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Figure 1: DiffFacto: Our approach tackles the task of controllable part-based point cloud generation, where we are able
to generate novel shapes - novel configurations of novel parts. Our probabilistic generative model learns a factorized
representation of shapes with a cross diffusion network allowing for control. We demonstrate that DiffFacto not only enables
controllable generation but also various shape editing tasks.

Abstract

While the community of 3D point cloud generation has
witnessed a big growth in recent years, there still lacks an
effective way to enable intuitive user control in the gen-
eration process, hence limiting the general utility of such
methods. Since an intuitive way of decomposing a shape
is through its parts, we propose to tackle the task of con-
trollable part-based point cloud generation. We introduce
DiffFacto, a novel probabilistic generative model that learns
the distribution of shapes with part-level control. We pro-
pose a factorization that models independent part style and
part configuration distributions, and present a novel cross
diffusion network that enables us to generate coherent and
plausible shapes under our proposed factorization. Experi-
ments show that our method is able to generate novel shapes
with multiple axes of control. It achieves state-of-the-art
part-level generation quality and generates plausible and
coherent shape while enabling various downstream edit-
ing applications such as shape interpolation, mixing, and
transformation editing. Please visit our project webpage at
https://difffacto.github.io/

1. Introduction
3D shape generation [45] is an important and popular

task , where point clouds are one popular representation [46,
5, 52, 28] – due to their simple yet powerful expressivity
as well as data availability, i.e. just a set of points and can
directly be acquired by sensors. However, the generation of

arbitrary plausible shapes is often of limited utility, as users
often have a conceptual design idea and of what they want
to generate.

A prerequisite of shape generation is to be able to learn
a space of all possible shapes. To represent this space, one
parsimonious way is to represent them as a combination of
simpler atoms, known as parts. In this flavor, we propose the
task of controllable part-based generation, which aims to
generate plausible novel shapes with user control over indi-
vidual parts. As mentioned before, a shape is a combination
of parts, thus a ‘novel shape’ can be defined in three different
ways: (1) novel configurations of existing parts, (2) existing
configurations of novel parts, and (3) novel configurations of
novel parts.

The first is explored in existing graphics literature such as
part retrieval [41] and shape assembly [50], while the second
can be tackled by existing generation methods [46, 5, 52]
trained on parts. In contrast, we tackle the third, which is
the more challenging case subsuming the first and second. A
challenge arises because a shape is a combination of novel
parts, leading to an exponential explosion of plausible shapes
while having only limited training data. A further challenge
stems from enabling control as this requires an approach
that can vary individual parts and configurations while still
generating plausible shapes.

To this end, we introduce a new method that tackles this
task in a principled way by building a probabilistic gen-
erative model that learns the distribution of shapes while
enabling control on parts and configurations. Specifically,
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we propose a factorization that decomposes the shape space
into (i) the individual canonicalized (semantic) parts, and (ii)
their transformations (position and size). These factors can
be sampled or encoded independently, allowing for different
modes of control in generation and intuitive editing.

Our approach learns independent latent spaces for each
canonicalized (semantic) part through part stylizers. Then
conditioned on the canonicalized parts, we also introduce
learn a transformation sampler that learns a distribution of
part configurations. Naive approaches can result in mode
collapse since multiple parameter configurations can output
a valid shape, if conditioned only on canonicalized parts.
We leverage on a sampling-based approach to learn a multi-
modal distribution of part configurations through conditional
Implicit Maximum Likelihood [24] (cIMLE).

To generate plausible shapes through independently sam-
pled factors, we also introduce our cross diffusion network
that allows for the learning of a better shape distribution un-
der our proposed factorization. Our cross-attention diffusion
network, conditions on the proposed factors, i.e. indepen-
dent part style and transformations, in the reverse diffusion
process. Our design allows each generated point in the point
cloud to be informed of both the global shape as well as the
local part, resulting in more plausible and coherent output
shapes while still enabling control. Moreover, we also in-
troduce a generalized forward diffusion kernel that allows
the explicit encoding of each part transformations, enabling
better shape reconstruction and transformation extrapolation.

We dub our method DiffFacto, for factorized represen-
tion with cross diffusion. To our best knowledge, we are
the first to introduce a factorized representation that allows
for control in both part styles and part configurations as we
model independent part style distributions and transforma-
tion distribution, enabling each to be independently sampled.
Experiments show that our approach achieves better intra-
part and inter-part level scores compared to baselines. We
also show that our approach generates novel and coherent
shapes through a segmentation-based plausibility experiment
and human study. Furthermore, we demonstrate that our
approach also allows for controllable and localized shape
editing on various applications such as part-level shape in-
terpolation, shape mixing and transformation editing.

