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This paper presents a deep CNN approach for point-based semantic scene labeling. This is challenging because 

3D point clouds do not have a canonical domain and can have complex geometry and substantial variation of 

sampling densities. We propose a novel framework where the convolution operator is defined on depth maps 

around sampled points, which captures characteristics of local surface regions. We introduce Depth Mapping 

(DM) and Reverse Depth Mapping (RDM) operators to transform between the point domain and the depth map 

domain. Our depth map based convolution is computationally efficient, robust to scene scales and sampling 

densities, and can capture rich surface characteristics. We further propose to augment each point with feature 

encoding of the local geometric patches resulted from multi-method through patch pooling network (PPN). The 

patch features provide complementary information and are fed into our classification network to achieve semantic 

segmentation. 
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. Introduction 

Representing 3D scenes is the basis of many applications, ranging

rom 3D geometric modeling to semantic understanding and navigation.

nlike 2D images which have a natural regular canonical domain, 3D

cenes are often represented using surface-based meshes, point clouds

nd voxels. The voxel representation has a similar regular topology as

mages, but due to its third power nature, it is restricted to low reso-

utions, not sufficient to represent 3D scenes with details. On the other

and, surface meshes and point clouds can represent complex 3D scenes

ith rich details, but they both have irregular connectivity. Real-world

D scenes are usually captured through range sensors such as Kinect [1] ,

atterport cameras [2,3] or LiDAR laser scanners [4] . The resulting

ata of such scanning technology is usually in the form of unstructured

urface point clouds, making it the most popular representation for 3D

cenes. 

Therefore, point cloud based 3D scene understanding is very impor-

ant in real-world applications, such as semantic reconstruction [5] ,

utonomous driving [6–8] , housekeeping or autonomous navigation

obots [9] , as well as augmented reality (AR) and virtual reality (VR)

pplications [10,11] . Compared to 2D image analysis and understand-

ng, 3D point clouds contain much more reliable depth information and

eometric features which are insensitive to lighting, and so are essential

or mobile robots and autonomous driving applications. 
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The huge success of convolutional neural networks in image detec-

ion and analysis motivates the deep learning attempts on 3D scene data.

owever, point cloud data of indoor scenes often contain millions of

oints, more than pixels in typical images for deep learning. Moreover,

t also has unstructured point distribution due to non-uniform sampling

f 3D space, which makes it difficult for many deep learning methods,

specially CNN (convolutional neural networks) based methods. To han-

le these problems, many existing works [12–15] use the voxel repre-

entation which allows the 2D convolution to be extended to the 3D

pace. Although the voxel domain has similar regular topology as im-

ges, the amount of data becomes prohibitively large when the resolu-

ion increases even mildly. Therefore, it is only suitable for small-scale

D models, but clearly insufficient to represent scene level 3D data with

cceptable accuracy. 

The pioneering work PointNet [16] made the first attempt to directly

pply a deep neural network to raw point cloud data. PointNet learns

igh-level spatial features from grid cells of a certain size. However, its

apability of capturing the local context and geometric features is lim-

ted. The point-based pooling network is affected by non-uniform distri-

ution of points in the 3D space and does not capture the local neigh-

orhood information fully. More recent point-based neural network ar-

hitectures [17,18] made various improvements of context learning or

arge-scale optimization. However, all of these methods require non-

onvolution operators. 

https://doi.org/10.1016/j.gmod.2019.101033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/gmod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gmod.2019.101033&domain=pdf
mailto:mmmutj@gmail.com
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Fig. 1. Our point-based semantic labeling pipeline. Given an input scene represented as an unstructured point cloud (a), our algorithm automatically assigns a 

semantic label (object category) to each point in the scene. We extract MPF (multi-method patch feature) (c) through training a patch segmentation pooling network 

(PPN). Our classification network is a Convolutional Neural Network defined in the depth maps of sampled points. To achieve this, we introduce Depth Mapping 

(DM) and Reverse Depth Mapping (RDM) operators to transform between the point cloud and depth maps. The DM operator transforms the point cloud into depth 

maps (b) of sampled points, which allows us to apply 2D CNN on (b) and (c) to learn local semantic labels (d). Finally, we compute the semantic label for each point 

in the scene through the RDM operator (e). Unlike existing methods, our method copes with the entire scene without unnecessary block partitioning, and thus better 

captures global context. 
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a  
In this paper, we propose a novel convolutional neural network ar-

hitecture for point cloud data. We focus on geometric feature extrac-

ion and scene level context learning for point cloud data, and learn a

etwork for point-based semantic labeling, i.e. assigning an object class

o each point in the input point cloud. Individual points carry rather

imited geometric information, so we propose to augment each point

ith additional information of the local geometric patches it belongs

o. However, consistently segmenting point cloud data into patches is

ot trivial. To address this, we first perform multi-method segmentation

o obtain patches through different methods, and design a pooling net-

ork to learn reliable patch-based geometric features. Given points with

ugmented patch features, we further develop a novel CNN architec-

ure for point cloud data. We start by obtaining a set of sampled points

sing farthest point sampling to provide a good coverage of the point

loud. For each sampled point, we build a 2D depth map to represent

ts neighborhood, on which 2D convolutions are performed. To achieve

his, we introduce DM (Depth Mapping) and Reverse Depth Mapping

RDM) operators which map neighboring points to the depth map and

ice versa. This is computationally efficient and captures rich geometric

etails. 

