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The 2.1D sketch is a layered image representation, which assigns a partial depth ordering of
over-segmented regions in a monocular image. This paper presents a global optimization
framework for inferring the 2.1D sketch from a monocular image. Our method only uses
over-segmented image regions (i.e., superpixels) as input, without any information of
objects in the image, since (1) segmenting objects in images is a difficult problem on its
own and (2) the objective of our proposed method is to be generic as an initial module use-
ful for downstream high-level vision tasks. This paper formulates the inference of the 2.1D
sketch using a global energy optimization framework. The proposed energy function con-
sists of two components: (1) one is defined based on the local partial ordering relations
(i.e., figure-ground) between two adjacent over-segmented regions, which captures the
marginal information of the global partial depth ordering and (2) the other is defined based
on the same depth layer relations among all the over-segmented regions, which groups
regions of the same object to account for the over-segmentation issues. A hybrid evolution
algorithm is utilized to minimize the global energy function efficiently. In experiments, we
evaluated our method on a test data set containing 100 diverse real images from Berkeley
segmentation data set (BSDS500) with the annotated ground truth. Experimental results
show that our method can infer the 2.1D sketch with high accuracy.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The 2.1D sketch is a decomposition of an image domain
into overlapping regions ordered by occlusion. An illustra-
tive example is shown in Fig. 1, in which the 2.1D sketch of
a domain D is a set of four overlapped regions R1;R2;R3;R4,
satisfying R1 [ R2 [ R3 [ R4 ¼ D, and there is a partial depth
ordering � on these regions, R1 � R2 � R3 � R4, where
Ri � Rj means Ri is in front of Rj. The 2.1D sketch was first
proposed by Nitzberg et al. [1,2], and was also called lay-
ered image representation by Adelson [3–5] for image
coding and motion analysis. The goal of the 2.1D sketch
is, on one hand, to recover the partial layer ordering of
regions in an input image, and on the other hand, to keep
multiple reasonable and distinct solutions accounting for
the intrinsic ambiguity caused by occlusion. Solving the
2.1D sketch is a critical step for scene understanding and
other high-level vision tasks in both still image and video,
such as foreground/background separation, depth estima-
tion from a single image (also called 2.5D sketch), image
and video coding, motion analysis, etc. It remains a very
challenging problem in the vision literature.

This paper presents a global energy optimization meth-
od for inferring the 2.1D sketch from a monocular real
image. Fig. 2 shows a real example. The 2D image regions
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Fig. 1. 2.1D sketch of an image domain.
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in Fig. 2(b) are computed by some off-the-shelf multi-scale
low-level segmentation algorithms (e.g., the Berkeley mul-
ti-scale segmentation algorithm, called gPb-owt-ucm in
[6], is used in our experiments). The reason that we adopt
the over-segmented 2D image regions as input is to
Fig. 2. A real example of 2.1D sketch. The partial depth order in (c) is generated b
color map (e) used in [8]. (For interpretation of the references to color in this fi
recover the underlying latent objects in the 2.1D sketch.
In this paper, we focus on inferring the partial depth order-
ing of objects (Figs. 2(c) and (d)) using the low-level seg-
mented image regions as input (i.e., without resorting to
the object information). We do not address the occluded
contour completion problem. Meanwhile, we formulate
the inference problem under an global energy optimization
framework and therefore do not account for the multiple
plausible solutions of the 2.1D sketch.

Inferring the partial depth ordering of a set of image re-
gions belongs to the well-known tournament problem [7]
which is known to be a NP-hard and APX-hard problem
in general. In the tournament problem, the objective is to
rank n elements (i.e., the image regions in this paper) using
some transitive properties (i.e., the depth of image regions
from the observer) and some successive pairwise compar-
isons (i.e., the marginal information of the globally consis-
tent partial depth ordering). To address this issue, in this
paper we propose a global energy optimization framework
to model the 2.1D sketch, which leads to a nonlinear opti-
mization in inference, and we utilize a hybrid evolution
algorithm to solve it.

2. Related work

In the vision literature, generally speaking, the 2.1D
sketch problem or layered representation has been dis-
cussed from a variety of perspectives, such as line drawing
y the proposed method in an interactive mode. The result is visualized by a
gure legend, the reader is referred to the web version of this article.)
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interpretations [9,10], depth segmentation [11,12], occlu-
sion recovery [13,14], contour illusory and completion
[15,16] and foreground/background separation [17,18].

