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A B S T R A C T   

Recent studies show increasing demands and interests in automatic layout generation, while there is still much room for improving the plausibility and robustness. In 
this paper, we present a data-driven layout generation framework without model formulation and loss term optimization. We achieve and organize priors directly 
based on samples from datasets instead of sampling probabilistic distributions. Therefore, our method enables expressing relations among three or more objects that 
are hard to be mathematically modeled. Subsequently, a non-learning geometric algorithm is proposed to arrange objects considering constraints such as positions of 
walls and windows. Experiments show that the proposed method outperforms the state-of-the-art and our generated layouts are competitive to those designed by 
professionals.1   

1. Introduction 

3D scenes are becoming fundamental in many areas of computer 
graphics, e.g., photo-realistic rendering, virtual reality (VR), providing 
datasets for computer vision [1], etc. However, the progressive devel
opment of computer graphics requires better modeling of 3D scenes and 
generation of layouts. Therefore, we have been investigating techniques 
of automatically generating scene layouts. 

Generating scene layouts benefits various applications. First, it saves 
the effort of manually placing objects in video games or industrial de
signs2. Li et al. [2] generate various layouts for better simulations of 
wheelchair training. Handa et al. [1] generate multi-view images from 
much fewer 3D scenes. 

Existing works already show the progress of scene synthesis [3], 
where scene layouts focus on their plausibility and aesthetic, i.e., visual 
identifications given generated layouts. Existing works are divided into 
neural network based techniques and others. The former trains several 
neural networks for different steps such as placing objects, rotating 
objects, deciding termination of arrangements [4]. The latter formulates 
a set of mathematical models including graphs, and typically optimize a 
shuffled area based on e.g., Markov Chain Monte Carlo (MCMC) [5,6], 
since the models are too complicated to be solved. Nevertheless, algo
rithmic methods have not been investigated as far as we reviewed, 
because similarly we have to embed layout rules into an algorithm so 
that it operates properly. However, layout rules are innumerable. A 

qualitative comparison of existing techniques is beyond the scope of this 
paper. Despite underlying technical details, this paper focuses on the 
final results, i.e., improving the plausibility and aesthetic of generated 
layouts. 

In this paper, we propose an algorithmic framework for generating 
room layouts as shown in Fig. 1. Our framework is split into a data- 
driven phase: coherent grouping and a non-data-driven phase: geo
metric arranging. In the coherent grouping phase, objects are clustered 
into several coherent groups (Section 3), where priors are learnt for 
suggesting layouts within each coherent group. We directly use correct 
and denoised samples extracted from datasets as priors. This brings two 
benefits. First, we no longer hypothesize distributions of layout rules 
between/among objects, especially the mathematically inexpressible 
relations. Second, we could easily formulate and represent relations 
among three or more objects since we only have to load samples of real 
distributions. Similar to “hyper-graphs” where an edge connects to more 
than two vertices, we name our learnt relations among objects “hyper- 
relations” (Section 4). Thus, several objects of the same coherent group 
are arranged in O(1) time by sampling from their hyper-relations. In the 
geometric arranging phase, given independent coherent groups where 
objects of the same group are already properly arranged with respect to 
each other, a geometric algorithm is proposed to assign positions and 
orientations of each group. Since layout rules among objects are applied 
during the coherent grouping phase, geometry phase concentrates on 
much fewer rules related to walls, windows, etc (Section 5). 
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Current technologies of synthesizing 3D scenes include selecting a set 
of appropriate objects and generating plausible layouts for the objects. 
We do “layout” while techniques for selecting objects are easily incor
porated such as [7]. Note that in this paper, we prefer instance-based 
priors to category-based priors, e.g., we consider a spatial relation be
tween a specific coffee table to a specific chair, where both of them have 
unique textures and geometries. If categories are being based, distinct 
features of objects are lost. As shown in Fig. 2, different shapes of several 
armchairs have their own priors to the same coffee table. 

In this paper, we make the following contributions:  

1. We first introduce and learn hyper-relations among three or more 
objects, which increases the aesthetics and plausibility of arranging 
objects in same coherent groups and only requires O(1) time to 
sample layouts of each group, e.g., a coffee table surrounded with 
several distinct sofas and a TV stand, thus increasing the overall 
performance.  

