
Graphical Models 116 (2021) 101104

Available online 28 April 2021
1524-0703/© 2021 Elsevier Inc. All rights reserved.

Geometry-Based Layout Generation with Hyper-Relations AMONG Objects

Shao-Kui Zhang a, Wei-Yu Xie b, Song-Hai Zhang *,c

a Tsinghua University
b Beijing Institute of Technology
c Tsinghua University

A B S T R A C T

Recent studies show increasing demands and interests in automatic layout generation, while there is still much room for improving the plausibility and robustness. In
this paper, we present a data-driven layout generation framework without model formulation and loss term optimization. We achieve and organize priors directly
based on samples from datasets instead of sampling probabilistic distributions. Therefore, our method enables expressing relations among three or more objects that
are hard to be mathematically modeled. Subsequently, a non-learning geometric algorithm is proposed to arrange objects considering constraints such as positions of
walls and windows. Experiments show that the proposed method outperforms the state-of-the-art and our generated layouts are competitive to those designed by
professionals.1

1. Introduction

3D scenes are becoming fundamental in many areas of computer
graphics, e.g., photo-realistic rendering, virtual reality (VR), providing
datasets for computer vision [1], etc. However, the progressive devel
opment of computer graphics requires better modeling of 3D scenes and
generation of layouts. Therefore, we have been investigating techniques
of automatically generating scene layouts.

Generating scene layouts benefits various applications. First, it saves
the effort of manually placing objects in video games or industrial de
signs2. Li et al. [2] generate various layouts for better simulations of
wheelchair training. Handa et al. [1] generate multi-view images from
much fewer 3D scenes.

Existing works already show the progress of scene synthesis [3],
where scene layouts focus on their plausibility and aesthetic, i.e., visual
identifications given generated layouts. Existing works are divided into
neural network based techniques and others. The former trains several
neural networks for different steps such as placing objects, rotating
objects, deciding termination of arrangements [4]. The latter formulates
a set of mathematical models including graphs, and typically optimize a
shuffled area based on e.g., Markov Chain Monte Carlo (MCMC) [5,6],
since the models are too complicated to be solved. Nevertheless, algo
rithmic methods have not been investigated as far as we reviewed,
because similarly we have to embed layout rules into an algorithm so
that it operates properly. However, layout rules are innumerable. A

qualitative comparison of existing techniques is beyond the scope of this
paper. Despite underlying technical details, this paper focuses on the
final results, i.e., improving the plausibility and aesthetic of generated
layouts.

In this paper, we propose an algorithmic framework for generating
room layouts as shown in Fig. 1. Our framework is split into a data-
driven phase: coherent grouping and a non-data-driven phase: geo
metric arranging. In the coherent grouping phase, objects are clustered
into several coherent groups (Section 3), where priors are learnt for
suggesting layouts within each coherent group. We directly use correct
and denoised samples extracted from datasets as priors. This brings two
benefits. First, we no longer hypothesize distributions of layout rules
between/among objects, especially the mathematically inexpressible
relations. Second, we could easily formulate and represent relations
among three or more objects since we only have to load samples of real
distributions. Similar to “hyper-graphs” where an edge connects to more
than two vertices, we name our learnt relations among objects “hyper-
relations” (Section 4). Thus, several objects of the same coherent group
are arranged in O(1) time by sampling from their hyper-relations. In the
geometric arranging phase, given independent coherent groups where
objects of the same group are already properly arranged with respect to
each other, a geometric algorithm is proposed to assign positions and
orientations of each group. Since layout rules among objects are applied
during the coherent grouping phase, geometry phase concentrates on
much fewer rules related to walls, windows, etc (Section 5).

* Corresponding author. .
E-mail addresses: zhangsk18@mails.tsinghua.edu.cn (S.-K. Zhang), ervinxie@qq.com (W.-Y. Xie), shz@tsinghua.edu.cn (S.-H. Zhang).

1 Code is publicly available at https://github.com/Shao-Kui/3DScenePlatform, including the proposed framework (algorithm) and a 3D scene platform (toolbox).
2 https://planner5d.com/

Contents lists available at ScienceDirect

Graphical Models

journal homepage: www.elsevier.com/locate/gmod

https://doi.org/10.1016/j.gmod.2021.101104
Received 6 February 2021; Accepted 30 March 2021

mailto:zhangsk18@mails.tsinghua.edu.cn
mailto:ervinxie@qq.com
mailto:shz@tsinghua.edu.cn
https://github.com/Shao-Kui/3DScenePlatform
https://planner5d.com/
www.sciencedirect.com/science/journal/15240703
https://www.elsevier.com/locate/gmod
https://doi.org/10.1016/j.gmod.2021.101104
https://doi.org/10.1016/j.gmod.2021.101104
https://doi.org/10.1016/j.gmod.2021.101104
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gmod.2021.101104&domain=pdf

Graphical Models 116 (2021) 101104

2

Current technologies of synthesizing 3D scenes include selecting a set
of appropriate objects and generating plausible layouts for the objects.
We do “layout” while techniques for selecting objects are easily incor
porated such as [7]. Note that in this paper, we prefer instance-based
priors to category-based priors, e.g., we consider a spatial relation be
tween a specific coffee table to a specific chair, where both of them have
unique textures and geometries. If categories are being based, distinct
features of objects are lost. As shown in Fig. 2, different shapes of several
armchairs have their own priors to the same coffee table.