The key contributions of our work are summarized as follows: 

• We propose the first deep CNN architecture that can be directly ap-

plied to point clouds with a flexible number of points, which is also

insensitive to the sampling density, thanks to the fully convolutional

architecture. 

• We design a multi-method patch segmentation pooling network to

learn to extract reliable geometric patch information which comple-

ments point information. 

• We design two operators: DM and RDM in order to bridge between

the point cloud and 2D depth maps around sampled points. Then,

we perform 2D convolutions on depth maps to analyze point cloud

data, which is both efficient and informative. 

An example demonstrating the pipeline of our method for point-

ased semantic labeling of scenes is shown in Fig. 1 . We apply our

ethod to two main large-scale 3D point cloud scene datasets, and

how that our method outperforms state-of-the-art methods. We first

eview the most related work to ours in Section 2 . We present our net-

ork architecture and algorithm details in Section 3 . Experimental re-

ults are presented in Section 4 and finally conclusions are drawn in

ection 5 . 
. Related work 

.1. Obtaining unstructured surface point cloud data 

Unstructured point cloud data can be captured using a variety of

ethods, including: (1) Dense RGB-D SLAM (simultaneous localiza-

ion and mapping) methods on RGB-D images captured by Kinect-

ike sensors, such as KinectFusion [19] , ElasticFusion [20] , BundleFu-

ion [21] etc. For such methods, point cloud data is fused from RGB-

 scans. Typical datasets captured in this way include ScanNet [22] ,

ceneNN [23] and Washington RGBD dataset [24] . This approach is

f low cost, but the obtained point cloud data is noisier and is more

ikely to have missing points than other scanning technology, due to the

ensor limitations. (2) Using a Matterport sensor capable of capturing

anoramic RGB-D images, which are then fused to form the complete

oint cloud. Typical datasets captured using Matterport includes Full

D-3D-S Dataset [2] and Stanford 3D Indoor Spaces (S3DIS) [3] . (3) Us-

ng a 3D laser scanner, e.g. the dataset in [4] . This approach is more

ime-consuming, but the obtained point cloud is more accurate than al-

ernative methods. Regardless of the scanning technology, the obtained

oint clouds can be treated as a set of unstructured 3D points usually

long with color information. 

.2. Traditional methods for point cloud semantic labeling 

This work addresses semantic labeling of unstructured point cloud

ata. From the geometric analysis perspective, few methods have been

roposed to address this problem. Koppula et al. [25] present a method

hat performs SVM (support vector machine) classification on pre-

egmented patches based on a set of manually specified patch fea-

ures. Lai et al. [26] learn a hierarchical sparse coding feature called

MP3D for scene labeling trained with CAD model datasets. Vossel-

an [27] proposes an approach that combines multiple segmentation

nd post-processing methods for semantic segmentation of urban point

loud scenes with high density. Compared with deep learning methods,

uch traditional methods have limited learning capabilities, and often

eed to make some assumptions for the input point cloud data (e.g.

uality, density, etc.) to work effectively. 

.3. Deep learning on 3D voxels 

To generalize image-based deep learning frameworks to 3D data,

 direct approach is to represent 3D shapes as structured volumetric
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rids on which 3D convolutions can be applied [12–14] . However, the

oxel representation has high memory and computational costs, and can

nly represent coarse geometric shapes. [15,28] use Octree or KD-Tree

tructures to help reduce voxel storage and accelerate convolution com-

utation. To deal with point cloud data using the voxel representation,

29] presents a PCNN (point CNN) framework with two operators: ex-

ension and restriction, which achieve transformations between point

louds and the voxel representation and perform convolutions on the

oxel data for analyzing point cloud data. The work [30] voxelizes a

oint cloud into 3D voxels and applies 3D FCNN (fully connected neu-

al networks). Even with spatial partitioning techniques, the resolution

f voxel data that can be effectively handled is still insufficient to cope

ith 3D scenes with details, so none of these methods have been applied

o scene level point labeling. 

.4. Deep learning on point clouds 

Recently, PointNet [16] made a great attempt to use neural networks

o learn directly on raw point cloud data. They design a mini-network

T-Net) to work out and apply an appropriate transformation to point co-

rdinates for transformation normalization, and further use max pooling

nd fully connected layers for feature extraction within certain blocks

typically 1.5 m ×1.5 m in the 𝑥 − 𝑦 plane and over the entire range in

he z direction). Tatarchenko et al. [31] present a tangent convolution

hat learning surface geometry feature from projected virtual tangent

mage. PointNet++ [17] upgrades PointNet by adding sampling lay-

rs and grouping layers for geometric feature computing. Engelmann

t al. [18] strengthen point feature learning with sampled neighbors

n the 2D Euclidean space and make an attempt to learn larger-scale

patial context above the grid block level. PointCNN [32] introduced

n X-transformation for 1-D convolution kernels to make the point set

rdered, which makes it possible for multi-level convolutions to learn

igh-level features. The X-transformation is a trained operator to de-

ermine the order of convolution input. However, mapping from a 3D

oint cloud to an ordered 1D point array can be unreliable for data oc-

lusion and sensitive to local point cloud density. SPG [33] partitions

he scanned scene into homogeneous elements and sets up a superpoint

raph structure to learn the contextual relationships between object

arts. Pan et al. [34] extend CNNs in the regular domains to curved 2D

anifolds using parallel frames. This method requires 3D dense mesh

ata as input which is not usually available for 3D scenes. We propose a

ew point-based deep learning architecture that augments points with

ocal geometric patch information and a CNN with convolutions defined

n 2D depth maps of the neighborhoods of sampled points. These two

ources provide complementary information and help improve perfor-

ance. While the local depth maps provide detailed information of the

ocal geometry, 3D scenes often contain a large number of planar sur-

aces where local depth maps are not informative. Geometric patch fea-

ures are particularly useful in such cases. Our method is able to handle

he point cloud without the need of partitioning points into blocks of

pecific sizes and extracts useful geometric information to improve se-

antic labeling performance. 