2. We propose a new scalable geometry-based framework for layout 
generation, which considers detailed aspects of room layout, e.g., 
doors, windows, wall decorations, small objects, etc. In coordination 
with hyper-relations, more plausible and robust layouts are 
generated.  

3. We develop an open-source platform for manipulating 3D scenes, 
where operations such as rendering, exploring and modifying scenes 
are supported, thus allowing researches to focus thoroughly on 
algorithms. 

2. Related works 

3D scene synthesis is to select a set of appropriate objects and 
transform them plausibly [3]. Earlier works of synthesizing 3D scenes 
are mainly based on hand-crafted design rules, e.g., [8,9] or data-driven 
priors. For the former, designing rules are mathematically formulated as 
a set of constraints followed by optimizations [10,11]. For the latter, 
since learnt distributions are too complicated to be differentiated, 
MCMC is assembled to solve such situation by attempting proposals [5,6, 
12–14]. 

Some of them present a framework including both object selection 
and layout generation, while the rest focus on layouts, though it may 
also focus on selecting objects [7]. Our method focuses on generations of 
layouts, i.e., we contribute mainly on how to make layouts more plau
sible and robust. 

With the continuous study of the deep learning technique, several 
works based on convolutional or graph neural networks are proposed [4, 
15,16], including the current state-of-art work PlanIT [15] which serves 
as the baseline in this paper. One feature of network-based works is that 
they couple selections and layouts, i.e., selecting an object depends on 
pending layouts, vice versa. In contrast earlier works aforementioned 
seperate two stages. Literature based on other techniques does exists, e. 
g., human-centric assessments [17]. Please refer to a more insightful 
survey on 3D indoor scene synthesis [3]. 

Several works also synthesize 3D scenes with input other than 3D 
scenes. Xu et al. recovery 3D scenes from hand sketch [18]. Luo et al 
[19] generate 3D scenes from scene graphs[20–22]. generate room 
layouts based on RGB-D images or 3D scans[23,24]. generate scenes 
based on input examples[25,26]. translate human language to 3D scene 
configurations. However, different input results in different constraints, 
frameworks and even applications, so these works are beyond the scope 
of this paper. 

3. Definitions 

Given a list of objects with the positions of doors and windows and a 
room shape, we formulate its corresponding graph G =< V,E > where 
each object o ∈ V. E is the set of edges which are also simply relations 
between/among objects. Note that in this paper, we assume that a 
relation may involve more than two instances i.e., a hyper-relation 
among objects (Section 4). 

A coherent group g is a list containing objects where one object 
connects to at least one another object in the same group. In other words, 
two coherent groups never have an edge between their instances 
respectively. Conceptually, generating coherent groups g ∈ G is equiv
alent to formulating maximal connected subgraph of G, given priors as 
connections. When generating layout given input, we always initially 
group objects into several gi⊂V even though a group may contain one 
object, such as a wardrobe, a picture frame, a kitchen cabinet, etc. 
Coherent groups are hierarchical as shown in Fig. 3, where visual edges 

Fig. 1. Our framework uniformly layouts objects, e.g., small objects on a surface are arranged concurrently instead of another layout problem. In addition to the 
overall plausibility, we emphasize reasonableness among objects related to each other, i.e., coherent groups. Ours is also friendly to objects hung on walls. 

Fig. 2. Extracting priors based on instances results in finer priors. This figure 
shows the priors of the same coffee table with respect to three sofa instances of 
different shapes and geometries. 

Fig. 3. Three coherent groups where white dots denote respective domi
nant objects. 
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are pairwise between parents and children. 
A transformation of an object includes its translation (x, y, z) and Y- 

axis rotation θ where floors align with XoZ plain. In this paper, we do not 
re-scale objects. The same is true of coherent groups. Additionally, 
transformations of coherent groups are propagated to their subordinate 
objects. 

Priors are used to group objects into coherent groups and suggest 
layouts within each coherent group. A prior set Po1 ,o2 ,o3 ,…,on , abbreviated 
as PO, involves two or more objects. A single prior pk

O ∈ PO suggests a set 
of plausible transformations for all objects involved. Each prior set 
contains a dominant object such as o1, and other secondary objects. For 
example, if a dinning table is surrounded with several chairs and sup
ports a plant, “dinning table” is the dominant object in this scenario and 
remaining objects are secondary objects. If only two objects are involved 
in PO, PO is a “pairwise relation” between the two objects (Section 4.1). If 
more than two objects are involved and all secondary objects derives 
from the same instance, PO is a “pattern chain set”. Otherwise, PO is a 
“hyper-relation” 4.3. 