In this paper, we make the following contributions:

1. We first introduce and learn hyper-relations among three or more
objects, which increases the aesthetics and plausibility of arranging
objects in same coherent groups and only requires O(1) time to
sample layouts of each group, e.g., a coffee table surrounded with
several distinct sofas and a TV stand, thus increasing the overall
performance.

2. We propose a new scalable geometry-based framework for layout
generation, which considers detailed aspects of room layout, e.g.,
doors, windows, wall decorations, small objects, etc. In coordination
with hyper-relations, more plausible and robust layouts are
generated.

3. We develop an open-source platform for manipulating 3D scenes,
where operations such as rendering, exploring and modifying scenes
are supported, thus allowing researches to focus thoroughly on
algorithms.

2. Related works

3D scene synthesis is to select a set of appropriate objects and
transform them plausibly [3]. Earlier works of synthesizing 3D scenes
are mainly based on hand-crafted design rules, e.g., [8,9] or data-driven
priors. For the former, designing rules are mathematically formulated as
a set of constraints followed by optimizations [10,11]. For the latter,
since learnt distributions are too complicated to be differentiated,
MCMC is assembled to solve such situation by attempting proposals [5,6,
12–14].

Some of them present a framework including both object selection
and layout generation, while the rest focus on layouts, though it may
also focus on selecting objects [7]. Our method focuses on generations of
layouts, i.e., we contribute mainly on how to make layouts more plau
sible and robust.

With the continuous study of the deep learning technique, several
works based on convolutional or graph neural networks are proposed [4,
15,16], including the current state-of-art work PlanIT [15] which serves
as the baseline in this paper. One feature of network-based works is that
they couple selections and layouts, i.e., selecting an object depends on
pending layouts, vice versa. In contrast earlier works aforementioned
seperate two stages. Literature based on other techniques does exists, e.
g., human-centric assessments [17]. Please refer to a more insightful
survey on 3D indoor scene synthesis [3].

Several works also synthesize 3D scenes with input other than 3D
scenes. Xu et al. recovery 3D scenes from hand sketch [18]. Luo et al
[19] generate 3D scenes from scene graphs[20–22]. generate room
layouts based on RGB-D images or 3D scans[23,24]. generate scenes
based on input examples[25,26]. translate human language to 3D scene
configurations. However, different input results in different constraints,
frameworks and even applications, so these works are beyond the scope
of this paper.

3. Definitions

Given a list of objects with the positions of doors and windows and a
room shape, we formulate its corresponding graph G =< V,E > where
each object o ∈ V. E is the set of edges which are also simply relations
between/among objects. Note that in this paper, we assume that a
relation may involve more than two instances i.e., a hyper-relation
among objects (Section 4).

A coherent group g is a list containing objects where one object
connects to at least one another object in the same group. In other words,
two coherent groups never have an edge between their instances
respectively. Conceptually, generating coherent groups g ∈ G is equiv
alent to formulating maximal connected subgraph of G, given priors as
connections. When generating layout given input, we always initially
group objects into several gi⊂V even though a group may contain one
object, such as a wardrobe, a picture frame, a kitchen cabinet, etc.
Coherent groups are hierarchical as shown in Fig. 3, where visual edges

Fig. 1. Our framework uniformly layouts objects, e.g., small objects on a surface are arranged concurrently instead of another layout problem. In addition to the
overall plausibility, we emphasize reasonableness among objects related to each other, i.e., coherent groups. Ours is also friendly to objects hung on walls.

Fig. 2. Extracting priors based on instances results in finer priors. This figure
shows the priors of the same coffee table with respect to three sofa instances of
different shapes and geometries.

Fig. 3. Three coherent groups where white dots denote respective domi
nant objects.

S.-K. Zhang et al.

Graphical Models 116 (2021) 101104

3

are pairwise between parents and children.
A transformation of an object includes its translation (x, y, z) and Y-

axis rotation θ where floors align with XoZ plain. In this paper, we do not
re-scale objects. The same is true of coherent groups. Additionally,
transformations of coherent groups are propagated to their subordinate
objects.

Priors are used to group objects into coherent groups and suggest
layouts within each coherent group. A prior set Po1 ,o2 ,o3 ,…,on , abbreviated
as PO, involves two or more objects. A single prior pk

O ∈ PO suggests a set
of plausible transformations for all objects involved. Each prior set
contains a dominant object such as o1, and other secondary objects. For
example, if a dinning table is surrounded with several chairs and sup
ports a plant, “dinning table” is the dominant object in this scenario and
remaining objects are secondary objects. If only two objects are involved
in PO, PO is a “pairwise relation” between the two objects (Section 4.1). If
more than two objects are involved and all secondary objects derives
from the same instance, PO is a “pattern chain set”. Otherwise, PO is a
“hyper-relation” 4.3.