2. Related Work

Point Cloud Generative Models. The literature mainly
targets at an accurate modeling of the underlying data
distribution, using probabilistic tools and parameterized
deep networks developed in variational auto-encoders
(VAEs) [19] used by PSG [10], generative adversarial net-
works (GANs) [12] used by PointGAN [1], auto-regressive
models [4] used by PointGrow [39], normalizing flows [35]
used by PointFlow [46] or Softflow [18], etc., with proper
conditioning [38, 30, 24]. Notably, the most recent suc-
cess of Diffusion Models [16] for image synthesis [36] is

further expanded to the domain of 3D point clouds gen-
eration [28, 53, 5, 52, 33, 17]. Among this line of works,
PVD [54] and LION [52] treat the full point cloud as a single
sample from the learned distribution in either primal or la-
tent space. However, the points themselves from a cloud can
be viewed as samples from a geometric distribution, which
is explicitly modeled by, e.g., DPM [28] or ShapeGF [5],
and PointFlow [46] as distribution of distributions [46]. This
enables the desirable capability to generate arbitrary number
of points from a single shape without the need of re-training.
Our work takes this approach and additionally builds a fac-
torized prior to sample from allowing for part-level control,
which in contrast to all previous works that only model a
single latent space and can only generate a full shape.
Structure-aware Shape Generation. Different from full-
shape generation, structure-aware methods enrich the syn-
thesized geometry with useful structural information and
allow for easy user manipulations [7]. Related literature
has explored different structure representations, such as
segmented parts [32, 21, 26], relationship graphs [11, 44],
or layers/hierarchies [22, 13, 47], generated using either
auto-regressive models [43, 33], recursive networks [22],
or hierarchical models [47, 42]. Among these works,
SPAGHETTI [14] uses cross-attention to mix the part la-
tents that are decoded into an implicit shape representation.
SP-GAN [25] employs a spherical proxy geometry for even
finer-grained controls. Nevertheless, most of the above ex-
isting methods model the shape prior as a single latent code,
and user controls are detached from the generative process.
They hence rely on post-optimization/inversion [13] steps to
maintain the shape plausibility. In contrast, our factorized
prior allows for explicit part-based control and sampling
during the generative process.
Shape Editing. In graphics, low-level shape editing usually
involves computing and modifying geometric handles such
as cages [37, 9] or skeletons [51, 3]. On the other hand, the
exploitation of high-level semantics allow for more intuitive
controls of the shape such as mixing and stitching semantic
parts from a shape collection [50], tweaking the scales and
deformations of the bounding boxes [27, 40], changing the
status of a coarse proxy geometry [48, 29], or using natural
languages [20]. They typically however start from an ex-
isting source shape which is edited to a desired target. In
contrast, in addition to editing existing geometry, our method
can also create novel shapes in a controllable manner with
our introduced factorization, and enabling a wider range of
applications than the prior arts.

3. Problem Overview

Our goal is to learn a controllable generative model on
3D shapes. Given a set of shapes S = {S(i)}, we want to
learn a distribution P (S) from which we can sample with
part-level control. To generate realistic and plausible shapes,
a shape prior is commonly learned. Existing works [46,
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Figure 2: Method Overview. We factorize the 3D shape distribution into three key components, containing m part stylizers
for each part that model the shape prior P (Z), a transforamtion sampler that models the conditional distribution of
transformations given the part latents P (T|Z), and a cross diffusion network that samples the point cloud jointly considering
the part geometry and their configurations P (S|Z,T). Red dashed lines indicate losses incorporated in the training stage. For
definitions of variables, see Sec. 3.

5, 28, 15] model the shape prior as one random variable
w ∼ P (W ), i.e. a single global latent code, which does not
allow for any level of structure-aware control on the shape
being sampled/generated.

We introduce a factorized representation of the prior
in order to obtain more localized control of the generation
process. An intuitive granularity for users to control shape
generation is through a natural decomposition of shapes into
semantic parts [31], which we leverage on in our proposed
factorization. For the rest of the paper, we assume that
shapes in S from a given category have a predefined set of
m semantic parts.