4. Priors 

In this section we show how we extract relations among objects. We 
start by extracting traditional pairwise relations, e.g,. a desk with 
respect to a chair. Then, we present pre-computed pattern chains which 
generalize one-to-one relations to one-to-many relations, e.g., a dining 
table surrounded by several identical chairs. Finally, based on pairwise 
relations and pattern chains, we further generalize and formulate hyper- 
relations among objects, i.e, relations “among” more than two instances. 
Fig. 4 suggests the differences between them. In this section, we show 
how priors are represented and generated, and the usage is shown in 
Section 5. 

Theoretically, pairwise relations and pattern chains are both special 
forms of hyper-relations. The reason for discussing them separately is 
because directly learning hyper-relations is difficult. As a result, we first 
introduce pairwise relations which derive more general pattern chains 
thus enabling forming hyper-relations. 

4.1. Pairwise relation 

A Pairwise relation is a set of priors Pab from a dominant object a to a 
secondary object b. Given a pairwise relation Pab, we can sample a prior 
pab,k ∈ Pab that is directly a transformation of b with respect to a. Note 
that pairwise relations are directional, and sampled transformations are 
only relative between two objects involved i.e., global transformations 
are still required (Section 5). 

We extract discrete pairwise priors by utilizing density peak clus
tering (DPC) [27], which firstly calculate ρk =

∑
k′ I{d≤dc}(dk,k′ ), dc =

d(0.015K2) and δk = mink′ :ρk<ρk′
(dk,k′ ) for all points. In our situation, dk,k′

denoting the Euclidean distance from the transformation of dominant 
object k to the transformation of secondary object k′ . A transformation 
includes translations and rotations. dc is a hyper-parameter and rhok is 
the number of dk,k′ that is lower than dc. The selection of dc follows [27], 

i.e., the 0.015K2th greatest dk,k′ among all k2 relative distances. δk seeks 
a minimal dk,k′ among all dk,k′ with higher rhok′ than rhok. Please refer to 
[27] for more details about this algorithm. Although DPC is typically 
used for clustering, it does anomaly detection for eliminating noises, i.e., 
removing points with low values of ρ and high values of δ. Cluster 
centers and ordinary points are treated equally since they are already 
reasonable transformations in this paper. 

After elimination, remaining “points” are plausible relations directly 
from datasets (human designers) where each “point” become a single 
pairwise prior pab,k ∈ Pab for locally arranging a dominant object and its 
secondary object. Typical dominant objects include desk, dinning table, 
coffee table, bed, etc. We manually label a set of instances that are 
capable of being dominant objects according to their categories. 

4.2. Pre-Computed pattern chain 

Commonly, a dominant object has several secondary copies of the 
same instance, e.g., a dinning table with several identical chairs. If we 
sample them twice or more as shown in Fig. 5a, aforementioned pair
wise relations do not guarantee the plausibility of “one-to-many” re
lations. Thus, we solve it by presenting pattern chains. 

A pattern chain set Cab is a prior set between object a and b. Each 
cj

ab = {j1, j2,…, jn}, cj
ab⊂N is a list of indices to its pairwise relation Pab, e. 

g., jx indexes to the x-th pairwise relation pab,jx in Pab. Generating one 
pattern chain cj

ab is a recursive process. First, a pab,j1 ∈ Pab is randomly 
selected from Pab. As discussed, pab,j1 gives a plausible transformation 
between a and b. Second, we traverse all pab,i ∈ Pab. If a copy of object b 
with the transformation of pab,i do not collide with another copy with the 
transformation of pab,j1 , pab,i is included in a new subset P′

ab⊂Pab. Third, 
we would like to place another copy of b, so pab,j2 is randomly selected 
from P′

ab and the above procedure is executed recursively until P′

ab is 
empty. As shown in Fig. 5b, after three iterations, placing three chairs 
around a table filters out a subset of their pairwise priors (gray). 
Therefore, a fourth chair can only be placed in the remaining pigmented 
areas. When a chain is generated, we can optionally adjust it, e.g., Fig. 5c 
suggests “horizontals and verticals” to make the chain well-aligned. 