. Depth mapping point-based CNN 

In this section, we introduce our framework in detail. We propose

 CNN approach that takes an unstructured scene point cloud as input,

nd directly outputs its semantic labeling result (i.e. the object category

or each point). Denote by N and M the number of points in the input

oint cloud and the number of object categories (e.g. tables, chairs, etc.),

espectively. 

A point cloud is represented as a set of 3D points { 𝑃 𝑖 |𝑖 = 1 , 2 , ., 𝑁} .
ach point P i is represented using a 10-dimensional vector, i.e. the point

escriptor 

̃
 𝑖 = ( 𝑥, 𝑦, 𝑧, 𝑛 𝑥 , 𝑛 𝑦 , 𝑛 𝑧 , 𝑟, 𝑔, 𝑏, 𝑐) , 
here ( x, y, z ) is the 3D coordinates of the point, ( n x , n y , n z ) is the point

ormal estimated using PCA (principal component analysis) of the local

eighborhood, ( r, g, b ) is the color information and c is the curvature

alculated using PCL library as the minimum eigenvalue of the local

CA. 

Our model is constructed with two main networks. The first one is

 patch pooling network (PPN) that learns to extract useful geometric

eatures. For this network, we first perform multi-method patch seg-

entation and extract patch-based features using different segmenta-

ion methods at different scales ( Section 3.1 ). These multi-method patch

eatures are fed into the pooling network along with point features to

roduce an aggregated feature associated with each point ( Section 3.2 ).

he second network is a classification network that takes the 3D point

loud as input and outputs labeling results for points with an embedded

NN for hierarchical feature learning ( Section 3.3 ). 

.1. Patch segmentation and multi-method feature extraction 

Since each point contains limited information, we extract local geo-

etric patches to provide richer information, similar to superpixels in

mage analysis. Patch segmentation is a good way to extract geomet-

ic shape features for surface point clouds. There are many methods for

oint cloud segmentation. Koppula et al. [25] use a traditional region

rowing method from the PCL library for patch segmentation. Silberman

t al. [1] treat RGBD images as point clouds and design a semantic seg-

entation method to categorize points into 4 limited classes (ground,

urniture, prop, structure). Mattausch et al. [4] propose a lightweight re-

ion growing method for fused point cloud data that is more sensitive to

epth. In general, none of these geometry patch segmentation methods

re perfect, due to the existence of noise, occlusion and discontinuity in

ypical point cloud data. 

Our semantic labeling is performed at the point level and patch seg-

entation is only used to provide additional geometric information. Our

ethod is thus not sensitive to the patch segmentation method used.

oreover, each method works better in certain situations than other

ethods, and most methods have adjustable parameters corresponding

he scale (coarser or finer) of segmentation. We therefore take an ap-

roach that utilizes multiple segmentation methods at different scales.

e consider the following methods: 1) Normal-based Region Growing

NRG) [4] , 2) Color-based Region Growing (CRG) from PCL [35] , and

) Euclidean Cluster Extraction (ECE) [36] . Brief introduction of these

ethods is given below. 

.1.1. Normal-based Region Growing (NRG) 

Mattausch et al. [4] grows a patch starting from a seed point s . Given

 new point p belonging to the k -nearest neighbors of an existing point

n the current patch, we add p to the patch if the following conditions

re satisfied: 

𝐧 𝐩 ⋅ 𝐧 𝐬 ‖ > 𝑡 1 , ‖( 𝐩 − 𝐬 ) ⋅ 𝐧 𝐬 ‖ < 𝑡 2 , (1)

hich states that p should have a consistent normal as s and within a

mall distance to the tangential plane of s . The segmentation results

re highly dependent on the parameters t 1 , t 2 that control the planarity

f segmentation. In practice, different settings may work better for

ifferent objects, such as a board and a sofa with substantial variation

f planarity. Inappropriate settings of these parameters may result in

ver-segmentation or under-segmentation. By altering these parame-

ers, we are able to obtain segmentation results at different scales. An

xample is shown in Fig. 2 (b-c), where two settings are used. Since it

s hard or impossible to determine segmentation parameters that work

ell for different data sources or different object classes in one scene,

e perform multi-scale segmentation by using a set of parameters

f different scales. In our experiments, the multi-scale segmentation

arameters are: { 𝑡 1 = 0 . 5 , 𝑡 2 = 0 . 04} , { 𝑡 1 = 0 . 5 , 𝑡 2 = 0 . 04} , { 𝑡 1 = 0 . 6 , 𝑡 2 =
 . 03} , { 𝑡 = 0 . 7 , 𝑡 = 0 . 02} , { 𝑡 = 0 . 8 , 𝑡 = 0 . 01} , { 𝑡 = 0 . 95 , 𝑡 = 0 . 002} . 
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Fig. 2. Given a point cloud (a), we obtain different segmentation results using different methods with different parameter settings. NRG result 1 (b): 𝑡 1 = 0 . 5 , 𝑡 2 = 0 . 04 , 
NRG result 2 (c): 𝑡 1 = 0 . 7 , 𝑡 2 = 0 . 02 , CRG result 1 (d): 𝑡 3 = 6 , 𝑡 4 = 5 , CRG result 2 (e): 𝑡 3 = 4 , 𝑡 4 = 3 and ECE result (f): 𝑡 5 = 0 . 02 . 
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Table 1 

Feature descriptors of a patch. The PCA normal is treated 

as 3 channels. n in f 8 is the number of points in the patch. 