Nitzberg and Mumford [2] formulated the 2.1D sketch
problem as an energy minimization problem defined sim-
ilarly to the Mumford–Shah energy function. Their algo-
rithm proceeded in a three-step procedure: (1) finding
edges and T-junctions, (2) hypothesizing continuations,
and (3) minimizing the defined energy function combina-
torially with the constraints related to the edges and con-
tinuations. Only the third step was implemented in [2]. For
the second step, a set of continuous curves by smoothly
connecting disjoint contour segments are required for con-
tour integrals in the energy function. This corresponds to
the occluded contour completion problem which is itself
a difficult problem. So the method in [2] can only handle
simple synthesized images. Adelson [3] proposed the con-
cept of layered representation for image coding and mo-
tion analysis. Since then, there has been limited work on
the 2.1D sketch problem with limited progress being
achieved, especially on the problem of inferring a 2.1D
sketch from real images. A quadratic objective function
was designed in [19] to incorporate ordering hints from
T-junctions and the discontinuities at image contours for
2.1D sketch extraction. However, it was still unclear how
to incorporate other local features such as saliency, color
and textures used in this paper. For a special type of image
texture that is formed by spatial repetition of a large num-
ber of texels, an unsupervised extraction method for 2.1D
textures was proposed in [20]. In [21] a set of local cues,
including semantics, positions, compactness, shared
boundaries and junctions, were used in an Adaboost pre-
diction of corresponding occlusions. In this paper, we deal
with 2.1D sketches extracted from more general natural
images and propose a unified global framework to solve
the potential confliction of local cues.

2.1D sketch can find a wide range of applications includ-
ing figure/ground segregation, image segmentation, image
editing and objects’ partial retrieval. By following the en-
ergy function for 2.1D sketch extraction defined in [2], Ese-
doglu and March [11] proposed to segment an image with
depth but without detecting junctions, using a variational
formulation technique. Ren et al. [17] presented a method
for figure/ground assignment according to local image evi-
dence learned in a Markov random field (MRF) model. Yu
et al. [18] proposed a model for figure/ground segregation
based on a hierarchical MRF, using clique potentials in the
MRF to encode local logical decision rules and demonstrat-
ing a system that automatically integrates sparse local rel-
ative depth cues arising from T-junctions over long
distances into a global ordering of relative depths. Wang
et al. [16] used some shape priors (e.g., templates for ob-
jects) to do partitioning based on the Swendsen-Wang cuts
algorithm for integration of region-based and curve-based
segmentation. Recently Hoiem et al. [15] proposed a meth-
od for recovering occlusion boundaries by learning a condi-
tional random field (CRF) model. Gao et al. [22] proposed a
mixed random field formulation with a hierarchical graph-
ical model for the 2.1D sketch. The graphical model [23] ex-
tracted from 2.1D sketches can also be used in a conceptual
design process [24]. An image editing method was
proposed in [25] by detecting and rearranging repeated
scene elements, which utilized a partial depth ordering of
overlapping repeated elements. By projecting a 3D object
into a set of planes determined by optimal viewpoints
[26], the 2.1D sketches can also be used for partial retrieval
of both 2D shapes [27,28] and 3D objects [29].

In this paper we make the following contributions for
inferring the 2.1D sketch from a monocular image:

� We present a generic energy function for modeling and
computing the 2.1D sketch which can leverage different
features (local and global) extracted from 2D image
regions.
� Our method can serve as a universal framework for

computing the 2.1D sketch of both simple artificial
images and complex natural images. As a comparison,
previous work [22,2] can only handle simple or syn-
thetic images.

3. Overview of the proposed method

Given an input image, we first compute the over-seg-
mented 2D regions using the gPb-owt-ucm algorithm in
[6], and extract the local features (Section 4) in these re-
gions for inferring (1) the local figure-ground relations
and (2) the same depth layer relations. For example, in
Fig. 1(b), the over-segmented regions 2 and 3 are in the fig-
ure-ground relation and the over-segmented regions 1, 3
and 4 are in the same depth layer relation. We pose the
inference problem under the energy optimization frame-
work (Section 5). The energy function consists of two
parts: (1) one is defined based on the local partial ordering
relations (i.e., figure/ground) between two adjacent over-
segmented regions, which capture the marginal informa-
tion of the global partial depth ordering, and (2) the other
is defined based on the same depth layer relations among
all the over-segmented regions, which groups regions
belonging to the same object to account for the over-seg-
mentation issues. Once the energy function is minimized
by an efficient hybrid evolution algorithm, the optimal
2.1D sketch is obtained.
4. Local feature extraction

Given an over-segmented image computed by the algo-
rithm in [6], the local features introduced in this section
only consider the local relations among over-segmented
regions.

We use the following two local relations abbreviated as
F–G and SL. The F–G (figure–ground) relation is referred to
as that two adjacent over-segmented regions do not belong
to the same layer in the 2.1D sketch, and thus we need to
determine which is foreground and which is background.
The SL (same layer) relation is referred to as that two
over-segmented relations have the same depth, and thus
they need to be combined into one layer. To compute the
2.1D sketch, we first need to combine over-segmented re-
gions with SL relations, and then we need to compute the
partial depth order of the remaining regions with F–G
relations.



Fig. 3. Graph-based T-junction detection. Left: boundaries of over-seg-
mented regions as shown in Fig. 1. Right: the nodes (shown in red) in the
graph are the T-junctions. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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4.1. F–G relations

In this study we use three F–G relations, i.e., T-junction,
boundary and saliency features.