4. Priors

In this section we show how we extract relations among objects. We
start by extracting traditional pairwise relations, e.g,. a desk with
respect to a chair. Then, we present pre-computed pattern chains which
generalize one-to-one relations to one-to-many relations, e.g., a dining
table surrounded by several identical chairs. Finally, based on pairwise
relations and pattern chains, we further generalize and formulate hyper-
relations among objects, i.e, relations “among” more than two instances.
Fig. 4 suggests the differences between them. In this section, we show
how priors are represented and generated, and the usage is shown in
Section 5.

Theoretically, pairwise relations and pattern chains are both special
forms of hyper-relations. The reason for discussing them separately is
because directly learning hyper-relations is difficult. As a result, we first
introduce pairwise relations which derive more general pattern chains
thus enabling forming hyper-relations.

4.1. Pairwise relation

A Pairwise relation is a set of priors Pab from a dominant object a to a
secondary object b. Given a pairwise relation Pab, we can sample a prior
pab,k ∈ Pab that is directly a transformation of b with respect to a. Note
that pairwise relations are directional, and sampled transformations are
only relative between two objects involved i.e., global transformations
are still required (Section 5).

We extract discrete pairwise priors by utilizing density peak clus
tering (DPC) [27], which firstly calculate ρk =

∑
k′ I{d≤dc}(dk,k′), dc =

d(0.015K2) and δk = mink′ :ρk<ρk′
(dk,k′) for all points. In our situation, dk,k′

denoting the Euclidean distance from the transformation of dominant
object k to the transformation of secondary object k′ . A transformation
includes translations and rotations. dc is a hyper-parameter and rhok is
the number of dk,k′ that is lower than dc. The selection of dc follows [27],

i.e., the 0.015K2th greatest dk,k′ among all k2 relative distances. δk seeks
a minimal dk,k′ among all dk,k′ with higher rhok′ than rhok. Please refer to
[27] for more details about this algorithm. Although DPC is typically
used for clustering, it does anomaly detection for eliminating noises, i.e.,
removing points with low values of ρ and high values of δ. Cluster
centers and ordinary points are treated equally since they are already
reasonable transformations in this paper.

After elimination, remaining “points” are plausible relations directly
from datasets (human designers) where each “point” become a single
pairwise prior pab,k ∈ Pab for locally arranging a dominant object and its
secondary object. Typical dominant objects include desk, dinning table,
coffee table, bed, etc. We manually label a set of instances that are
capable of being dominant objects according to their categories.

4.2. Pre-Computed pattern chain

Commonly, a dominant object has several secondary copies of the
same instance, e.g., a dinning table with several identical chairs. If we
sample them twice or more as shown in Fig. 5a, aforementioned pair
wise relations do not guarantee the plausibility of “one-to-many” re
lations. Thus, we solve it by presenting pattern chains.

A pattern chain set Cab is a prior set between object a and b. Each
cj

ab = {j1, j2,…, jn}, cj
ab⊂N is a list of indices to its pairwise relation Pab, e.

g., jx indexes to the x-th pairwise relation pab,jx in Pab. Generating one
pattern chain cj

ab is a recursive process. First, a pab,j1 ∈ Pab is randomly
selected from Pab. As discussed, pab,j1 gives a plausible transformation
between a and b. Second, we traverse all pab,i ∈ Pab. If a copy of object b
with the transformation of pab,i do not collide with another copy with the
transformation of pab,j1 , pab,i is included in a new subset P′

ab⊂Pab. Third,
we would like to place another copy of b, so pab,j2 is randomly selected
from P′

ab and the above procedure is executed recursively until P′

ab is
empty. As shown in Fig. 5b, after three iterations, placing three chairs
around a table filters out a subset of their pairwise priors (gray).
Therefore, a fourth chair can only be placed in the remaining pigmented
areas. When a chain is generated, we can optionally adjust it, e.g., Fig. 5c
suggests “horizontals and verticals” to make the chain well-aligned.

Note the above process generates one pattern chain cj
ab = {j1, j2,…}.

In theory, a Pab of O(n) size has O(n!) undetermined pattern chains. In
practice, we only generate one pattern chain for each pab,k ∈ Pab, to make
sure each pairwise relation is used at least once, instead of figuring out
the entire pattern chain set. Otherwise, it requires O(n!) time and space
to compute only a single set, which also slows down online arrangement
by restricting prior loading.

4.3. Hyper-Relation

A hyper-relation HO is a prior set among several objects O = {odom,

osec1,osec2,…}. A dominant object odom exists in HO such as a coffee table
and secondary objects relate to each other, e.g., chairs on a rug, arm
chairs beside a long sofa. Purely sampling pairwise prior sets results in

Fig. 4. Three types of priors in this paper. Links with the same color suggest
same secondary objects. 4 a: a pairwise “one-to-one” relation between a desk
and a chair; 4 b: a pairwise “one-to-many” relation between a table and several
identical chairs; 4 c: a hyper-relation among several different objects dominated
by a coffee table.