A shape S(i) is decomposed into its semantic parts
{S(i)

j }j=1,...,m, where S(i)
j is the geometry of each shape

part the superscript is omitted in what follows for brevity.
We further factorize Sj into its canonicalized geometry, Ŝj ,
i.e. part style, and its corresponding instancing transfor-
mation, Tj ∈ RD1 . We then model a independent distribu-
tions P (Zj) for each canonicalized part, where Zj ∈ RD2

j = 1, ...,m is the canonicalized part latents, which we call
as part stylizers. For simplicity, we use bold type for ran-
dom variables and samples on the collection for all parts,
e.g. Z = {Zj}, uppercase letters are random variables
and lowercase letters are their corresponding samples, e.g.
zj ∼ Zj , τj ∼ Tj . Conditioned on all the part style latents
Z, we further model a distribution on their transformations,
P (T|Z), where T = {Tj}. The shape prior distribution is
then the joint distribution of individual part styles and their
transformations. Our proposed shape factorization is then
given as:

P (S) =

∫ ∫
P (S|z, τ )P (τ |z)P (z) dz dτ , (1)

where our shape prior is now factorized as P (Z,T) =∏m
j=1 P (Zj)P (T|Z). Our factorization allows for control

in our learned generative model, since we are able to in-

dependently sample from each part style latent distribution
zj ∼ P (Zj) and a valid set of transformations τ ∼ P (T|Z),
thus introducing multiple different knobs for variation. We
detail our joint prior P (Z,T) in § 4.2. To capture and gener-
ate more plausible and holistic shapes, we further introduce
our cross diffusion network that models P (S|Z,T), a con-
ditional distribution of points on the shape’s surface. We
elaborate our diffusion-based network and also introduce a
generalized forward kernel in § 4.3. We showcase that our
proposed factorization not only allows us to sample and gen-
erate diverse and plausible shapes, but also enables multiple
shape editing and variation applications in § 4.4.

4. Method

We learn a shape distribution P (S) given segmented
shapes, represented as a point cloud S = {xk}k=1,...,N ,
xk ∈ R3 with their semantic parts {Sj}j=1,...,m, where
S = ∪mj=1Sj . Each part Sj is decomposed into its part style
Ŝj and transformation τj . Concretely, the part style Ŝj is
the canonicalized part geometry given by the transformation
τj ∈ R6 representing the shift (cj ∈ R3) and axis-aligned
scale (sj ∈ R3

>0), giving us:

Sj = Diag(sj)Ŝj + cj .

Our method models the data distribution P (S) with a fac-
torized joint prior P (Z,T) and has three components: (i) in-
dependent part stylizers that model P (Zj) for j = 1, ...,m,
representing part styles, (ii) a transformation sampler that
models a distribution P (T|Z) of the part transformations
conditioned on their styles, and (iii) a cross diffusion net-
work that models the conditional distribution P (S|Z,T) of
points on the surface of the shape given the factorized prior.
Fig. 2 illustrates our method overview.
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4.1. Training Objective
We first derive the training objective for our factorized

joint prior P (Z,T). We maximize the likelihood of our
learned distribution P (S) through the evidence lower bound.
We let ψ, θ, ϕ be the model parameters of our part styl-
izer, transformation sampler and cross-diffusion network,
respectively. In addition, we assume an evidence distribution
Qφ (Z,T|S) that can be formulated as:

Qφ (Z,T|S) = Qφ (Z|S)Q (T|S)

= Q (T|S)
m∏
j=1

Qφj (Zj |Sj)

=

m∏
j=1

Qφj

(
Zj |Ŝj

)
,

(2)

where Q (T|S) is deterministic since we assumed known
segmentation S = {Sj}, and we assume Zj1 ⊥ Zj2
∀j1, j2 ∈ {1, . . . ,m}, j1 ̸= j2, i.e. Z and T are condition-
ally independent given S. Thus, the evidence lower bound
(ELBO) for the likelihood can be derived as:

ES [logPϕ,ψ,θ (S)]

= ES
[
log

∫∫
Pϕ (S|z, τ )Pψ,θ (z, τ ) dzdτ

]

= ES

[
log

∫∫
Pϕ (S|z, τ )Pψ(z)Pθ(τ |z)

Qφ(z, τ |S)
Qφ(z, τ |S)dzdτ

]

≥ ES,z
[
logPϕ (S|z, τ )︸ ︷︷ ︸

Lrecon

+

m∑
j=1

log
Pψj (zj)

Qφj (zj |Ŝj)︸ ︷︷ ︸
LZ

+ logPθ (τ |z)︸ ︷︷ ︸
Lτ

]
,

(3)

where the inequality is through Jensen’s (see supplement).
We now go through each of our components, and how they
are trained to maximize this derived training objective with
the corresponding loss functions (denoted as l(·)).