4.1.1. T-junction features
T-junctions are significant local visual cues to analyze

the depth relation between partially overlapped regions,
which were used in [19,2] without implementation details.
In this paper we use the following simple strategy. As illus-
trated in Fig. 3, we extract all boundary segments of over-
segmented regions and build a graph G ¼ ðV ; EÞ, where the
node v r 2 V is the intersection point of three distinct
boundary segments, i.e., v r ¼ @Si \ @Sj \ @Sk; i – j – k, and
@Si is the boundary of segment Si. The edges es 2 E are re-
gion boundaries separated by the nodes, i.e.,

S
es2Ees ¼

ð
S

iSiÞ n ð
S

vr2Vv rÞ. Each non-degenerate nodes in G corre-
sponds to a T-junction feature. The depth relation locally
around the T-junction is that, the cap of the T-junction is
closer to the observer than the regions indicated by the
stem of the T-junction.

We use a matrix T to represent all the T-junction
features:

Tm�tnum ¼ ½t1; . . . ; ti; . . . ; ttnum� ð1Þ

where m is the number of over-segmented regions, tnum is
the total number of T-junctions and each ti is a m� 1 vec-
tor which represents the information of ith T-junctions, i.e.,
the jth element in ti satisfies:

tiðjÞ ¼
�2 if j ¼ capðiÞ
1 if j ¼ stemðiÞ
0 otherwise

8><>: ð2Þ

where capðiÞ returns the region ID of the cap of the ith
T-junction and stemðiÞ returns the regions IDs (there are
two regions belongs to the stem) of the stem of the ith
T-junction.

4.1.2. Boundary features
For each edge ei 2 E in the graph G, we compute a

boundary feature bi as proposed in [30]. We also use a ma-
trix B to represent all the boundary features:

Bm�bnum ¼ ½b1; . . . ; bi; . . . ; bbnum� ð3Þ

where m is the number of over-segmented regions, bnum is
the total number of boundary edges in G and each bi is a
m� 1 vector whose jth element satisfies:
biðjÞ ¼
�1 if j ¼ bfigureðiÞ
1 if j ¼ bgroundðiÞ
0 otherwise

8><>: ð4Þ

where bfigureðiÞ and bgroundðiÞ returns respectively the re-
gion IDs of the figure (closer to observer) and ground (far-
ther to observer) judged by the ith boundary feature using
the method proposed in [30].

4.1.3. Saliency features
In most cases, salient regions have high possibility to be

the figure regions, especially in the images where a single
salient object exists. We compute the saliency for each
over-segmented regions using the method proposed in
[31] with an improvement of using soft image abstraction
[32]. We use a matrix S to represent all the saliency
features:

Sm�snum ¼ ½s1; . . . ; si; . . . ; ssnum� ð5Þ

where m is the number of over-segmented regions, snum is
the number of all F–G relations judged by saliency features
and each si is a m� 1 vector whose jth element satisfies:

siðjÞ ¼
�1 if j ¼ sfigureðiÞ
1 if j ¼ sgroundðiÞ
0 otherwise

8><>: ð6Þ

where sfigureðiÞ and sgroundðiÞ returns respectively the re-
gion IDs of the figure and ground judged by the ith saliency
feature.

4.2. SL relations

We use the following three SL relations, i.e., color, tex-
ture and hierarchical features.

4.2.1. Color features
Since the image domain is over-segmented, if two adja-

cent regions have similar colors, we regard that they lo-
cally have a SL relation. We use the HSL color space; i.e.,
if the mean color vectors HSLðpÞ ¼ ðhp; sp; lpÞ and HSLðqÞ ¼
ðhq; sq; lqÞ of two adjacent regions p and q satisfy

kHSLðpÞ � HSLðqÞk2 < disc ð7Þ

where k � k is Euclidean 2-norm and disc is a small thresh-
old, an SL relation is set to these two regions. We use a ma-
trix C to represent all the color features:

Cm�cnum ¼ ½c1; . . . ; ci; . . . ; ccnum� ð8Þ

where m is the number of over-segmented regions, cnum is
the number of all the SL relations judged by color features
and each ci is a m� 1 vector whose jth element satisfies:

ciðjÞ ¼
�1 if j ¼ CSL1ðiÞ
1 if j ¼ CSL2ðiÞ
0 otherwise

8><>: ð9Þ

where CSL1ðiÞ and CSL2ðiÞ return the IDs of two regions
which are in a SL relation judged by the ith color feature.
The order of CSL1ðiÞ and CSL2ðiÞ does not affect the result.
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4.2.2. Texture features
Since the color features have been considered in Eq.

(18), we construct the texture features using the gray level
of the image Iðx; yÞ. Let ðx; yÞ 2 Ri be all the pixels belonging
to the region Ri, and wi and hi be the width and height of Ri.
We use the following scale image features [33–35] for
defining the texture feature of Ri:

� Angular second-moment feature ai:
ai ¼
X
ðx;yÞ2Ri

I2ðx; yÞ ð10Þ
� Contrast feature ci:
ci ¼
Xmaxfwi ;hig

k¼1

k2
X

jx�yj¼k;ðx;yÞ2Ri

Iðx; yÞ ð11Þ
� Inverse different moment feature ii:
ii ¼
X
ðx;yÞ2Ri

Iðx; yÞ
1þ ðx� yÞ2

ð12Þ
� Entropy feature ei:
ei ¼ �
X
ðx;yÞ2Ri

Iðx; yÞ log Iðx; yÞ ð13Þ
� Correlation feature cori:
cori ¼ �
X
ðx;yÞ2Ri

xyIðx; yÞ � uxuy

sxsy
ð14Þ
where
ux ¼
X
ðx;yÞ2Ri

xIðx; yÞ; uy ¼
X
ðx;yÞ2Ri

yIðx; yÞ;

s2
x ¼

X
ðx;yÞ2Ri

Iðx; yÞðx� uxÞ2;

s2
y ¼

X
ðx;yÞ2Ri

Iðx; yÞðy� uyÞ2
ð15Þ
We take four scanning directions (up–down, left–right
and two diagonals) and assemble all the scale image fea-
tures into a normalized texture vector:

tv i ¼ ða1
i ; c

1
i ; i

1
i ; e

1
i ; cor1

i ; . . . ;a4
i ; c

4
i ; i

4
i ; e

4
i ; cor4

i Þ ð16Þ

We infer locally that two regions p and q have the SL
relations if they satisfy:

ktvp � tvqk2 < dist ð17Þ

where k � k is Euclidean 2-norm and dist is a small thresh-
old. We use a matrix X to represent all the texture features:

Xm�texnum ¼ ½x1; . . . ; xi; . . . ; xtexnum� ð18Þ

where m is the number of over-segmented regions, tex-
num is the number of all SL relations judged by texture
features and each xi is a m� 1 vector whose jth element
satisfies:

xiðjÞ ¼
�1 if j ¼ TSL1ðiÞ
1 if j ¼ TSL2ðiÞ
0 otherwise

8><>: ð19Þ
where TSL1ðiÞ and TSL2ðiÞ return the IDs of two regions
which are in a SL relation judged by the ith texture feature.
The order of TSL1ðiÞ and TSL2ðiÞ does not affect the result.

4.2.3. Hierarchical information
State-of-the-art segmentation algorithms such as the

Berkeley multi-scale segmentation algorithm [6] can pro-
vide hierarchical segmentation information. A hierarchical
segmentation example is shown in Fig. 4. If such hierarchi-
cal information is available, our method can make use of it
for helping judge the SL relation as follows.

Let p and q be two over-segmented regions in a hierar-
chical segmentation tree. We compute a segmentation dis-
tance disseg between p and q as:

dissegðp; qÞ ¼ Dleaf � Dancestorðp; qÞ ð20Þ

where Dleaf is the depth of the leaf nodes representing the
over-segmented regions and Dancestorðp; qÞ is the depth of
the most recent common ancestor nodes of leaf nodes p
and q. Our inference is based on the heuristic that if the
segmentation distance is small for p and q, the oriented
watershed transform value of the boundary is also small
and p and q are more likely to be SL relation.

To account for the hierarchical information, we modify
the judgement formula of color features and texture fea-
tures by:

kHSLðpÞ � HSLðqÞk2 < disc � k1 � dissegðp; qÞ ð21Þ
ktvp � tvqk2 < dist � k2 � dissegðp; qÞ ð22Þ

where k1 and k2 are two weighting coefficients.
There are a few parameters disc; dist; k1; k2 in local fea-

ture definitions and we will specify them in Section 6.
5. A global energy optimization framework

Each of the local features introduced in Section 4 infers
a partial depth ordering on some over-segmented regions
locally. Only using local information cannot ensure a glob-
ally consistent partial depth order and there will be some
misjudgement and conflicts among the partial depth or-
ders inferred locally. We propose below a global energy
optimization framework to obtain a globally consistent
partial depth order. Note that our framework is general
and any local features not defined in Section 4 can be nat-
urally incorporated into this framework.

5.1. A global energy

Let S ¼ f1;2; . . . ;mg be a finite index set, where m is the
number of over-segmented regions. The solution to specify
a 2.1D sketch is an index set D ¼ fd1; d2; . . . ; dmg, where
1 6 di 6 m. If there are no SL relations in m regions, D is
a permutation p of the set S, where p is a bijective map
and D ¼ fpð1Þ;pð2Þ; . . . ;pðmÞg.

The global energy E2:1d we define below represents the
conflicts of the partial depth order inferred locally. When
the value of E2:1d is minimized, the global conflict is also
minimized, which leads to an optimal solution of the
2.1D sketch.



Fig. 4. A hierarchical segmentation of an image in Berkeley data set BSDS500 [6]. The different regions in the segmentation are shown in different colors.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The global energy E2:1d consists of two terms, represent-
ing the F–G and SL relations respectively:

E2:1d ¼ EFG þ ESL ð23Þ

We denote a parameterized exponential function as:

Eðk; xÞ ¼ e�kx ð24Þ

Then EFG is defined as:

EFG ¼
Xtnum

i¼1

Eðkt ;aiÞ þ
Xbnum

j¼1

Eðkb;bjÞ þ
Xsnum

k¼1

Eðks; ckÞ ð25Þ

where kt > 0; kb > 0; ks > 0 are three weighting coefficients
whose values are specified in the next section, ai is the ith
element in the m-vector a ¼ TT D; bj is the jth element in
the m-vector b ¼ BT D; ck is the kth element in the m-vector
c ¼ ST D and T;B; S are matrices defined in Eqs. (1), (3), (5)
respectively.