Fig. 5. 5a: Directly sampling a pairwise relation without pre-computed pattern
results in obvious implausibility. 5 b: Recursively formulating a pattern chain. 5
c: Additional constraints are optional if e.g., well-aligned layouts are required.

S.-K. Zhang et al.

Graphical Models 116 (2021) 101104

4

scenarios such as Fig. 6a, where secondary objects are only plausible
with respect to their dominant object. Hyper-relation is essentially
different from pattern chains. Pattern chain sets are still one-to-one re
lations and a pattern chain assumes incorporating as many secondary
objects as possible. In contrast, a hyper-relation has a definite list of
objects, i.e., we can not assume what instances are included and how
many copies each instance has in a specific hyper-relation, because areas
are limited. As shown in Fig. 6b and 6 c, different numbers and instances
of seats derives two distinct hyper-relations.

To generate hyper-relations, we do not hypothesize and learn con
crete distributions because real distributions are too complicated to be
expressed, solved and sampled [28]. Instead, we try achieving as many
exact samples as possible. Given a set of objects O and its dominant
object odom ∈ O, we randomly select a secondary object osec ∈ O and
randomly sample a prior from the pairwise relation between odom and
osec. Thus, osec is transformed with respect to odom. Next, similar to
generating pattern chains, we filter the remaining pairwise relations
between odom and other secondary objects osec1, osec2, … ∈ O, to ensure
“collision free”. With multiple instances, additional rules are required.
We use “tiers”, which as far as we studied is firstly terminologized in [5],
for finer filtering. For example, rugs are placed on the ground where
objects such as tables and beds can be put on top of it. Merely detecting
collisions would mistakenly filter plausible priors. Not detecting colli
sions between objects of different tiers alleviates such situations. After
filtering the remaining pairwise relations, recursively, we randomly
select another secondary object and repeat the above steps until all
secondary objects are placed appropriately with no implausibilities.
After that, a single hyper-prior is generated with transformations of all
secondary objects. We iteratively re-run the entire process to enrich the

pending hyper-relation.
Yet, the above steps still require a definite list of objects. Neverthe

less, figuring out all undetermined lists is almost equivalent to exhaus
tively traverse all combinations of objects. To address this, we
systematically optimize extractions. After forming coherent groups
(Section 5), we examine their hierarchies. If a parent has two or more
children, we try to assemble the hyper-relation for them. If the hyper-
relation does not exist, a new thread is started to generate it in back
ground. In other words, we either load existing hyper-relations if they
are already generated or establish a thread for generating them when we
need them. Alternatively, users can manually suggest their own lists of
objects to generate their hyper-relation.

5. Geometry-Based layout generation

5.1. Coherent grouping

We show how we arrange objects in this section. First, objects are
decomposed into several coherent groups gi⊂G based on finding
maximal connected subgraphs using pairwise relations between objects
as shown in Fig. 7, where whether or not two objects are connected
depends on existence of pairwise relations between objects.

One secondary object can have at most one dominant object. If
multiple available dominant objects exist with respect to a secondary
object osec, we randomly select a dominant object and discard relations
between osec and other dominant objects. Each dominant object also has
finite lengths of copies of secondary instances guided by lengths of
respective pattern chains. This makes our framework more flexible, e.g.,
given only one chair but a dressing table and a desk in a bedroom, we
randomly assign the chair to either the dressing table or the desk, which
gives more variance to the generated results.

After that, input objects are distributed in coherent groups. As dis
cussed in Section 4, within a specific coherent group, we can directly
sample a set of transformations for all objects locally within the group.
As shown in Fig. 7, if a parent has two or more descendants and each
descendants are different, the hyper-relation is assembled or started to
be generated in background, e.g., coffee table with respect to two sofas
and a TV stand. If the descendants are identical, the pattern-chain set is
sampled, e.g., dining table and four chairs. Otherwise, we use pairwise
priors, e.g., TV stand and TV. Therefore, the final process is to transform
several coherent groups properly in the room.

5.2. Geometric arranging

Eventually, we assign transformations to each coherent group and
propagate transformations to objects. Since priors already arrange ob
jects sufficiently within groups, three more constraints are required to
make layouts physically plausible among groups: 1, all groups should be
inside a room; 2, all groups should not overlap each other; 3, clear paths
should exist for windows and doors.

Placing a set of shapes (coherent groups) in another larger polygon
(room) is an NP-hard problem [29] in computational geometry. Thus,
we geometrically simplify coherent groups as cuboids, consider doors
and windows as fixed (pre-arranged) blocks, and do heuristic attempts
as shown inalgorithm 1.