4.2. Factorized Joint Prior P (Z,T)

Our factorization allows us to define multiple random
variables to control the generative model and output plausi-
ble shapes. These random variables can be independently
sampled and are the ‘control knobs’ in the generation
process, thus allowing for user-controllability. These random
variables are Zj to control per-part style through our part
stylizers and T that controls the set of part transformation
through our transformation sampler. Moreover, this also
allows the network to consolidate part information, e.g. the
canonicalized geometry of a rectangular back of the bench
is the same as a dining chair when transformation is factored
out. This decomposition also enables resampling certain
part geometries Zj while keeping the rest fixed, creating
variations in part configurations by resampling T, and
local shape editing through encoding and modifying zj or τj .

Part Stylizer. The part stylizer learns to model the inde-
pendent distributions P (Ŝj) of part styles for j = 1, ...,m.

Each Ŝj is encoded into a part latent code Zj with encoder
Qφj (Zj |Ŝj), representing the evidence distribution. We use
a continuous normalizing flow [8] (CNF) model to learn part
priors Pψj (Zj) with parameters ψj . Formally, we have the
part stylizer loss ℓZ given by:

ℓZ =

m∑
j=1

KL
(
Qφj

(
Zj |Ŝj

)
∥Pψi (Zj)

)
= −

m∑
j=1

Ezj∼Q
[
logPψj (zj)

]
+H

(
Qφj

(
Zj |Ŝj

)) (4)

where H is the entropy and Pψj (Zj) is a complex distri-
bution transformed from Gaussian. This is equivalent to
maximizing LZ in Eq (3). See supplement for more details
on CNF.

Transformation Sampler. Given part styles z, there are dif-
ferent plausible configurations, i.e. multiple sets of transfor-
mations, that result in valid shapes. Hence, we cannot simply
regress the transformations T for given part styles z, leading
us to model a conditional distribution of transformations
P (T|Z). Learning this distribution is non-trivial because of
three main reasons: (i) we have to learn a diverse set of shape
variations captured only by the transformation parameters,
e.g. a dining chair and a bench can have the same set of
part styles, (ii) each training example S ∈ S only provides
one-to-one pairs (z, τ ) of part styles and transformations,
and (iii) the desired conditional distribution P (T|Z) may be
multimodal.

To satisfy these properties, we leverage on conditional
Implicit Maximum Likelihood (cIMLE) [24] that trains an
implicit generative model, Pθ(T|Z) in our case, by encour-
aging some generated output to match the observation from
S, in contrast to unimodal approaches [30, 38] that enforces
all generated outputs to match the observation leading to
mode collapse. Concretely, transformation sampler Tθ out-
puts samples τ k = Tθ (z, yk) for part style latents z and
random latent variable yk ∼ N (0, I), y ∈ RDτ . We sample
multiple latents y1, ..., yK and encourage that at least one of
them matches the observed data S. As shown in IMLE [23],
maximizing the likelihood is then equivalent to minimizing
the loss:

ℓτ =
∑
S∈S

min
k=1,...,K

ℓfit (Tθ (zS , yk) , τS) , (5)

where τS is the observed part transformations for shape S.
We define ℓfit as the distance between the generated set {τ k}
and observation τS summed across all parts, given as

ℓfit (τ , τS) =

m∑
j=1

∥cj − cS,j∥22 + ∥log sj − log sS,j∥22 .

Minimizing ℓτ is equivalent to maximizing Lτ in Eq (3).
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4.3. Cross Diffusion Network
In order to capture plausible and holistic shapes given

our proposed factorization, we model the conditional shape
distribution P (S|Z,T) given part style latent codes and part
transformations with our cross diffusion network. Specif-
ically, we represent a shape as a distribution of points on
its surface. Given segmented shapes S with M parts , we
model P (x|Z,T, j) ∀x ∈ R3 as the probability that x lies
on the surface of part Sj . Since we use part semantic labels
as an additional condition, this also allows us to output seg-
mented shapes by specifying j. Each point is treated as an
independent sample (denoted by the random variable X),
which leads to the conditional likelihood of a shape S:

P (S|Z,T) =

m∏
j=1

∏
x∈Sj

P (x|z, τ , j) 1. (6)