We note that if all the local judgements for F–G rela-
tions are correct, the values ai; bj and ck;1 6 i 6 tnum;1
6 j 6 bnum;1 6 k 6 snum, are all positive and EFG reaches
its minimum. To see this property, we explain it using
the T-junction features for an example and the other two
local (boundary and saliency) features can be explained
in the same way. Assume in an image there are three re-
gions with the partial depth ordering R1 � R2 � R3, i.e.,
D ¼ 1 2 3ð ÞT . If they are judged correctly by a T-junc-
tion feature t1 ¼ �2 1 1ð ÞT , then tT

1 � D ¼ 3 achieves
the maximum positive value. For any incorrect judgment,
e.g., t01 ¼ 1 �2 1ð ÞT ; t0T1 � D ¼ 0 < tT

1 � D. Given any kt >

0; Eðkt ; tT
1 � DÞ achieves the minimum value.

Since local judgments by different local features may
have conflicts, the function Eðk; xÞ plays a role of penalties
for the wrong judgment of F–G relations and the minimum
value of EFG corresponds a global optimal solution to the
F–G relations.

Denote an absolute version of a m-vector r by
jrj ¼ ðjr1j jr2j � � � jrmjÞ. The ESL in Eq. (23) is defined as:

ESL ¼
Xcnum

u¼1

Eð�kc; fuÞ þ
Xtexnum

v¼1

Eð�ktex;gvÞ ð26Þ

where kc > 0; ktex > 0 are two weighting coefficients whose
values are specified in the next section, fu is the uth ele-
ment in the m-vector f ¼ jCT Dj;gv is the vth element in



Fig. 5. An iteration process working on the image (ID 253036) in Berkeley
data set (BSDS500) [6], using the hybrid differential evolution.
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the m-vector g ¼ jXT Dj;C and X are matrices defined in Eqs.
(8), (18) respectively.

If all the local judgements for SL relations are correct, all
the values fu and gv ;1 6 u 6 cnum;1 6 v 6 texnum, are
zero, which corresponds to a minimum value of ESL. If there
are some wrong or conflict SL relations judged by local fea-
tures, some pairs of two regions have different layer indi-
ces and thus some absolute values fu or gv are positive,
leading to an increase of ESL.

5.2. Energy minimization and 2.1D sketch extraction

The minimization of the global energy E2:1d corresponds
to a global optimal solution Dopt of the partial depth ordering.
To solve the nonlinear optimization problem arg minDE2:1d,
we use a variant of hybrid differential evolution algorithm.
Compared to classical multidimensional numerical solutions
such as downhill simplex method or direction-set method
which may be easily trapped into a local optimization, differ-
ential evolution [36] has been demonstrated to be a powerful
tool for finding the global optimization. How to generate
new solutions from existing one is important in differential
evolution. Below we present a variant of hybrid differential
evolution with simulated annealing, which is used to escape
from possible local optimum attractions.

We represent the solution space for 2.1D sketch by a
m� n matrix DS:

DS ¼ ½D1;D2; . . . ;Dn� ð27Þ

where Di;0 < i 6 n, is a m-vector, m is the number of over-
segmented regions and we use n ¼ 100 in our experiment.
We use the following steps for solving the 2.1D sketch
problem:

1. Initialization. We randomly generate n permutations of
the index set f1;2; . . . ;mg to initialize the matrix DS.

2. Hybrid mutation. Denote the iteration number by s, and
let usþ1

i and v sþ1
i be intermediate m-vectors used later

for updating Ds
i into Dsþ1

i . Set
vsþ1
i ¼ aDs

r1
þ bDs

best þ e1ðDs
r2
� Ds

r3
Þ þ e2ðDs

r4
� Ds

r5
Þ

where rt
1; r

t
2; r

t
3; r

t
4; r

t
5 2 ½1; n� (n ¼ 100 in our experiment)

are random and mutually different integers, xs
best is the best

solution in the sth iteration in DS, and we set the parame-
ters a ¼ 0:8; b ¼ 0:2; e1 ¼ 0:6; e2 ¼ 0:06.
3. Crossover. Set
usþ1
i ¼ v sþ1

i Uð0;1Þ 6 CR

Ds
i otherwise

(

where Uð0;1Þ is a uniform random number between 0 and
1, and we set the crossover rate CR ¼ 0:9.
4. Selection. We compute an updating probability by
p ¼
1; if E2:1dðusþ1

i Þ 6 E2:1dðDs
i Þ

e�
E2:1dðu

sþ1
i
Þ�E2:1dðD

s
i
Þ

Zs ; otherwise

8<:

where Zs is the temperature at iteration s that is decreased
with the increasing generation:
1

Zsþ1 ¼ lZs
We set the initial temperature Z0 ¼ 100 and l ¼ 0:1. Given
the probability p, we update the solution space in the next
generation as:
http
Dsþ1
i ¼ usþ1

i ; if Uð0;1Þ < p

Ds
i ; otherwise

(

5. Clone selection and Gaussian mutation. The best 10

candidate solutions in DS are selected for the cloning
operation, in which Gaussian variations are added:
xsþ1
i ðjÞ ¼ xsþ1

i ðjÞ þ ksþ1 � randjðGð0;1ÞÞ
1 6 i � 20; 1 6 j 6 m
where randjðGð0;1ÞÞ is a random number in ð�1;1Þ gener-
ated by standard Gaussian distribution Gð0;1Þ with mean
l ¼ 0 and standard deviation r ¼ 1, and ksþ1 ¼ 0:1kDsþ1

bestk2.
6. Stopping criterion. The total number of iteration

reaches a predefined threshold ns ¼ 100.