We first sort coherent groups according to their area occupied from
largest to smallest, since bigger groups usually represent more central
functionality of rooms, e.g., a bedroom is call a “bedroom” due to a
coherent group dominated by a bed. Then, coherent groups are placed
with regard to this order, whereas random positions are assigned to
them along the inner side of the targeting room, since the definition of
coherent groups indicates the relations among different coherent groups
are weak (Section 3). After placing a group, we check potential collisions
between this group and other groups or blocks. If collided, we discard
the transformation and randomly re-select a new transformation. To
enhance the performance, we used exponentially increasing sampling

Fig. 6. 6a: Using only pairwise relations results implausibilities among sec
ondary objects in a coherent group. 6 b: Using hyper-relations results possi
bilities among all objects involved. 6 c: A different object set requires another
hyper-relation, since we can not assume “as many objects as possible”.

Fig. 7. Coherent Grouping. Dotted dashes denote hyper-relations of secondary
objects. Given a list of objects to generate their layout, we first group them into
several coherent groups. For example, a coffee table relates to two sofas and a
TV stand and the TV stand relates to a TV, so they form one coherent group.
Two cabinets have no relation to others, so each of them form their own groups.

S.-K. Zhang et al.

Graphical Models 116 (2021) 101104

5

density. If a proper transformation fails at a density of d for the pending
coherent group, we increase d to 2d to find more possible positions. But
if it still collides after several times of increasing density, we discard the
group and conduct the next one. To increase the plausibility, we add
more heuristic rules: 1, we initially attempt to transform groups at
corners of rooms and sides of other existing coherent groups. During
collision detection, we take the height into consideration. So it is
possible that some furniture with lower height is placed in front of
windows. Finally, “liftings” Lf are assigned to groups. If Lf = 0, a groups
is placed against walls. If Lf equals to half the length of the room, a group
is placed in the middle of the room.

6. Experiments

6.1. Setup

We utilize a recent 3D scene dataset “3D-Front3” [30] with 70,000+
layouts and 9992 3D models. To roam and render 3D scenes, we develop
an open-source 3D scene platform as shown in Fig. 8, where we can add,
delete, modify and search for objects. We can orbitally control the

Require:
1: Polygon of room’s inner side Pr;
2: List of rectangles of coherent groups with height Arec;
3: List of rectangles of windows and doors;

Ensure: Transformations of rectangles Trec;
4: function CheckOK(A)
5: if A does not overlap with existing groups and blocks then
6: return True
7: else
8: return False
9: end if

10: end function
11: function ApplyTransform(A, t)
12: apply transformation t to A
13: return A
14: end function
15: function InsertRectangle(A)
16: Let T be array of transformations //For heuristic
17: for edge ∈ Pr and p ∈existing polygons do
18: Push heuristic transformation of edge or p to T
19: end for
20: for t ∈ T do
21: if CheckOK(ApplyTransform(A, t)) then
22: return t;
23: end if
24: end for

//For random
25: Clear T
26: for n = 1→ max sampling density do
27: for edge ∈ Pr do
28: Push 2n ∗ len(edge) random transformations on edge to T
29: end for
30: Shuffle T
31: for t ∈ T do
32: if CheckOK(ApplyTransform(A, t)) then
33: return t;
34: end if
35: end for
36: Clear T
37: end for
38: return None;
39: end function
40: for a ∈ Arec do
41: Push InsertRectangle(a) to Trec;
42: end for

Algorithm 1. Geometric Arranging.

3 https://tianchi.aliyun.com/dataset/dataDetail?dataId=65347

S.-K. Zhang et al.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=65347

Graphical Models 116 (2021) 101104

6

perspective camera for selecting better views. By clicking “layout”, a
configuration of the current room is generated by our proposed frame
work. We render 3D scenes using Three.js4 and the algorithm is mainly
implemented by PyTorch and NumPy. Several results are shown in
Fig. 9. Please refer to our supplementary materials for more details.5

6.2. Plausibility and aesthetic

We compare our framework with the state-of-the-art PlanIT [15].
PlanIT not only performs object arrangements, but also object selections.
However, since we focus on arranging objects, we show better plausi
bility and aesthetic achieved using our framework by re-arranging re
sults of PlanIT, i.e, we generate layouts given objects and room shape

selected by PlanIT.
Qualitatively, as shown in Fig. 11, ours is friendly for layouts among

objects with strong relations, i.e., “coherent groups” in this paper. For
example, a TV stand and a sofa are strongly related to a coffee table.
Ours makes sure they are plausibly arranged with respect to each other.
Additionally, ours does not block paths to doors and windows. Quanti
tatively, we also conduct a user study as shown in Fig. 10a. 43 subjects
are invited. Subjects are university students, workers, housewives,
interior designers, etc.6 Each subject is given 20 questions. In each
question, a layout generated by ours and one by PlanIT are shown in
random order. For each question, a subject compares two layouts and
marks them respectively. Scores ranged from 0 (very poor) to 4 (very
plausible). All subjects are taught how to use the user study system
before experiencing. In Fig. 10a, the Chinese characters are rendered as
“there are two room layouts below, please compare the two layouts,
considering aesthetic, plausibility and reasonableness, thus marking
them respectively.”, “0: totally unreasonable, inaesthetic. It may never
appear in the real world layout. ” and “5: very aesthetic and plausible. I
will refer to this layout in the real world.” For example, Fig. 10a shows
two scenes. One subject may dislike the one on the left and prefer the one

on the right. Therefore, the subject marks 2 and 4 respectively. Table 1
compares average score (standard deviation) of the two methods on
various types of rooms.