Our cross diffusion network leverages on denoising dif-
fusion probabilistic model (DDPM) to learn the conditional
likelihood Pϕ(Z,T, j) through an iterative denoising pro-
cess. DDPM models a probability distribution using a re-
verse process which is a Markov chain with a fixed prior,
and to learn DDPM, we approximately maximize the like-
lihood with the forward process as the approximate poste-
rior. Instead of directly maximizing each conditional like-
lihood [28, 16], we reparameterize learn εϕ that predicts
the noise at a timestep t given the noisy data point x(t) and
minimize the distance between the predicted noise εϕ and
the ground truth noise ε. Thus maximizing Lrecon in Eq (3)
is equivalent to minimizing

ℓcross =

m∑
j=1

∑
x∈Sj

E
ε,z,t

2

[∥∥∥ε− εϕ
(
x(t),z, τS , j, t

)∥∥∥2

2

]
, (7)

where the predicted noise εϕ is conditioned on part styles z ,
transformations τ , semantic label j and timestep t. Our cross
diffusion network uses our introduced generalized forward
kernel that allows for the preservation of information from
part transformations (τj = (cj , sj)) in the forward diffusion
process while only adding noise to the canonicalized part
geometries, i.e. part styles. We also show the reverse pro-
cess of our generalized forward kernel can also be similarly
reparameterized arriving at the same loss in Eq (7). Fig. 2
shows one example for the forward diffusion process. Our
experiments show that this modification allows for better
reconstruction quality and part transformation extrapolation.

We use a cross-attention network with L cross attention
layers to instantiate εϕ. For a timestep t, the network
predicts x(t−1) conditioned on (x(t), j, τj). The input to
each cross attention layer attends to m tokens each being the
concatenation of (zj , τj , j, t), for j = 1, ...,m. This design
allows a point x(t) to be informed of both the global shape

1By the same assumption of a deterministic mapping between x and j.
2ε ∼ N (0, I) ,z ∼ Qφ

(
Z|Ŝ

)
, and t ∼ Uniform {1, . . . , T}

through the m tokens and the local part by concatenating
the coordinate x(t) with its corresponding part label and
transformation, enabling us to capture and generate more
plausible and holistic shapes.

Generalized Forward Kernel. Finally, we introduce a gen-
eralization of the forward kernel used to add noise ε to the
data points x. Existing works [28, 53] use a forward kernel
that diffuses all points on the surface to the standard unit
Gaussian. We show that our generalized forward kernel is
theoretically equivalent to diffusing all points to a scaled and
shifted Gaussian. Our modification allows to incorporate
an additional prior (scale and shift) to the forward process.
Specifically, for a d dimensional diffusion process, a shift
µ ∈ Rd and variance Σ ∈ Rd×d parameter is incorporated
into the forward kernel so that it becomes:

Q
(
X(t)|x(t−1), µ,Σ

)
= N

(√
αtx

(t−1) + (1−
√
αt)µ, (1− αt) Σ

)
,

(8)

for t = 1, . . . , T. Here αt’s are variance schedule hyperpa-
rameters. As T → ∞, we show that the final distribution
approaches a parameterized Gaussian with mean µ and vari-
ance Σ (see supplement for the full proof):

(9)
Q
(
X(T )|x(0), µ,Σ

)
= N

(√
αTx

(0)

+
(
1−

√
αT

)
µ, (1− αT )Σ

)
∼= N (µ,Σ) .

Here αT =
∏T
t=1 αt. Note that the standard forward

kernel is a special case of our generalization by set-
ting µ = 0 and Σ = diag(1). For our task, we set
µ = cj and Σ = Diag(s2j ) for points x ∈ Sj .

Please see supplement for more details and full derivations.
The total loss is then ℓtotal = ℓrecon + λ1ℓZ + λ2ℓτ .

4.4. Enabling Shape Editing

Our method does not only allow for shape generation
through sampling from individual part style P (Zj) and trans-
formation P (T|Z) distributions, but it is also able to encode
specified parts and modify them, allowing for local shape
editing and controllable variation synthesis. We highlight
that enabling local edits/variations is non-trivial as there is a
tension between preservation and adaptation post-edit. In
other words, an ideal edit would keep the unmodified parts
unchanged as much as possible, but at the same time still
adapt the changes required to maintain a plausible shape
after incorporating the specified edit.