An iteration process of the numerical solution working
on the image (ID 253036) in Berkeley data set (BSDS500)
[6] is illustrated in Fig. 5. The MATLAB code is available
to be downloaded at1 and readers can repeat all experi-
ments presented in this paper.

The detailed complexity analysis and the performance
of above specified hybrid differential evolution with com-
parison with classical numerical methods are presented
in Section 6.2.

One advantage of the hybrid differential evolution is
that it allows continuous optimization, i.e., all the elements
in Dbest are not limited to integers. Given the solution Dbest

¼ d1 d2 � � � dmð ÞT , we obtain the partial depth ordering
of m regions by the matrix R:

Rij ¼
0 jdi � djj 6 0:5
1 di � dj > 0:5
�1 dj � di > 0:5

8><>: ; 1 6 i < j 6 m ð28Þ
://cg.cs.tsinghua.edu.cn/people/	Yongjin/2.1D-source.zip.

http://cg.cs.tsinghua.edu.cn/people/~Yongjin/2.1D-source.zip
http://cg.cs.tsinghua.edu.cn/people/~Yongjin/2.1D-source.zip


Fig. 6. An example image (left) and its depth ground truth (right) in the Make3D data set.
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If Rij ¼ 0, then regions i and j are in the same layer. If
Rij ¼ 1, then region i is foreground and region j is back-
ground. If Rij ¼ �1, then region j is foreground and region
i is background.

6. Algorithm evaluation and comparisons

There are several public available data sets that we can
use for testing our proposed global energy optimization
framework, including Cornell Make3D data set [8], Berke-
ley 3-D object data set (B3DO) [37] and Berkeley data set
(BSDS500) [6]. However, we found that the Make3D and
B3DO data sets were not suitable for our application. We
explain the reason with the following examples. For the
image in the Make3D data set shown in Fig. 6 left, due to
the limited laser scanning resolution in the large scale of
outdoor scene, the buildings and the sky have the same
depth ground truth as shown in Fig. 6 right. However, in
our application, the buildings and sky have a clear occlu-
sion relation and should be judged as the different layers.
For the image in the B3DO data set shown in Fig. 7 left,
due to the limited resolution of the Kinect hardware, the
clothes, the quilt and the bed all have the same depth
ground truth as shown in Fig. 7 right. However, in our
Fig. 7. An example image (left) and its depth g
application, the clothes, the quilt and the bed are clearly
in different layers with different partial depth ordering.

To evaluate our proposed method, we select 100 images
from the Berkeley data set (BSDS500) using the following
principles: (1) The images are representative, including
different scenarios and different target objects. (2) The
images have good over-segmentation results. (3) The
objects/regions in the images have clearly partial depth
orders. The selected images with their IDs in BSDS500
are illustrated in Fig. 8. All these 100 selected images
are over-segmented using the Berkeley segmentation
algorithm [6]. Human subjects were invited to add partial
depth orders to these over-segmented regions manually

and the results were recoded in the matrix T2:1d as the

ground truth. For 1 6 i < j 6 m, (1) if T2:1d
ij ¼ 0, then regions

i and j are in the same layer; (2) if T2:1d
ij ¼ 1, then region i is

foreground and region j is background; (3) if T2:1d
ij ¼ �1,

then region j is foreground and region i is background.

We use the ground truth T2:1d to measure the accuracy of
different 2.1D sketch extraction methods.

For each test image, we define the accuracy g of the
2.1D sketch using the result matrix R (defined in Eq. (28))
and the ground truth T2:1d as the follows:
round truth (right) in the B3DO data set.



Fig. 8. The selected 100 images with their indices in Berkeley data set (BSDS500).
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g ¼
Pm

i¼1

Pm
j¼iþ1Flagij

m

2

� � ð29Þ
where
Flagij ¼
1 Rij ¼ T2:1d

ij

0 Rij – T2:1d
ij

(
ð30Þ

All the experimental results and comparisons
summarized below used the ground truth T2:1d with the
images selected from the public available Berkeley data
set (BSDS500). Both image data and the MATLAB code are
available and the readers can repeat the experimental
results.
6.1. Parameter settings

There are a few parameters in our method. One set of
parameters are the thresholds disc and dist used in Eqs.
(7) and (17) respectively, and their scale weights k1 and
k2 relative to the segmentation distance defined in Eqs.
(20)–(22). In all experiments, our method is not sensitive
to these four parameters and we tune these parameters
according to the following observations. In the HSL space,



Table 1
The average accuracy and running time of 2.1D sketch extraction using
three different numerical schemes. The time is measured at the platform of
MATLAB R2010 in a PC (Intel (R) Core (TM) I7C2600 CPU 3.4 GHz) running
Windows 7.