6.3. Robustness

In this section, we compare our generated layouts with those
designed by professionals (ground truths) to verify that ours is
competitive to human designers. Subjects are the same from Section 6.2.
Each subject is required to choose a most plausible layout from ten
alternative layouts as shown in Fig. 10b, where one layout is designed by
a human designer and the remaining nine layouts are generated by ours.
Subjects can zoom in layouts by right clicks such as Fig. 10c. All subjects
are taught before experiencing and manuals are available. Ground truths
are randomly selected from 3D-Front. In Fig. 10b, the Chinese characters
are rendered as “there are ten layouts below and please select your

Fig. 8. We develop an open-source 3D scene platform allowing adding, delet
ing, modifying, searching objects and rendering, saving scenes. Users can
explore given 3D scenes by orbital control. Our platform is embedded with the
proposed algorithm.

Fig. 9. Results. Please zoom in for more details. More results are included in the supplementary files.

4 http://threejs.org/
5 We also run our framework on SUNCG [31] before this dataset became

unavailable. We include results of SUNCG optionally in our supplementary
materials only to verify the effectiveness of our framework. 6 Few subjects preserve privacy.

S.-K. Zhang et al.

http://threejs.org/

Graphical Models 116 (2021) 101104

7

favorite one considering aesthetic, plausibility and reasonableness”,
“left-click for selections and right click for zooming in” and “after
selecting, press submit for the next question”.

Results are shown in Fig. 12. Two distributions are plotted for bed
rooms and “living-dinning” rooms respectively, i.e., each line is

averaged distributions of user selections of its room type, where “0”
denotes ground truth. Although human-designed layouts outperform
ours, generated layouts are still favored competitively as shown in
Fig. 12.

6.4. Efficiency

We run our framework on a PC with AMD 2700X (GHz), GTX 970,
and WD20EZRX. Time consumption of layouts depend on degrees of
crowding, i.e., ratio of the total area of coherent groups to the area of the
room. Higher degrees result in more discards during geometry-based
arrangements (Section 5.2), thus slowing down generations.

To generate layouts based on 3D-Front such as Fig. 9, if priors are
cached, our framework consume within 3.5 seconds for a layout. If
corresponding priors of several objects are not loaded, additional IO is
required up to 2 seconds for a layout. For non-crowded rooms, with
cached priors, our framework generates layouts in real time.

We also run the state-of-the-art PlanIT [15] on a server with GTX
1080ti. According to our experiments, generating a layout requires more
than a minute. Nevertheless, this includes both object selection and
object arrangement and the two are interleaved with each other. Testing
the exact time consumption of “layout generations” of PlanIT is beyond
the scope of this paper. Furthermore, [11] is not a data-driven frame
work. Therefore, it is hard to conclude “better efficiency” as a
contribution.

7. Conclusions and future works

In this paper, we present a new framework of generating room lay
outs and we experimentally verify the plausibility and robustness of the
proposed method. The code of this framework and a toolbox platform is
publicly available. We hope this could benefit the community. However,

Fig. 10. User studies. 10 a: Marking ours and PlanIT [15] respectively; 10 b: Selecting the most plausible layout from ten alternative scenes where one scene is
generated by human designers; 10 c: subjects can zoom in a particular layouts for better cognition.

Fig. 11. Qualitatively comparing PlanIT with ours.

Table 1
User study: results of comparing PlanIT with ours.

Room Type PlanIT Ours

Bedrooms 1.847 (1.336) 2.66 (1.125)
Living Rooms 1.749 (1.327) 2.572 (1.266)
Bathrooms 1.028 (1.2) 2.553 (1.314)
Kitchens 1.549 (1.342) 2.651 (1.167)
Total 1.543 (1.341) 2.609 (1.221)

Fig. 12. Distributions of user selected layouts of bedrooms (BLUE) and “living-dinning rooms” (RED).

S.-K. Zhang et al.

Graphical Models 116 (2021) 101104

8

this work still suffers from the following weaknesses.
The biggest difficulty we encountered is arranging “chains” of ob

jects around walls. For independent objects such as wardrobes, trans
formations of them have high degree of freedom since we find
appropriate places for them with no collision and implausibility. How
ever, for groups of objects such as kitchen cabinets and ovens, they are
frequently placed next to each other as shown in Fig. 13. Firstly, orders
of a chain should be carefully considered. For example, commonly we
place similar cabinet next to each other. Otherwise, layouts are not
aesthetic as shown in Fig. 13b. Secondly, an L-shape chain should
somehow turn at corners, especially when we have L-shape objects such
as L-shape cabinets which are frequently treated as “corner objects” as
shown in Fig. 13c. Thirdly, doors and windows are also challenges for
arranging chains. In our framework, if we treat a chain as an entire
group, currently we do not have plans for sampling such priors. On the
other hand, if we treat a chain as individual objects, complicated rules
are required but we also do not have a plan for formulating the rules. As
a result, we demonstrate this weakness in detail and we would try fixing
it in future. Fortunately, in real-world decoration, most cabinets are
fixed on walls.