F Descriptors 

f 1 Mean height 

f 2 PCA normal of the points in the patch 

f 3 Area of the concave hull: a 

f 4 width of fitting rectangle: w 

f 5 length of fitting rectangle: l 

f 6 Ratio between length and width: w / l 

f 7 Ratio between fitting rectangle area and area f 3 : w × l / a 

f 8 Point density: n / a 
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hese parameters do not need tuning because the aim is to provide a

ood coverage of patches at different scales. 

.1.2. Color-based region growing (CRG) from PCL 

Rusu and Cousins [35] uses color instead of normals as the con-

traint. Moreover, it uses a merging algorithm for over-segmentation

nd under-segmentation control by making attempts to merge patches

ith close colors and further merge tiny clusters with closest neighbor-

ng patches. In our experiments, we consider three scales and set the

oint color threshold t 3 (for region growing use) and region color thresh-

ld t 4 (for region merging use) as { 𝑡 3 = 3 , 𝑡 4 = 3} , { 𝑡 3 = 6 , 𝑡 4 = 5} , { 𝑡 3 =
 , 𝑡 4 = 7} . An example of segmentation results with CRG at two differ-

nt scales is shown in Fig. 2 (d-e). 

.1.3. Euclidean Cluster Extraction (ECE) 

Yan-Xiong et al. [36] segments a point cloud into clusters based on

he Euclidean distance. Firstly it designs a plane filter to remove large

lanes in the scene to allow segmentation of point clusters correspond-

ng to individual objects lying on the large plane (desk, ground, wall

tc.). In our experiments, the cluster tolerance distance t 5 is set as 0.01 m

nd 0.02 m for two scales. An example of ECE segmentation result is

iven in Fig. 2 (f). 

Each point belongs to patches with different shapes in different

egmentation methods and scales. For each patch, we extract a 10-

imensional feature descriptor 𝐅 = { 𝑓 1 , 𝑓 2 , … , 𝑓 8 } (Note that f 2 is three-

imensional). The detailed definition for patch descriptors is listed in

able 1 . 

.2. PPN: patch pooling network 

In the previous step, for each point P i , we extract L patch segmenta-

ion results by using different segmentation methods at different scales,

eading to patch features 𝐅 1 , 𝐅 2 , … , 𝐅 𝐿 , along with point descriptor �̃� 𝑖 .
ot all the segmentation results are meaningful for patches around a

iven point. Feeding all the information is not only redundant, but can

lso be misleading by poor segmentation results with specific methods

t certain levels. 
In order to obtain a concise and informative feature representation,

e propose a novel pooling neural network. The detailed network ar-

hitecture is shown in Fig. 3 . We first take all the patch features F j 
 𝑗 = 1 , 2 , … , 𝐿 ) as input to the network. We then perform two stages of

LPs (multi-layer perceptrons) to independently transform patch fea-

ures at the same level, leading to an L ×252 dimensional feature repre-

entation. To extract the most informative features, we propose to use

ax pooling to reduce the dimension to 252 as aggregated patch feature
̃
 . These are further combined with the point descriptor 𝐏 𝑖 , and fed into

nother MLP stage to obtain 64-dimensional point/patch feature, de-

oted as �̂� 𝑖 . To train this network, we use �̂� 𝑖 to classify the point into M

ategories, with the last layer containing M neurons. In the training pro-

ess, for each point in the training set, the input to the network includes

he point descriptor and patch features, and the network is optimized

o predict the label (object category) of the point as an M -dimensional

ne-hot vector. 

For our semantic labeling method, the pooling network is used to

btain point/patch feature �̂� 𝑖 for each point P i . The trained pooling net-

ork is also able to predict the label of each point, although only using

ts local information, without higher-level context. We take the result of

PN as our baseline. 

.3. Classification network using depth mapping CNN 

CNN is an outstanding approach for machine learning on structured

ata. However, scanned scene point cloud data is usually unstructured
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Fig. 3. Patch feature pooling network (PPN). L is the number of patch segmentation results. The network processes one point at a time, where the input includes 

patch features F j ( 𝑗 = 1 , 2 , … , 𝐿 ) and point descriptor �̃� 𝑖 . The output is classification scores for M classes, and the point is assigned to the class with the highest score. 

MLP stands for multi-layer perceptrons, and numbers in brackets are layer sizes. FC is a fully connected layer. 

Fig. 4. Our Depth Mapping CNN architecture for point-based semantic labeling. The network takes N points as input. For the i th vertex, the point feature �̂� 𝑖 is 
extracted using PPN in Fig. 3 . The output of the network is classification scores of M classes for each of N points. 𝑀𝐿𝑃 (…) stands for multi-layer perceptrons, where 

numbers in bracket are layer sizes. FPS ( x, y ) denotes the farthest point sampling operator, similar to Qi et al. [17] , where x and y mean the sizes of point cloud before 

and after sampling. DM ( x, y ) refers to the Depth Mapping operator that generates a depth image around each sampled point by projecting neighboring points in the 

Euclidean space from the upper-layer point cloud to the tangent plane of the sampled point. x and y are the numbers of points and sampled points, respectively. 