Note the above process generates one pattern chain cj
ab = {j1, j2,…}. 

In theory, a Pab of O(n) size has O(n!) undetermined pattern chains. In 
practice, we only generate one pattern chain for each pab,k ∈ Pab, to make 
sure each pairwise relation is used at least once, instead of figuring out 
the entire pattern chain set. Otherwise, it requires O(n!) time and space 
to compute only a single set, which also slows down online arrangement 
by restricting prior loading. 

4.3. Hyper-Relation 

A hyper-relation HO is a prior set among several objects O = {odom,

osec1,osec2,…}. A dominant object odom exists in HO such as a coffee table 
and secondary objects relate to each other, e.g., chairs on a rug, arm
chairs beside a long sofa. Purely sampling pairwise prior sets results in 

Fig. 4. Three types of priors in this paper. Links with the same color suggest 
same secondary objects. 4 a: a pairwise “one-to-one” relation between a desk 
and a chair; 4 b: a pairwise “one-to-many” relation between a table and several 
identical chairs; 4 c: a hyper-relation among several different objects dominated 
by a coffee table. 

Fig. 5. 5a: Directly sampling a pairwise relation without pre-computed pattern 
results in obvious implausibility. 5 b: Recursively formulating a pattern chain. 5 
c: Additional constraints are optional if e.g., well-aligned layouts are required. 
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scenarios such as Fig. 6a, where secondary objects are only plausible 
with respect to their dominant object. Hyper-relation is essentially 
different from pattern chains. Pattern chain sets are still one-to-one re
lations and a pattern chain assumes incorporating as many secondary 
objects as possible. In contrast, a hyper-relation has a definite list of 
objects, i.e., we can not assume what instances are included and how 
many copies each instance has in a specific hyper-relation, because areas 
are limited. As shown in Fig. 6b and 6 c, different numbers and instances 
of seats derives two distinct hyper-relations. 

To generate hyper-relations, we do not hypothesize and learn con
crete distributions because real distributions are too complicated to be 
expressed, solved and sampled [28]. Instead, we try achieving as many 
exact samples as possible. Given a set of objects O and its dominant 
object odom ∈ O, we randomly select a secondary object osec ∈ O and 
randomly sample a prior from the pairwise relation between odom and 
osec. Thus, osec is transformed with respect to odom. Next, similar to 
generating pattern chains, we filter the remaining pairwise relations 
between odom and other secondary objects osec1, osec2, … ∈ O, to ensure 
“collision free”. With multiple instances, additional rules are required. 
We use “tiers”, which as far as we studied is firstly terminologized in [5], 
for finer filtering. For example, rugs are placed on the ground where 
objects such as tables and beds can be put on top of it. Merely detecting 
collisions would mistakenly filter plausible priors. Not detecting colli
sions between objects of different tiers alleviates such situations. After 
filtering the remaining pairwise relations, recursively, we randomly 
select another secondary object and repeat the above steps until all 
secondary objects are placed appropriately with no implausibilities. 
After that, a single hyper-prior is generated with transformations of all 
secondary objects. We iteratively re-run the entire process to enrich the 

pending hyper-relation. 
Yet, the above steps still require a definite list of objects. Neverthe

less, figuring out all undetermined lists is almost equivalent to exhaus
tively traverse all combinations of objects. To address this, we 
systematically optimize extractions. After forming coherent groups 
(Section 5), we examine their hierarchies. If a parent has two or more 
children, we try to assemble the hyper-relation for them. If the hyper- 
relation does not exist, a new thread is started to generate it in back
ground. In other words, we either load existing hyper-relations if they 
are already generated or establish a thread for generating them when we 
need them. Alternatively, users can manually suggest their own lists of 
objects to generate their hyper-relation. 

5. Geometry-Based layout generation 

5.1. Coherent grouping 

We show how we arrange objects in this section. First, objects are 
decomposed into several coherent groups gi⊂G based on finding 
maximal connected subgraphs using pairwise relations between objects 
as shown in Fig. 7, where whether or not two objects are connected 
depends on existence of pairwise relations between objects. 