1) In the simplest setting, our framework can be trained
as an autoencoder by deterministically regressing each part
latent Zj and directly feeding the part transformations τS
for a shape S. The training objective is simply equivalent
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Figure 3: Generated Shapes with Controlled Variation. (Left) Re-sampling a selected part style while keeping the rest fixed.
(Middle) Fixing a selected part while re-sampling the rest. (Right) Generating multiple part configurations for a given set of
part styles. Gray refers to the fixed part while colored parts are being modified.

to ℓrecon. 2) A step further from the autoencoder set-up is to
synthesize variations of a shape by training the transforma-
tion sampler. Given S, we deterministically encode the part
styles, and then either a) sample different transformations τ ,
or b) manually edit selected part transformations τj from τS ,
achieving variations on (part) transformation configurations
while keeping part styles fixed. This set-up also allows for
shape mixing-and-matching with transformation variations.
3) Moreover, we also enable local editing where specified
part j of a shape can change while keeping the rest fixed that
is done by either a) resampling the corresponding part latent
code from P (Zj) or b) interpolating between part styles.
The applications are shown in the results section.

5. Results

5.1. Dataset and Evaluation Protocol

We use four classes from ShapeNet [6] dataset: chair,
airplane, lamps, and cars. We train/test the networks per
object class with the splits provided by [49]. Each category
contains 3053, 2349, 1261, 740 training shapes and 704, 341,
286, 158 test shapes, respectively. The semantic labels for all
classes come from [49]. See supplement for implementation
details — network architecture, training time, etc.

For our task on controllable part-based generation, we
propose to measure intra-part and inter-part level scores. For
more details, please refer to the supplement.

Intra-part Score. We evaluate the quality of individual
part distributions P (Sj)∀j using the standard generation
metrics following [46]: minimum matching distance (MMD-
P), coverage (COV-P) and 1-NN classifier accuracy3(1NNA-
P), measuring the similarity between the distributions of
canonicalized parts of the generated shapes compared to the
test set from [49] of segmented shapes, where the score is
computed for each part and averaged across all Parts (hence

Chair MMD-P (↓) COV-P (↑) 1NNA-P

PointFlow [46] 4.68 27.3 87.77
DPM [28] 4.17 28.2 85.65
ShapeGF [5] 3.52 42.3 68.65
LION [52] 3.99 35.1 69.25

DiffFacto (Ours) 3.27 42.5 65.23

Airplane MMD-P (↓) COV-P (↑) 1NNA-P

PointFlow [46] 4.61 32.0 86.11
DPM [28] 3.52 37.7 78.74
ShapeGF [5] 3.50 40.0 72.04
LION [52] 3.68 38.8 68.73

DiffFacto (Ours) 3.20 46.2 68.72

Table 1: Global Shape Code Baselines. MMD-P score is
multiplied by 10−2. COV-P and 1NNA-P are reported in %.

the suffix ‘-P’).

Inter-part Score. We also measure the local part-to-part
coherence of the generated shape as having control in in-
dividual parts may result in disjoint or incoherent outputs.
We use a snapping metric (SNAP) that measures local con-
nectivity between independently generated parts, given as
the Chamfer distance (CD) between the Nsnap-closest points
between connected parts. We report the average score across
all connections of all generated samples.

Plausibility. We also further evaluate the plausibility of
our generated shapes by using them to augment training
datasets for point cloud segmentation. The idea is if our ap-
proach generates novel and coherent shapes with part labels
then using them for data augmentation would improve the
segmentation score of part segmentation networks.

Human Study. We also conduct a user study to evaluate

3Arrow for 1NNA-P is left out in the table because an optimal score for
this metric is 50 %.
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Ctrl-ShapeGF Ctrl-LION DiffFacto (Ours)

SNAP (↓) 41.12 31.76 13.32

Table 2: Control-Enabled Baselines. Snapping metric on
three connections for chairs: back to leg or seat; seat to legs;
and arms to seat or back. (CD ×10−2).

controllability, methods being evaluated each generate a
triplet of edited shapes, and users are asked to select the
triplet containing shapes that are most plausible, where an
‘abstain’ option can be selected. An edit for a given shape is
defined as resampling a pre-selected parts to output a novel
shape where plausibility is measured.

5.2. Baselines

Global Shape Code. Existing point cloud generation works
do not explicitly model individual parts as they sample from
a single global shape distribution, which do not provide
individual part-level control. To evaluate individual part
distributions and measure the intra-part score, we use a pre-
trained part segmenter [34] to decompose generated shapes
into parts. We compare against recent works PointFlow [46],
DPM [28], ShapeGF [5] and LION [52] on intra-part level
scores. Inter-part scores are not measured as these works
directly generate a full shape.