The result is a K ×K ( 𝐾 = 16 in our experiments) depth image for each sampled point. The depth information is added to the point features as an additional input 

channel. Conv 2 d ( x, y ) and DeConv 2 d ( x, y ) refer to 2D convolution/Deconvolution operators on depth images, where x and y denote the channel sizes of input and 

output. RDM ( x, y ) is the reverse mapping that maps the depth images onto upper-layer point cloud. Skip Link layers are added after DeConv 2 d . 
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n which traditional CNN methods are difficult to apply. Therefore, we

esign new DM and RDM operators to bridge between CNN and point

loud data. The DM operator maps the point cloud into depth maps on

hich 2D CNN can be easily applied, and the RDM operator reverses

he procedure of DM and remaps the sampled depth image back onto

pper layer point cloud with deconvoluted features. Our full classifi-

ation network architecture is summarized in Fig. 4 , where we build a

ulti-layer convolutional network with point cloud down-sampling and

p-sampling. 

.3.1. DM/RDM operators 

The DM operator DM ( p, q ) takes the input point cloud with p points

 1 , 𝑃 2 , … , 𝑃 𝑝 and a subset of q sampled points 𝑃 𝑠 1 , 𝑃 𝑠 2 , … , 𝑃 𝑠 𝑞 
as input

nd generates a depth image for each sampled point. For each sam-

led point 𝑃 𝑠 𝑗 , we search the neighboring points with k -nearest neigh-

or (kNN) and project them onto the tangent plane (orthogonal to the

ormal of the sampled point) of 𝑃 𝑠 𝑗 . To improve learning, we orient the

epth map consistently such that it is orthogonal to the gravity direc-

ion of 𝑃 𝑠 𝑗 . We then sample in the tangent plane a depth image of reso-

ution K ×K and add the depth (absolute distance between neighboring

oints and the tangent plane) as an extra feature channel. Similarly,

oint features of projected neighboring points are also used to generate

D feature images. This operator aims at learning rich local structure

eatures for points. 𝐾 = 16 is used in our experiments. Since points are

iscrete, we interpolate between projected neighboring points to obtain

omplete depth/feature images. Examples of depth images are shown in
igs. 1 and 5 . As can be seen, such depth images are insensitive to sam-

ling densities and provide compact and rich geometric information for

earning. After passing through convolutional layers, we introduce the

DM operator RDM ( q, p ) which takes semantic features from the CNN

n depth images as input and outputs the point cloud with semantic la-

el information 𝑃 1 , 𝑃 2 , … , 𝑃 𝑝 . The feature channel of P i is extracted from

he depth image associated with 𝑃 𝑠 𝑘 that is nearest to P i . DM and RDM

nd inverse operators, both required to set up an end-to-end network

tructure. 

.3.2. Classification network architecture 

The overall classification network that assigns a semantic label to

ach point in the input point cloud is summarized in Fig. 4 . We perform

wo stages of farthest point sampling, with N 1 and N 2 sampled points re-

pectively. In our experiments, we set 𝑁 1 = 𝑁∕32 , and 𝑁 2 = 𝑁 1 ∕32 . The

M operator is used to generate depth images around sampled points,

hich are then combined with point features. The regular structure of

epth images means 2D convolution and deconvolution operators can

e applied to extract useful information. We then apply the RDM oper-

tor to map filtered information in the depth domain back to the point

loud. We introduce skip links between dots with the same color to pass

etailed information to the later stages of the network, avoiding infor-

ation loss. The final output is N ×M scores, i.e. for each point, we ob-

ain M scores corresponding to the M object categories, and we simply

ssign each point to the class with the highest score. 
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Fig. 5. Examples of depth images generated by 

the DM operator. 

Table 2 

Comparison of accuracy and IoU (intersection of union) performance on the S3DIS dataset (per semantic class and overall). OA means overall accuracy, mAcc means 

mean accuracy across classes and mIoU means mean IoU across classes. Our method outperforms state-of-the-art methods. 

Method OA mAcc mIoU Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter 

PointNet [16] 78.5 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2 

SEGCloud [30] – 57.35 48.9 90.1 96.1 69.9 00.0 18.4 38.4 23.1 75.9 70.4 58.4 40.9 13.0 41.6 

Engelmann [18] 81.1 66.4 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 58.1 47.4 06.9 39.0 30.0 41.9 

SPG [33] 85.5 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 69.2 73.5 45.9 63.2 8.7 52.9 

Ours method 88.1 75.2 63.7 98.7 98.3 76.6 77.7 42.6 63.9 65.2 66.2 72.3 28.3 45.8 47.3 39.2 
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Table 3 

Comparison of per-point classification 

accuracy between our method and 

state-of-the-art deep learning methods 

on the ScanNet dataset. PPN only is 

the performance of only using the PPN, 

which is related to the segmentation re- 

sult while insensitive to sampling den- 

sity. Depth Mapping CNN Only is the 

performance of classification network 

that only uses the position and color as 

the input channel without the PPN fea- 

ture. 