One secondary object can have at most one dominant object. If 
multiple available dominant objects exist with respect to a secondary 
object osec, we randomly select a dominant object and discard relations 
between osec and other dominant objects. Each dominant object also has 
finite lengths of copies of secondary instances guided by lengths of 
respective pattern chains. This makes our framework more flexible, e.g., 
given only one chair but a dressing table and a desk in a bedroom, we 
randomly assign the chair to either the dressing table or the desk, which 
gives more variance to the generated results. 

After that, input objects are distributed in coherent groups. As dis
cussed in Section 4, within a specific coherent group, we can directly 
sample a set of transformations for all objects locally within the group. 
As shown in Fig. 7, if a parent has two or more descendants and each 
descendants are different, the hyper-relation is assembled or started to 
be generated in background, e.g., coffee table with respect to two sofas 
and a TV stand. If the descendants are identical, the pattern-chain set is 
sampled, e.g., dining table and four chairs. Otherwise, we use pairwise 
priors, e.g., TV stand and TV. Therefore, the final process is to transform 
several coherent groups properly in the room. 

5.2. Geometric arranging 

Eventually, we assign transformations to each coherent group and 
propagate transformations to objects. Since priors already arrange ob
jects sufficiently within groups, three more constraints are required to 
make layouts physically plausible among groups: 1, all groups should be 
inside a room; 2, all groups should not overlap each other; 3, clear paths 
should exist for windows and doors. 

Placing a set of shapes (coherent groups) in another larger polygon 
(room) is an NP-hard problem [29] in computational geometry. Thus, 
we geometrically simplify coherent groups as cuboids, consider doors 
and windows as fixed (pre-arranged) blocks, and do heuristic attempts 
as shown inalgorithm 1. 

We first sort coherent groups according to their area occupied from 
largest to smallest, since bigger groups usually represent more central 
functionality of rooms, e.g., a bedroom is call a “bedroom” due to a 
coherent group dominated by a bed. Then, coherent groups are placed 
with regard to this order, whereas random positions are assigned to 
them along the inner side of the targeting room, since the definition of 
coherent groups indicates the relations among different coherent groups 
are weak (Section 3). After placing a group, we check potential collisions 
between this group and other groups or blocks. If collided, we discard 
the transformation and randomly re-select a new transformation. To 
enhance the performance, we used exponentially increasing sampling 

Fig. 6. 6a: Using only pairwise relations results implausibilities among sec
ondary objects in a coherent group. 6 b: Using hyper-relations results possi
bilities among all objects involved. 6 c: A different object set requires another 
hyper-relation, since we can not assume “as many objects as possible”. 

Fig. 7. Coherent Grouping. Dotted dashes denote hyper-relations of secondary 
objects. Given a list of objects to generate their layout, we first group them into 
several coherent groups. For example, a coffee table relates to two sofas and a 
TV stand and the TV stand relates to a TV, so they form one coherent group. 
Two cabinets have no relation to others, so each of them form their own groups. 
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density. If a proper transformation fails at a density of d for the pending 
coherent group, we increase d to 2d to find more possible positions. But 
if it still collides after several times of increasing density, we discard the 
group and conduct the next one. To increase the plausibility, we add 
more heuristic rules: 1, we initially attempt to transform groups at 
corners of rooms and sides of other existing coherent groups. During 
collision detection, we take the height into consideration. So it is 
possible that some furniture with lower height is placed in front of 
windows. Finally, “liftings” Lf are assigned to groups. If Lf = 0, a groups 
is placed against walls. If Lf equals to half the length of the room, a group 
is placed in the middle of the room. 

6. Experiments 

6.1. Setup 

We utilize a recent 3D scene dataset “3D-Front3” [30] with 70,000+
layouts and 9992 3D models. To roam and render 3D scenes, we develop 
an open-source 3D scene platform as shown in Fig. 8, where we can add, 
delete, modify and search for objects. We can orbitally control the 

Require:
1: Polygon of room’s inner side Pr;
2: List of rectangles of coherent groups with height Arec;
3: List of rectangles of windows and doors;

Ensure: Transformations of rectangles Trec;
4: function CheckOK(A)
5: if A does not overlap with existing groups and blocks then
6: return True
7: else
8: return False
9: end if