The storage and loading of priors may require further system-level
optimizations. Currently, all priors are structured in “.json” format,
which is inefficient if a prior of a coherent group is too large. When
arranging objects online, loading priors may consume up to few seconds
for loading corresponding priors into the memory. Although this only
affects the first attempt, since priors are cached after that, it is still a
concern in practice. Eventually, the way of extracting patterns is robust
to shapes and textures instead of incorporating them. This is useful if we
want objects arranged more compacted.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was supported by the National Key Technology R&D
Program (Project Number 2017YFB1002604), the National Natural
Science Foundation of China (Project Numbers 61772298, 61832016),
Research Grant of Beijing Higher Institution Engineering Research
Center, and Tsinghua Tencent Joint Laboratory for Internet Innovation
Technology. We also thank all reviewers for their constructive com
ments and Yuan-Chen Guo for a thorough proof-reading.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.gmod.2021.101104

References

[1] A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, R. Cipolla, Understanding
real world indoor scenes with synthetic data. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 4077–4085.

[2] W. Li, J. Talavera, A.G. Samayoa, J.-M. Lien, L.-F. Yu, Automatic synthesis of
virtual wheelchair training scenarios. 2020 IEEE Conference on Virtual Reality and
3D User Interfaces (VR), IEEE, 2020, pp. 539–547.

[3] S.-H. Zhang, S.-K. Zhang, Y. Liang, P. Hall, A survey of 3d indoor scene synthesis,
J. Comput. Sci. Technol. 34 (3) (2019) 594, https://doi.org/10.1007/s11390-019-
1929-5.

[4] K. Wang, M. Savva, A.X. Chang, D. Ritchie, Deep convolutional priors for indoor
scene synthesis, ACM Transactions on Graphics (TOG) 37 (4) (2018) 70.

[5] L.-F. Yu, S.K. Yeung, C.-K. Tang, D. Terzopoulos, T.F. Chan, S. Osher, Make it home:
automatic optimization of furniture arrangement, ACM Trans. Graph. 30 (4) (2011)
86.

[6] S. Qi, Y. Zhu, S. Huang, C. Jiang, S.-C. Zhu, Human-centric indoor scene synthesis
using stochastic grammar. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 5899–5908.

[7] Y. He, Y. Cai, Y.-C. Guo, Z.-N. Liu, S.-K. Zhang, S.-H. Zhang, H.-B. Fu, S.-Y. Chen,
Style-compatible object recommendation for multi-room indoor scene synthesis,
arXiv preprint arXiv:2003.04187 (2020).

[8] T. Germer, M. Schwarz, Procedural arrangement of furniture for real-time
walkthroughs. Computer Graphics Forum volume 28, Wiley Online Library, 2009,
pp. 2068–2078.

[9] G.H. Lyons, Ten common home decorating mistakes & how to avoid them, Blue
Sage Press, 2008.

[10] P. Merrell, E. Schkufza, Z. Li, M. Agrawala, V. Koltun, Interactive furniture layout
using interior design guidelines. ACM transactions on graphics (TOG) volume 30,
ACM, 2011, p. 87.

[11] T. Weiss, A. Litteneker, N. Duncan, M. Nakada, C. Jiang, L.-F. Yu, D. Terzopoulos,
Fast and scalable position-based layout synthesis, arXiv preprint arXiv:1809.10526
(2018).

[12] Y. Liang, S.-H. Zhang, R.R. Martin, Automatic data-driven room design generation.
International Workshop on Next Generation Computer Animation Techniques,
Springer, 2017, pp. 133–148.

[13] Y. Liang, F. Xu, S.-H. Zhang, Y.-K. Lai, T. Mu, Knowledge graph construction with
structure and parameter learning for indoor scene design, Computational Visual
Media 4 (2) (2018) 123–137.

[14] Y.-T. Yeh, L. Yang, M. Watson, N.D. Goodman, P. Hanrahan, Synthesizing open
worlds with constraints using locally annealed reversible jump mcmc, ACM
Transactions on Graphics (TOG) 31 (4) (2012) 56.

[15] K. Wang, Y.-A. Lin, B. Weissmann, M. Savva, A.X. Chang, D. Ritchie, Planit:
planning and instantiating indoor scenes with relation graph and spatial prior
networks, ACM Transactions on Graphics (TOG) 38 (4) (2019) 132.

[16] D. Ritchie, K. Wang, Y.-a. Lin, Fast and flexible indoor scene synthesis via deep
convolutional generative models. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 6182–6190.

[17] Q. Fu, H. Fu, H. Yan, B. Zhou, X. Chen, X. Li, Human-centric metrics for indoor
scene assessment and synthesis, Graph. Models 110 (2020) 101073.