Method Accuracy 

PointNet [16] 73.9 

PointNet ++ [17] 84.5 

Tangent CNN [31] 80.9 

PointCNN [32] 85.1 

PPN Only 73.4 

Depth Mapping CNN Only 75.2 

Our Method 85.3 

s  

O  

f  

o  

f  

d  

p  

a  

t

4

 

s  
. Experiments 

We use two main large-scale benchmarks S3DIS and ScanNet for

valuating semantic labeling performance. We train our network on a

omputer with an Intel i7-8700K CPU, 64GB memory and a GTX 1080Ti

PU with 11GB on-board memory. Cross-entropy loss is optimized dur-

ng training. When training the PPN, we set the batch size to 256 and

et the learning rate to 10 −4 . For the classification network training, we

et the batch size to 1 and the learning rate to 10 −2 . The training process

erminates when the loss converges (i.e. the overall loss does not reduce

n three epochs). 

.1. S3DIS dataset 

The S3DIS dataset [3] includes 6 areas and 271 rooms captured

y Matterport cameras, with ground truth point-level labeling of 13

lasses, including chairs, tables, etc. We perform 6-fold cross valida-

ion and take the micro-averaged metrics over all 6 folds as our evalua-

ion result. We compare our method with state-of-the-art deep meth-

ds [16,18,30,33] where the performance is either reported or code

vailable from the authors. We use the accuracy and Intersection over

nion (IoU) measures to evaluate the performance. As shown in Table 2 ,

ur method achieves significantly better result than [16,18,30,33] over-

ll and perform best for most classes. Fig. 6 shows some results of Point-

et and our method. It can be seen clearly that our method works sig-

ificantly better for the classes of windows, boards and columns. 

.2. ScanNet dataset 

The ScanNet dataset [22] contains 1513 scanned and reconstructed

ndoor scenes with 21 object classes. We follow the experiment setting

n [22] and use 1201 scenes for training, and the remaining 312 scenes

or testing.We compare our work with state-of-the-art methods either

ased on their reported performance or using code provided by authors.

he detailed point-level accuracy results are reported in Table 3 , which
hows that our method performs better than state-of-the-art methods.

ur baseline is the result of only using the PPN, which gives decent per-

ormance already (comparable to PointNet), showing the effectiveness

f the pooling network. Our Deep Mapping network is a light network

or local feature training, which aims at directly applying on point cloud

ata without pre-processing of block segmentation and provides good

oint structure for convolutional networks. The performance of using it

lone is reasonable but still limited. However, when combined this with

he PPN, our method achieves better performance. 

.3. Evaluation of multi-method patch segmentation 

We evaluate how the number of patch segmentation methods and

egmentation levels affects the trained features. Since different segmen-
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Fig. 6. Comparison of results of PointNet and our method on the S3DIS dataset. For most case PointNet failed to classify the board, window and column due to 

its limited geometry shape feature. And our method produce less label noise as the consistent points of a single object usually share some segmentation patches in 

suitable segmentation level. 

Fig. 7. The overall accuracy results of our PPN with different segmentation levels (a) and combinations of different methods (b). In (b) for each method, all the 

levels are used as this gives the best performance, as shown in (a). It is clear from (a) and (b) that the more segmentation levels and methods are used, the more 

reliable geometric features are extracted, leading to better classification accuracy. 
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S  

d  
ation results directly affect the pooling network PPN, we evaluate the

PN performance of each patch segmentation method with different lev-

ls of segmentation, and it clearly shows that more segmentation levels

ead to better accuracy ( Fig. 7 (a)). We evaluate the effectiveness of the

rained features by the overall accuracy (computed based on the class

cores of Fig. 3 ). We further evaluate a combination of different segmen-

ation methods (with all the segmentation levels of each method used, as

his gives the best performance). The accuracy is improved with an in-

reasing number of segmentation levels and a combination of more seg-
entation methods. This demonstrates the effectiveness of PPN, which

ffectively selects the most suitable patch segmentation and therefore

enefits from more possible patch segmentation results to choose from.

.4. Running times 

The average time needed for semantic labeling of a scene in the

3DID dataset with about 0.8 million points is 2 min. This is largely

ue to the different patch segmentation methods used. Specifically, the
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ulti-method segmentation takes 33 s, the feature descriptor computa-

ion takes 83 s and the deep neural network inferencing takes 6 s. 

. Conclusion and future work 

In this paper, we propose a novel approach to semantic labeling of

oint clouds at the scene level. For each point, we extract patch fea-

ures with different segmentation methods at different scales by chang-

ng the segmentation parameters and design a patch feature pooling

etwork (PPN) for patch feature learning. We further propose a novel

lassification network that combines these features with two key opera-

ors, namely DM and RDM which produce depth images around sampled

oints for 2D CNN to be applied to. Our network can directly work on

oint cloud data without sampling into certain size as most other meth-

ds [16–18,32] do. However, the input channels of PPN are hand-crafted

eature descriptors. We would like to develop fully automatic learning

ethod to extract the most suitable patch feature. Moreover, our depth

apping CNN architecture is general and can be applied to other point

loud processing tasks using deep learning. 

cknowledgments 

This work was supported by the National Key Technology R&D Pro-

ram (Project Number 2017YFB1002604), the Natural Science Founda-

ion of China (Project Number 61521002 , 61761136018 ) and Tsinghua-

encent Joint Laboratory for Internet Innovation Technology. We

ould like to thank the authors and contributors of the ScanNet

ataset [22] and the S3DIS dataset [3] for making the datasets avail-

ble. 

eferences 

[1] N. Silberman , D. Hoiem , P. Kohli , R. Fergus , Indoor segmentation and support in-

ference from RGBD images, in: European Conference on Computer Vision, 2012,

pp. 746–760 . 