10: end function
11: function ApplyTransform(A, t)
12: apply transformation t to A
13: return A
14: end function
15: function InsertRectangle(A)
16: Let T be array of transformations //For heuristic
17: for edge ∈ Pr and p ∈existing polygons do
18: Push heuristic transformation of edge or p to T
19: end for
20: for t ∈ T do
21: if CheckOK(ApplyTransform(A, t)) then
22: return t;
23: end if
24: end for

//For random
25: Clear T
26: for n = 1→ max sampling density do
27: for edge ∈ Pr do
28: Push 2n ∗ len(edge) random transformations on edge to T
29: end for
30: Shuffle T
31: for t ∈ T do
32: if CheckOK(ApplyTransform(A, t)) then
33: return t;
34: end if
35: end for
36: Clear T
37: end for
38: return None;
39: end function
40: for a ∈ Arec do
41: Push InsertRectangle(a) to Trec;
42: end for

Algorithm 1. Geometric Arranging.  

3 https://tianchi.aliyun.com/dataset/dataDetail?dataId=65347 
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perspective camera for selecting better views. By clicking “layout”, a 
configuration of the current room is generated by our proposed frame
work. We render 3D scenes using Three.js4 and the algorithm is mainly 
implemented by PyTorch and NumPy. Several results are shown in 
Fig. 9. Please refer to our supplementary materials for more details.5 

6.2. Plausibility and aesthetic 

We compare our framework with the state-of-the-art PlanIT [15]. 
PlanIT not only performs object arrangements, but also object selections. 
However, since we focus on arranging objects, we show better plausi
bility and aesthetic achieved using our framework by re-arranging re
sults of PlanIT, i.e, we generate layouts given objects and room shape 

selected by PlanIT. 
Qualitatively, as shown in Fig. 11, ours is friendly for layouts among 

objects with strong relations, i.e., “coherent groups” in this paper. For 
example, a TV stand and a sofa are strongly related to a coffee table. 
Ours makes sure they are plausibly arranged with respect to each other. 
Additionally, ours does not block paths to doors and windows. Quanti
tatively, we also conduct a user study as shown in Fig. 10a. 43 subjects 
are invited. Subjects are university students, workers, housewives, 
interior designers, etc.6 Each subject is given 20 questions. In each 
question, a layout generated by ours and one by PlanIT are shown in 
random order. For each question, a subject compares two layouts and 
marks them respectively. Scores ranged from 0 (very poor) to 4 (very 
plausible). All subjects are taught how to use the user study system 
before experiencing. In Fig. 10a, the Chinese characters are rendered as 
“there are two room layouts below, please compare the two layouts, 
considering aesthetic, plausibility and reasonableness, thus marking 
them respectively.”, “0: totally unreasonable, inaesthetic. It may never 
appear in the real world layout. ” and “5: very aesthetic and plausible. I 
will refer to this layout in the real world.” For example, Fig. 10a shows 
two scenes. One subject may dislike the one on the left and prefer the one 

on the right. Therefore, the subject marks 2 and 4 respectively. Table 1 
compares average score (standard deviation) of the two methods on 
various types of rooms. 

6.3. Robustness 

In this section, we compare our generated layouts with those 
designed by professionals (ground truths) to verify that ours is 
competitive to human designers. Subjects are the same from Section 6.2. 
Each subject is required to choose a most plausible layout from ten 
alternative layouts as shown in Fig. 10b, where one layout is designed by 
a human designer and the remaining nine layouts are generated by ours. 
Subjects can zoom in layouts by right clicks such as Fig. 10c. All subjects 
are taught before experiencing and manuals are available. Ground truths 
are randomly selected from 3D-Front. In Fig. 10b, the Chinese characters 
are rendered as “there are ten layouts below and please select your 

Fig. 8. We develop an open-source 3D scene platform allowing adding, delet
ing, modifying, searching objects and rendering, saving scenes. Users can 
explore given 3D scenes by orbital control. Our platform is embedded with the 
proposed algorithm. 

Fig. 9. Results. Please zoom in for more details. More results are included in the supplementary files.  

4 http://threejs.org/  
5 We also run our framework on SUNCG [31] before this dataset became 

unavailable. We include results of SUNCG optionally in our supplementary 
materials only to verify the effectiveness of our framework. 6 Few subjects preserve privacy. 
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favorite one considering aesthetic, plausibility and reasonableness”, 
“left-click for selections and right click for zooming in” and “after 
selecting, press submit for the next question”. 