Our method GA [38] PSO [39]

Average accuracy (%) 83.4 79.6 79.2
Average time (sec) 18.0 16.8 17.2

Table 2
The average accuracy of 2.1D sketch extraction with different objective
functions and methods.

Objective function EFG

(25)
ESL

(26)
E2:1d

(23)
Method
[19]

(23)
Without
hierarchical
information
(21, 22)

Average accuracy (%) 75.8 43.3 83.4 48.3 79.5
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the range of each dimension is H 2 ½0;360�; S 2 ½0;100� and
L 2 ½0;100�. So we choose the threshold disc to be about 4%
of the diagonal length of the HSL range cube, i.e., disc ¼ 15.
The magnitude of the texture vector defined in Eq. (16) is
normalized to be 1 and we choose the threshold dist to
Fig. 9. The 2.1D sketches of 100 images in Fig. 8 by minimizing the global energ
Fig. 2(e). The original 2.1D sketches can be downloaded at http://cg.cs.tsinghua
be 0.1. Our experiments show that in Eqs. (21) and (22),
good results can be obtained if the relative scale between
disc (or dist) and disseg is chosen to be within ½5%;10%�.
So we set k1 ¼ 1 and k2 ¼ 0:01.
y E2:1d: their partial depth orders are encoded by the color map shown in
.edu.cn/people/	Yongjin/2.1D-source.zip.

http://cg.cs.tsinghua.edu.cn/people/~Yongjin/2.1D-source.zip
http://cg.cs.tsinghua.edu.cn/people/~Yongjin/2.1D-source.zip


Fig. 10. The statistic data of accuracy comparison of the energy E2:1d to EFG; ESL and the method [19] on 100 test images shown in Fig. 8.

Table 3
The number of images for which 2, 3, 4, 5 and 6 layers existed in the
extracted 2.1D sketches as represented in Fig. 9.

Layer numbers 2 3 4 5 6
Image numbers 28 25 23 16 8
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The other set of parameters are weights kt ; kb; ks; kc and
ktex used in Eqs. (25) and (26), which provide different
combinations of local features. For different image types,
the significance of each local feature is varied and the
optimal set of these weighting parameters should be
determined by the given image database. We use the fol-
lowing optimization method to determine these parame-
ters based on BSDS500 database.

We define a functional N in a five dimensional space
ðkt; kb; ks; kc; ktexÞ. We choose the range of each dimension
to be ½0;10�. Each point p in the hypercube ½0;10�5 deter-
mine a deterministic global energy function defined in Eq.
(23) and we denote it by E2:1dðpÞ. With E2:1dðpÞ, we compute
an accuracy giðpÞ for each image i in BSDS500. The func-
tional N is defined as

NðpÞ ¼
X

i

giðpÞ ð31Þ

The optimal set of parameters is the point p0 that maximizes
the functional value N in the hypercube ½0;10�5. To find such
an optimal p0, we estimate the analytic form of N using RBF
interpolant. We sample the hypercube ½0;10�5 using an
interval 2 in each dimension. For each sample point pi, we
compute the value NðpiÞ. The RBF interpolating function is
then given by

eNðpÞ ¼X
i

wiUðp� piÞ ð32Þ

where U is the radial basis function and wi is a weight for
each sample pi. We choose the Gaussian radial basis func-
tion UðrÞ ¼ e�r2 due to its positive definite property. The
weights wi in Eq. (32) are obtained by solving the linear
system from the interpolating constraints:

eNðpjÞ ¼ NðpjÞ ¼
X

i

wiUðpj � piÞ ð33Þ

Given the analytic form of eN, we find its maximum value in
½0;10�5 using the BFGS algorithm in multi-dimensions. The
corresponding optimal parameters are kt ¼ 0:2; kb ¼ 0:2;
ks ¼ 0:2; kc ¼ 4 and ktex ¼ 1.

6.2. Numerical scheme analysis and performance

Heuristic global optimization methods, including genet-
ic algorithms (GAs), particle swarm optimization (PSO)
algorithms, simulated annealing (SA) algorithms, differen-
tial evolution (DE) algorithms, utilize various stochastic
search strategies to obtain the global optimums of nonlin-
ear optimization problems. These optimization techniques
do not use the derivatives of objective functions and are
suitable for minimization of our objective function (23).
The numerical scheme presented in Section 5.2 is an
improvement based on a combination of SA and DE meth-
ods. We first briefly summarize the complexity of this
numerical scheme and then compare it with a classic GA
algorithm [38] and a PSO algorithm [39].

In our variant of hybrid differential evolution with sim-
ulated annealing, n is the population scale of solutions, m is
the number of over-segmented regions and s is the maxi-
mum number of iterations. The complexities of the six
steps in the numerical scheme are follows:

1. Initialization: OðmnÞ.
2. Hybrid mutation: OðmnsÞ.
3. Crossover: OðmnsÞ.
4. Selection: OðnsÞ.
5. Clone selection and Gaussian mutation: OðmnsÞ.
6. Stopping criterion: OðsÞ.

Thus, the total complexity is OðmnsÞ, which is the same
as the GA algorithm [38] and the PSO algorithm [39]. The
average accuracy and running time of our 2.1D sketch
extraction method using these three numerical schemes
over 100 images selected from BSDS500 are summarized
in Table 1, which show that the numerical scheme pre-
sented in Section 5.2 has the highest average accuracy at
the cost of a slightly more running time.