[2] I. Armeni, A. Sax, A.R. Zamir, S. Savarese, Joint 2D-3D-Semantic Data for Indoor

Scene Understanding, 2017 arXiv: 1702.01105 . 

[3] I. Armeni , O. Sener , A.R. Zamir , H. Jiang , I. Brilakis , M. Fischer , S. Savarese , 3D

semantic parsing of large-scale indoor spaces, in: IEEE International Conference on

Computer Vision and Pattern Recognition, 2016 . 

[4] O. Mattausch , D. Panozzo , C. Mura , O. Sorkine-Hornung , R. Pajarola , Object de-

tection and classification from large-scale cluttered indoor scans, Comput. Graph.

Forum 33 (2) (2014) 11–21 . 

[5] K. Chen , Y.-K. Lai , Y.-X. Wu , R. Martin , S.-M. Hu , Automatic semantic modeling

of indoor scenes from low-quality RGB-D data using contextual information, ACM

Trans. Graph. 33 (6) (2014) 208:1–12 . 

[6] A. Geiger , P. Lenz , R. Urtasun , Are we ready for autonomous driving? The KITTI

vision benchmark suite, in: IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), IEEE, 2012, pp. 3354–3361 . 

[7] R. Gomez-Ojeda , J. Briales , J. Gonzalez-Jimenez , PL-SVO: semi-direct monocular

visual odometry by combining points and line segments, in: IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2016, pp. 4211–4216 . 

[8] C. Chen , A. Seff, A. Kornhauser , J. Xiao , DeepDriving: learning affordance for direct

perception in autonomous driving, in: IEEE International Conference on Computer

Vision (ICCV), 2015, pp. 2722–2730 . 

[9] S. Wang , H. Zhao , X. Hao , Design of an intelligent housekeeping robot based on

IOT, in: International Conference on Intelligent Informatics and Biomedical Sciences

(ICIIBMS), IEEE, 2015, pp. 197–200 . 

10] M. Serino , K. Cordrey , L. Mclaughlin , R.L. Milanaik , Pokémon go and augmented

virtual reality games: a cautionary commentary for parents and pediatricians, Curr.

Opin. Pediatr. 28 (5) (2016) 673 . 
11] T. Piumsomboon , A. Clark , M. Billinghurst , A. Cockburn , User-defined gestures for

augmented reality, Lect. Notes Comput. Sci. 8118 (2017) 282–299 . 

12] D. Maturana , S. Scherer , VoxNet: a 3D convolutional neural network for real-time

object recognition, in: IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2015, pp. 922–928 . 

13] C.R. Qi , H. Su , M. Niebner , A. Dai , M. Yan , L.J. Guibas , Volumetric and multi-view

CNNs for object classification on 3D data, in: IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 5648–5656 . 

14] Y. Zhou , O. Tuzel , VoxelNet: end-to-end learning for point cloud based 3D object

detection, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2018 . 

15] P.S. Wang , Y. Liu , Y.X. Guo , C.Y. Sun , X. Tong , O-CNN: octree-based convolutional

neural networks for 3D shape analysis, ACM Trans. Graph. 36 (4) (2017) 72 . 

16] C.R. Qi , H. Su , K. Mo , L.J. Guibas , PointNet: deep learning on point sets for 3D

classification and segmentation, IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)

1 (2) (2017) 4 . 

17] C.R. Qi , L. Yi , H. Su , L.J. Guibas , PointNet ++ : deep hierarchical feature learning on

point sets in a metric space, in: Advances in Neural Information Processing Systems,

2017, pp. 5105–5114 . 

18] F. Engelmann , T. Kontogianni , A. Hermans , B. Leibe , Exploring spatial context for 3D

semantic segmentation of point clouds, in: IEEE International Conference on Com-

puter Vision Workshop, 2017, pp. 716–724 . 

19] S. Izadi , D. Kim , O. Hilliges , D. Molyneaux , R.A. Newcombe , P. Kohli , J. Shotton ,

S. Hodges , D. Freeman , A.J. Davison , A.W. Fitzgibbon , KinectFusion: real-time 3D

reconstruction and interaction using a moving depth camera, in: ACM Symposium

on User Interface Software and Technology, 2011, pp. 559–568 . 

20] T. Whelan , R.F. Salas-Moreno , B. Glocker , A.J. Davison , S. Leutenegger , Elasticfu-

sion: real-time dense SLAM and light source estimation, Int. J. Rob. Res. 35 (14)

(2016) . 

21] A. Dai , S. Izadi , C. Theobalt , BundleFusion: real-time globally consistent 3D recon-

struction using on-the-fly surface re-integration, ACM Trans. Graph. 36 (4) (2017)

76a . 

22] A. Dai , A.X. Chang , M. Savva , M. Halber , T. Funkhouser , M. Nießner , ScanNet: rich-

ly-annotated 3D reconstructions of indoor scenes, in: IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017 . 

23] B.-S. Hua , Q.-H. Pham , D.T. Nguyen , M.-K. Tran , L.-F. Yu , S.-K. Yeung , SceneNN: a

scene meshes dataset with annotations, in: International Conference on 3D Vision

(3DV), 2016 . 