Results are shown in Fig. 12. Two distributions are plotted for bed
rooms and “living-dinning” rooms respectively, i.e., each line is 

averaged distributions of user selections of its room type, where “0” 
denotes ground truth. Although human-designed layouts outperform 
ours, generated layouts are still favored competitively as shown in 
Fig. 12. 

6.4. Efficiency 

We run our framework on a PC with AMD 2700X (GHz), GTX 970, 
and WD20EZRX. Time consumption of layouts depend on degrees of 
crowding, i.e., ratio of the total area of coherent groups to the area of the 
room. Higher degrees result in more discards during geometry-based 
arrangements (Section 5.2), thus slowing down generations. 

To generate layouts based on 3D-Front such as Fig. 9, if priors are 
cached, our framework consume within 3.5 seconds for a layout. If 
corresponding priors of several objects are not loaded, additional IO is 
required up to 2 seconds for a layout. For non-crowded rooms, with 
cached priors, our framework generates layouts in real time. 

We also run the state-of-the-art PlanIT [15] on a server with GTX 
1080ti. According to our experiments, generating a layout requires more 
than a minute. Nevertheless, this includes both object selection and 
object arrangement and the two are interleaved with each other. Testing 
the exact time consumption of “layout generations” of PlanIT is beyond 
the scope of this paper. Furthermore, [11] is not a data-driven frame
work. Therefore, it is hard to conclude “better efficiency” as a 
contribution. 

7. Conclusions and future works 

In this paper, we present a new framework of generating room lay
outs and we experimentally verify the plausibility and robustness of the 
proposed method. The code of this framework and a toolbox platform is 
publicly available. We hope this could benefit the community. However, 

Fig. 10. User studies. 10 a: Marking ours and PlanIT [15] respectively; 10 b: Selecting the most plausible layout from ten alternative scenes where one scene is 
generated by human designers; 10 c: subjects can zoom in a particular layouts for better cognition. 

Fig. 11. Qualitatively comparing PlanIT with ours.  

Table 1 
User study: results of comparing PlanIT with ours.  

Room Type PlanIT Ours 

Bedrooms 1.847 (1.336) 2.66 (1.125) 
Living Rooms 1.749 (1.327) 2.572 (1.266) 
Bathrooms 1.028 (1.2) 2.553 (1.314) 
Kitchens 1.549 (1.342) 2.651 (1.167) 
Total 1.543 (1.341) 2.609 (1.221)  

Fig. 12. Distributions of user selected layouts of bedrooms (BLUE) and “living-dinning rooms” (RED).  
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this work still suffers from the following weaknesses. 
The biggest difficulty we encountered is arranging “chains” of ob

jects around walls. For independent objects such as wardrobes, trans
formations of them have high degree of freedom since we find 
appropriate places for them with no collision and implausibility. How
ever, for groups of objects such as kitchen cabinets and ovens, they are 
frequently placed next to each other as shown in Fig. 13. Firstly, orders 
of a chain should be carefully considered. For example, commonly we 
place similar cabinet next to each other. Otherwise, layouts are not 
aesthetic as shown in Fig. 13b. Secondly, an L-shape chain should 
somehow turn at corners, especially when we have L-shape objects such 
as L-shape cabinets which are frequently treated as “corner objects” as 
shown in Fig. 13c. Thirdly, doors and windows are also challenges for 
arranging chains. In our framework, if we treat a chain as an entire 
group, currently we do not have plans for sampling such priors. On the 
other hand, if we treat a chain as individual objects, complicated rules 
are required but we also do not have a plan for formulating the rules. As 
a result, we demonstrate this weakness in detail and we would try fixing 
it in future. Fortunately, in real-world decoration, most cabinets are 
fixed on walls. 

The storage and loading of priors may require further system-level 
optimizations. Currently, all priors are structured in “.json” format, 
which is inefficient if a prior of a coherent group is too large. When 
arranging objects online, loading priors may consume up to few seconds 
for loading corresponding priors into the memory. Although this only 
affects the first attempt, since priors are cached after that, it is still a 
concern in practice. Eventually, the way of extracting patterns is robust 
to shapes and textures instead of incorporating them. This is useful if we 
want objects arranged more compacted. 
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