Control-Enabled. We also introduce new baselines that
allow for part-level control. We modify ShapeGF [5] and
LION [52] to have part-level control (prefixed by “Ctrl-”)
by modeling independent part distributions, i.e. P (S) =∏
j P (Sj |wj) , where each part latent distribution is mod-

eled with a (hierarchical) variational encoder Q(wj |Sj).
These baselines allow for independent sampling at the part-
level unlike existing approaches. We measure the inter-part
score for these baselines to evaluate the coherence of the
generated shape. Intra-part scores are not measured as these
baselines are individually trained per part.

5.3. Controllable Shape Generation
Fig. 3 shows shapes generated by sampling from different

components in our factorization enables both control in part
style and part configurations: Our approach is able to sample
(left) or fix (middle) a specified part, and we are also able to
generate various plausible configurations of the shape (right)
with fixed part styles.

Comparison with Global Shape Code Baselines. Tab. 1
shows the intra-part scores of our approach compared to the
global shape baselines, showcasing that our approach learns
better individual part-level distributions.

Comparison with Control-Enabled Baselines. Tab. 2
shows the inter-part scores of our approach compared to the
control-enabled baselines. We output more coherent shapes
than the baselines that naively enable part-level control with-
out the modeling of part relationships

Orig. + Multi (700) + Control (60)

PointNet 0.709 0.788 0.780
PointNet++ 0.800 0.808 0.801

Table 3: Plausibility score. mIOU on the cars from [49]
trained original and augmented datasets.

+

Input Parts

+

Input Parts

SPAGHETTI Ctrl-
ShapeGF

Ctrl-
LION

DiffFacto
(Ours)

SPAGHETTI Ctrl-
ShapeGF

Ctrl-
LION

DiffFacto
(Ours)

Figure 4: Part Style Mixing. The colored parts from the left
are selected and mixed to provide the shapes on the right.

Plausibility. We use the car category containing the least
training data originally with 704 shapes (Orig.), and aug-
ment it with 700 randomly generated shapes by DiffFacto
(+ Multi). Moreover, we test our capability for control by
augmenting with only 60 (controlled) race cars, with very
few examples in the original training data. Tab. 3 shows
that in both cases off-the-shelf part segmentation networks
improve by augmenting the training set with our generated
shapes.

Human Study. Our human study has 100 participants
comparing our approach with the control-enabled baselines,
i.e. Ctrl-ShapeGF and Ctrl-LION. We drew 10 shapes from
each of the methods with randomly selected parts to edit,
and on average the participants favour 85% (8.5 out of 10)
of our generated shapes more than other baselines.

5.4. Shape Editing
We demonstrate that our controllable generation approach

also allows for various shape-editing applications.

Part Style Mixing. We showcase our ability for part style
mixing in Fig. 4. We compare with SPAGHETTI [15], an
implicit-based shape editing work, as well as our control-
enabled baselines Ctrl-ShapeGF and Ctrl-LION4. As shown,
when selecting a combination of parts from different shapes,
our approach generates a novel and coherent shape from
different input parts, compared to other approaches that are
unable to adapt the parts to produce a plausible output.

4We note that SPAGHETTI [15] requires mesh supervision.
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Figure 5: Part Interpolation. We interpolate the chair backs
(red) in the first 2 rows and the lamp poles (orange) in the
last 2 rows (indicated by the hand icons).

Input
with Edit

w/o
Generalized

Kernel

with
Generalized

Kernel

Input
with Edit

w/o
Generalized

Kernel

with
Generalized

Kernel

Figure 6: Part Editing. In both examples the user stretches
the lengths of the chair backs and legs by modifying the
corresponding transformations.

Part-level Interpolation. Fig. 5 qualitatively shows our
part-level interpolation performance, where for each exam-
ple we interpolate only one selected part latent zj . Thanks
to our factorized probabilistic formulation, we are able to
interpolate only the selected part while keeping the geometry
of the other parts unchanged. In the meantime, the transfor-
mations of the other parts are automatically adapted to make
the shape globally coherent.

Transformation Editing. Our approach also enables direct
user editing on the part transformations τj for a selected part
Sj . We directly optimize y to find τ that satisfies the edit
while still traversing along the space of valid part configu-
rations. As Fig. 6 (left) shows, elongating the chair back
retains its thin geometric structure while still keeping the
shape plausibility.

Separate
Post

Transform
Global

Agnostic
DiffFacto

(Ours)

SNAP (↓) 25.24 18.23 19.29 13.32

Table 4: Ablation on our Factorization. Snapping metric
on three connections for chairs: back to leg or seat; seat to
legs; and arms to seat or back. (CD ×10−2).