[18] K. Xu, K. Chen, H. Fu, W.-L. Sun, S.-M. Hu, Sketch2scene: sketch-based co-retrieval
and co-placement of 3d models, ACM Transactions on Graphics (TOG) 32 (4)
(2013) 123.

[19] A. Luo, Z. Zhang, J. Wu, J.B. Tenenbaum, End-to-end optimization of scene layout.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 3754–3763.

[20] A. Avetisyan, M. Dahnert, A. Dai, M. Savva, A.X. Chang, M. Nießner, Scan2CAD:
learning CAD model alignment in RGB-d scans, arXiv preprint arXiv:1811.11187
(2018).

[21] K. Chen, Y. Lai, Y.-X. Wu, R.R. Martin, S.-M. Hu, Automatic semantic modeling of
indoor scenes from low-quality RGB-d data using contextual information, ACM
Trans. Graph. 33 (6) (2014).

[22] T. Shao, W. Xu, K. Zhou, J. Wang, D. Li, B. Guo, An interactive approach to
semantic modeling of indoor scenes with an RGBD camera, ACM Transactions on
Graphics (TOG) 31 (6) (2012) 136.

[23] G. Xiong, Q. Fu, H. Fu, B. Zhou, G. Luo, Z. Deng, Motion planning for convertible
indoor scene layout design, IEEE Trans Vis Comput Graph (2020).

[24] M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, P. Hanrahan, Example-based
synthesis of 3d object arrangements, ACM Transactions on Graphics (TOG) 31 (6)
(2012) 135.

[25] A. Chang, W. Monroe, M. Savva, C. Potts, C.D. Manning, Text to 3d scene
generation with rich lexical grounding, arXiv preprint arXiv:1505.06289 (2015).

[26] R. Ma, A.G. Patil, M. Fisher, M. Li, S. Pirk, B.-S. Hua, S.-K. Yeung, X. Tong,
L. Guibas, H. Zhang, Language-driven synthesis of 3d scenes from scene databases.
SIGGRAPH Asia 2018 Technical Papers, ACM, 2018, p. 212.

[27] A. Rodriguez, A. Laio, Clustering by fast search and find of density peaks, Science
344 (6191) (2014) 1492–1496.

Fig. 13. The problem of “chains” of objects around walls. 13 a: The ground
truth; 13 b: A failure case of ours; 13 c: An L-shape “chain” with L-shape objects.

S.-K. Zhang et al.

https://doi.org/10.1016/j.gmod.2021.101104
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0001
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0001
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0001
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0002
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0002
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0002
https://doi.org/10.1007/s11390-019-1929-5
https://doi.org/10.1007/s11390-019-1929-5
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0004
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0004
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0005
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0005
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0005
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0006
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0006
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0006
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0007
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0007
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0007
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0008
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0008
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0008
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0009
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0009
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0010
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0010
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0010
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0011
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0011
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0011
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0012
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0012
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0012
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0013
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0013
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0013
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0014
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0014
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0014
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0015
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0015
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0015
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0016
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0016
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0016
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0017
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0017
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0018
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0018
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0018
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0019
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0019
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0019
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0020
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0020
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0020
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0021
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0021
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0021
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0022
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0022
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0022
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0023
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0023
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0024
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0024
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0024
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0025
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0025
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0026
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0026
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0026
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0027
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0027

Graphical Models 116 (2021) 101104

9

[28] Y. Li, J. Zhang, Y. Cheng, K. Huang, T. Tan, Df 2 net: Discriminative feature
learning and fusion network for rgb-d indoor scene classification. Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[29] M. De Berg, M. Van Kreveld, M. Overmars, O. Schwarzkopf, Computational
Geometry. Computational geometry, Springer, 1997, pp. 1–17.

[30] H. Fu, R. Jia, L. Gao, M. Gong, B. Zhao, S. Maybank, D. Tao, 3D-FUTURE: 3d
furniture shape with textURE, arXiv preprint arXiv:2009.09633 (2020).

[31] S. Song, F. Yu, A. Zeng, A.X. Chang, M. Savva, T. Funkhouser, Semantic scene
completion from a single depth image. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 1746–1754.

S.-K. Zhang et al.

http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0028
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0028
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0028
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0029
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0029
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0030
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0030
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0031
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0031
http://refhub.elsevier.com/S1524-0703(21)00009-6/sbref0031

	Geometry-Based Layout Generation with Hyper-Relations AMONG Objects
	1 Introduction
	2 Related works
	3 Definitions
	4 Priors
	4.1 Pairwise relation
	4.2 Pre-Computed pattern chain
	4.3 Hyper-Relation

	5 Geometry-Based layout generation
	5.1 Coherent grouping
	5.2 Geometric arranging

	6 Experiments
	6.1 Setup
	6.2 Plausibility and aesthetic
	6.3 Robustness
	6.4 Efficiency

	7 Conclusions and future works
	Declaration of Competing Interest
	Acknowledgements
	Supplementary material
	References

