61] on 96

voxels can be applied to alleviate this problem. Second, the 97

RNN module would accumulate errors when a voxel is fre- 98

quently linked to pixels with noise feature representation. A 99

view selection strategy [31] would help to improve the quality 100

of input frames. 101

5. Conclusion 102

In this paper, we propose LinkNet to perform stable and 103

effective online semantic segmentation of RGB-D video. On 104

1http://kaldir.vc.in.tum.de/scannet_benchmark/
semantic_label_2d

http://kaldir.vc.in.tum.de/scannet_benchmark/semantic_label_2d
http://kaldir.vc.in.tum.de/scannet_benchmark/semantic_label_2d
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RGB

DEPTH

HHA

DHAC

Fig. 7. Examples of semantic segmentation on SceneNet RGB-D dataset with single modalities including RGB, Depth, HHA and DHAC. For each modality,
the first row shows the input, the second row presents the semantic segmentation results, and the third row shows the error maps, where blue represents
the correct predictions and red represents the wrong ones.
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RGB

DEPTH

HHA

DHAC

RGB+DEPTH

RGB+DHAC

LinkNet

RGB+HHA

Fig. 8. Examples of semantic segmentation on SceneNet RGB-D dataset with multi-modal inputs. The first block containing four rows shows different
modalities, and remaining blocks are multi-modal comparisons, where within each block the first row is the result shows semantic segmentation results,
and the second row gives the error maps (blue represents the correct predictions and red represents the wrong ones).
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Table 1. Detailed comparison of various input modalities on the SceneNet RGB-D dataset [1].

Methods Beds Books Ceiling Chair Floor Furniture Objects Picture
RGB 22.0 - 77.8 29.6 77.2 36.0 35.8 69.4
Depth 53.7 - 72.8 40.2 67.9 24.4 54.6 24.6
HHA 47.1 - 67.8 35.2 66.6 14.3 55.9 17.5
DHAC 56.9 - 75.0 46.9 70.9 33.8 60.6 26.8
RGB+Depth (FuseNet) 46.2 - 79.3 53.7 75.1 36.9 54.5 51.0
RGB+Depth (SSMA) 19.3 - 74.5 21.5 69.3 17.1 35.5 29.4
RGB+HHA (FuseNet) 47.4 - 82.9 38.1 78.5 41.4 47.6 49.5
RGB+DHAC (FuseNet) 53.9 - 83.1 49.1 84.8 52.1 55.9 55.5
RGB+Depth (LinkNet) 51.3 - 83.3 50.6 82.2 38.0 56.2 51.2
RGB+DHAC (LinkNet) 60.9 - 83.4 63.2 83.2 59.2 68.0 66.8

Methods Sofa Table TV Wall Window OA mAcc mIoU
RGB 08.5 30.2 14.1 78.2 30.8 77.8 60.2 39.2
Depth 06.6 44.7 09.9 69.9 23.1 76.4 56.3 37.9
HHA 18.4 47.0 15.9 64.7 21.6 72.6 56.7 36.3
DHAC 21.0 57.0 25.6 70.2 24.6 78.0 65.3 43.8
RGB+Depth (FuseNet) 22.6 45.6 28.3 80.5 25.7 82.1 63.4 46.1
RGB+Depth (SSMA) 01.2 30.3 02.1 73.6 13.1 75.6 41.5 29.8
RGB+HHA (FuseNet) 18.0 54.3 41.9 81.4 31.9 82.5 66.3 47.1
RGB+DHAC (FuseNet) 18.8 58.0 49.1 82.1 29.1 84.4 69.8 51.7
RGB+Depth (LinkNet) 12.8 49.0 35.4 83.2 29.9 84.2 64.2 47.9
RGB+DHAC (LinkNet) 29.7 66.5 61.5 83.3 31.7 86.6 73.3 58.3

the one hand, LinkNet incorporates the geometric features ex-1

tracted from the fused 3D geometry into multi-modal learning2

in the image domain to improve feature robustness by taking3

advantage of the 2D-3D links offered by 3D reconstruction. On4

the other hand, LinkNet applies an RNN on the sequential fea-5

tures observed by each voxel to maintain the stability of se-6

mantic segmentation. Experiments on both synthetic and real7

scanned datasets demonstrate the effectiveness of our method.8

In the future, we would like to consider more complex 3D9

features that are more suitable for semantic segmentation, such10

as voxel-based deep learning features. In addition, the back-11

bone network can also be upgraded for 2D-3D multi-modal ap-12

plication.13
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