Direct reg. cVAE [38] cGAN [30] cIMLE [?] (Ours)

13.38 7.33 11.48 4.97

Table 5: Multi-modality of Transformation Sampler.
Shape inversion on the chair category (CD ×10−4).

5.5. Ablations

Factorized Joint Prior. We ablate our joint factorized
prior P (Z,T) by replacing it with separate independent part
distributions (Separate). Each part distribution P (Sj) is
modeled with a separate CNF prior. Tab. 4 shows that our
approach achieves better inter-part score.

Cross Diffusion. We also evaluate several variants of our
cross diffusion network, termed as follows: Post Transform –
we remove the cross diffusion network and instead model the
conditional likelihood of points only on part styles, then sepa-
rately applying the part transformations as a post-processing
step. Global Agnostic – we remove the cross attention com-
ponent that provides global shape information through them
tokens, and model only the point distribution P (X|zj , τj , j)
for each part. Tab. 4 shows that our approach also achieves
better inter-part level score.

Figure 7: Shape Inversion Comparison. We show shape in-
version examples using different implicit probabilistic meth-
ods to model the transformation distribution given part style
latents.

Transformation Sampler. We ablate our transformation
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sampler that uses cIMLE [24] and compare it with direct re-
gression of τ , as well as unimodal cVAE [38] and cGAN [30]
on shape inversion. Tab. 5 quantitatively shows that our ap-
proach achieves the best results with a large margin and
Fig. 7 shows examples of inverted shapes using different
implicit methods. Notice that across all examples, cIMLE
is able to recover most accurately the correct transformation
through inversion because it models a multimodal distri-
bution where different modes can be recovered during the
sampling process.

Figure 8: Qualitative Comparison w. Generalized For-
ward Kernel. Examples of reconstructed lamps with our
generalized kernel (With Fwk.) versus without the gener-
alized kernel (Without Fwk.) For each example, we show
the reconstructed shape (Ground Truth) where each point
is colored by the minimum distance to points in the ground
truth shape.

Generalized Forward Kernel. Our generalized forward
kernel works by modeling the diffusion prior as a trans-
formed Gaussian distribution that captures informative po-
sitional and scale information of the part. Fig. 6 shows
that such a kernel allows better transformation extrapola-
tion, where geometry is better preserved on extreme user
edits. Moreover, Fig. 8 shows qualitative examples of the
advantages of using our generalized forward kernel as il-
lustrated by the heat map on the per-point reconstruction
error. We note that our generalized forward kernel is able
to model complex part geometry better than the standard
forward kernel (see the cap on rows 1, 2, and 4 in the figure)
because of the additional size and location prior information
incorporated into the diffusion process.

6. Future Works and Limitations
Our method by design requires segmented shapes for

training, as our cross diffusion network and generalized
forward kernel require a hard assignment of points to the

A chair with a thin seat

A chair with wheels

A chair with four legs

A chair with a thick seat

Figure 9: Potential Language Guided Edits. We show pro-
totypes of potential future work where we can edit existing
shapes via our part style latent distributions with language
guidance. The left sides are input shapes and we update
the part latent vectors based on the language inputs. The
resulting shapes are shown on the right side of the arrows.

semantic part of the shape, i.e. it conditions on label j. Al-
though this allows us to learn smooth latent spaces for each
part, as well as global shape distribution P (S), it constrains
us in training with datasets that are semantically labeled. A
future direction would be a formulation that enables soft
assignments, which would allow us to train on unsegmented
data .

Another promising future direction is to enable language-
driven editing through our proposed factorization. Our fac-
torization allows for localized edits, where language can be
used to identify which semantic part, j, to edit as well as
the direction to modify its corresponding latent code, Zj ,
to adhere with the language description. As a preliminary
demonstration, we use the dataset from ShapeGlot [2] that
consists of a triplet of shapes with a corresponding language
description. We then select a negative shape and edit it us-
ing DiffFacto in order to match with the corresponding text
description. A match is enforced by optimizing the edit to
match the positive example in the triplet. Fig. 9 shows some
visual examples.

7. Conclusion

In this paper we propose DiffFacto, a deep generative
probabilistic framework for generating 3D point clouds in
a controllable manner. By factorizing out the shape distri-
bution into individual semantically-meaningful parts plus
their transformations, we allow for intuitive control over the
generated shapes. The framework is also flexible and readily
available for various applications ranging from style mixing
to configuration editing.
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