24] K. Lai , L. Bo , X. Ren , D. Fox , A large-scale hierarchical multi-view RGB-D ob-

ject dataset, in: IEEE International Conference on Robotics and Automation, 2011,

pp. 1817–1824 . 

25] H.S. Koppula , A. Anand , T. Joachims , A. Saxena , Semantic labeling of 3D point

clouds for indoor scenes, in: International Conference on Neural Information Pro-

cessing Systems, 2011, pp. 244–252 . 

26] K. Lai , L. Bo , D. Fox , Unsupervised feature learning for 3D scene labeling, in: IEEE

International Conference on Robotics and Automation, 2014, pp. 3050–3057 . 

27] G. Vosselman , Point cloud segmentation for urban scene classification, ISPRS - Int.

Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-7/W2 (7) (2013) 257–262 . 

28] R. Klokov , V. Lempitsky , Escape from cells: deep kd-networks for the recognition

of 3D point cloud models, in: IEEE International Conference on Computer Vision

(ICCV), 2017, pp. 863–872 . 

29] M. Atzmon , H. Maron , Y. Lipman , Point convolutional neural networks by extension

operators, ACM Trans. Graph. 37 (4) (2018) 71 . 

30] L.P. Tchapmi , C.B. Choy , I. Armeni , J. Gwak , S. Savarese , SEGCloud: semantic seg-

mentation of 3D point clouds, in: International Conference on 3D Vision (3DV),

2017 . 

31] M. Tatarchenko , J. Park , V. Koltun , Q.-Y. Zhou , Tangent convolutions for dense

prediction in 3D, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2018, pp. 3887–3896 . 

32] Y. Li, R. Bu, M. Sun, B. Chen, PointCNN, arXiv: 1801.07791 (2018). 

33] L. Landrieu, M. Simonovsky, Large-scale point cloud semantic segmentation with

superpoint graphs, 2017 arXiv: 1711.09869 . 

34] H. Pan, S. Liu, Y. Liu, X. Tong, Convolutional neural networks on 3d surfaces using

parallel frames, 2018 arXiv: 1808.04952 . 

35] R.B. Rusu , S. Cousins , 3D is here: point cloud library (PCL), in: IEEE International

Conference on Robotics and Automation (ICRA), Shanghai, China, 2011 . 

36] W.U. Yan-Xiong , L.I. Feng , F. Liu , L.N. Cheng , L.L. Guo , Point cloud segmentation

using Euclidean cluster extraction algorithm with the smoothness, Meas. Control

Technol. (2016) . 

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0001
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0001
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0001
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0001
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0001
http://arxiv.org/abs/1702.01105
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0003
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0003
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0003
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0003
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0003
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0003
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0003
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0003
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0004
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0004
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0004
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0004
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0004
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0004
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0005
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0005
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0005
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0005
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0005
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0005
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0006
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0006
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0006
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0006
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0007
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0007
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0007
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0007
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0008
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0008
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0008
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0008
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0008
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0009
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0009
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0009
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0009
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0010
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0010
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0010
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0010
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0010
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0011
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0011
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0011
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0011
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0011
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0012
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0012
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0012
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0013
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0013
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0013
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0013
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0013
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0013
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0013
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0014
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0014
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0014
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0015
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0015
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0015
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0015
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0015
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0015
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0016
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0016
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0016
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0016
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0016
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0017
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0017
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0017
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0017
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0017
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0018
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0018
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0018
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0018
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0018
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0019
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0019
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0019
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0019
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0019
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0019
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0019
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0019
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0019
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0019
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0019
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0019
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0020
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0020
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0020
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0020
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0020
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0020
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0021
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0021
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0021
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0021
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0022
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0022
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0022
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0022
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0022
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0022
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0022
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0023
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0023
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0023
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0023
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0023
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0023
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0023
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0024
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0024
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0024
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0024
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0024
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0025
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0025
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0025
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0025
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0025
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0026
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0026
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0026
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0026
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0027
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0027
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0028
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0028
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0028
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0029
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0029
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0029
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0029
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0030
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0030
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0030
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0030
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0030
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0030
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0031
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0031
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0031
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0031
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0031
http://arxiv.org/abs/1801.07791
http://arxiv.org/abs/1711.09869
http://arxiv.org/abs/1808.04952
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0034
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0034
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0034
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0035
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0035
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0035
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0035
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0035
http://refhub.elsevier.com/S1524-0703(19)30024-4/sbref0035

	Deep point-based scene labeling with depth mapping and geometric patch feature encoding
	1 Introduction
	2 Related work
	2.1 Obtaining unstructured surface point cloud data
	2.2 Traditional methods for point cloud semantic labeling
	2.3 Deep learning on 3D voxels
	2.4 Deep learning on point clouds

	3 Depth mapping point-based CNN
	3.1 Patch segmentation and multi-method feature extraction
	3.1.1 Normal-based Region Growing (NRG)
	3.1.2 Color-based region growing (CRG) from PCL
	3.1.3 Euclidean Cluster Extraction (ECE)

	3.2 PPN: patch pooling network
	3.3 Classification network using depth mapping CNN
	3.3.1 DM/RDM operators
	3.3.2 Classification network architecture


	4 Experiments
	4.1 S3DIS dataset
	4.2 ScanNet dataset
	4.3 Evaluation of multi-method patch segmentation
	4.4 Running times

	5 Conclusion and future work
	Acknowledgments
	References