6.3. Evaluation of 2.1D sketch extraction

In the global energy E2:1d defined in Eq. (23), there are
two terms EFG and ESL, which characterize the 2.1D sketch
representation from different perspectives. We first evalu-
ate the performance of the combinations of these two
terms. Fig. 10 summarizes the statistic data for comparison



Fig. 11. The interactive operation for 2.1D sketch extraction. The partial depth orderings in the 2.1D sketches in (d) and (e) are encoded using the color map
shown in Fig. 2(e). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of the accuracy of extracted 2.1D sketches by minimizing
the energies EFG (Eq. (25)), ESL (Eq. (26)) and E2:1d (Eq.
(23)) on 100 test images shown in Fig. 8. The original full
data is also presented in Table 4 in Appendix A. The aver-
age accuracy of different energies is also summarized in
Table 2. In all the 100 test images, there are 97 images
for which E2:1d is better than or equally well to EFG; there
are 94 images for which E2:1d better than or equally well
to ESL. The average accuracy of E2:1d is 83.4%, which is also
the best when compared to the average accuracy of EFG

(75.8%) and ESL (43.3%). These results show that the combi-
natorial form of E2:1d achieves the best performance of 2.1D
sketch extraction.

Our proposed global energy optimization method offers
a general framework that can naturally incorporate any lo-
cal features. In the presented study, we use a special hierar-
chical information inherent in the Berkeley segmentation
dataset, as characterized in Eqs. (21) and (22). It is interest-
ing to explore whether this hierarchical information helps
the 2.1D sketch extraction. Table 2 also summarizes the re-
sults for this comparison, which show that the energy func-
tion E2:1d incorporating hierarchical information in Eqs. (21)
and (22) has the average accuracy (83:4%) better than the
average accuracy (79.5%) using the energy function E2:1d

without the hierarchical information.
Secondly we compare the proposed global energy opti-

mization method with previous 2.1D sketch extraction
methods. There are only a few 2.1D sketch extraction
methods [19,22,2] in which due to the high computational
complexity or some strong assumptions on the continuity
of image contours, the methods [22,2] can only handle arti-
ficially synthesized simple images but cannot handle the
real images as shown in Fig. 8. We thus compare our meth-
od with the method in [19]. The statistic data of compari-
son between our method (E2:1d) and the method in [19] is
shown in Fig. 10. The full results using the method [19]
are also summarized in Table 4, and its average accuracy
is summarized in Table 2. The results show that in all the



Table 4
The accuracies of 2.1d sketches extracted from 100 images shown in Fig. 8, using different energy functions and methods. The images are indexed using their
original ID in the Berkeley data set (BSDS500) [6]. For each image, the best accuracy is shown in red color.
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100 test images, there are 79 images for which the E2:1d

minimization method is better than the method [19] and
there are 13 images for which the E2:1d minimization meth-
od works equally well to the method [19]. As presented in
Table 2, the average accuracy of E2:1d minimization method
is 83:4%, which is much better than the method [19] with
only 48.3% average accuracy.

The 2.1D sketches of 100 test images shown in Fig. 8,
recognized by minimizing the global energy E2:1d, are
shown with a color mapping in Fig. 9. The number of
layers existed in 2.1D sketches extracted from the 100 test
images is diverse from 2 to 6, and the statistic data of layer
numbers is summarized in Table 3.
Limitation of the presented method. Our method cur-
rently mainly use the low level image features to deter-
mine the partial depth ordering of regions in the image.
Due to the lack of high-level semantic information, in some
cases our method may separate the regions of the same
object into layers with different depth orders. One example
is shown in Fig. 11, in which the over-segmented regions of
the old man (Fig. 11(b)) were incorrectly judged as having
different partial depth orders (Fig. 11(d)). Due to the lack of
high-level semantic information, our method cannot
merge them into a layer with SL relations, since these re-
gions have significant difference in color and texture. To
remedy this drawback, our method provides an optional
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interactive operation. The user can draw some strokes or
pick some points (Fig. 11(c)) to indicate that the underly-
ing regions should be merged in a same layer with SL rela-
tions. One example of correct 2.1D sketch extracted after
the interactive operation is shown in Fig. 11(e).

7. Conclusion

The 2.1D sketch is a layered image representation with
a partial depth ordering, which can provide a good starting
point for the downstream high-level vision tasks such as
depth estimation (2.5D sketch), motion analysis, and im-
age and video coding. Most previous 2.1D sketch extraction
methods only relied on one or several local features, and
can only handle simple or synthesized images. In this pa-
per, we propose a global energy optimization framework
which can incorporate different local features into a global
unified solution. Two relations (F–G and SL) are modeled
and local features are unified into a global form with a
parameterized exponential function type. The experimen-
tal results on 100 selected images from the Berkeley data
set (BSDS500) show that our proposed global solution
has a good accuracy of extracting 2.1D sketches from real
images.
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Appendix A. Appendix

In this appendix, we present in Table 4 the full original
data of the accuracy of extracted 2.1D sketches by mini-
mizing the energies EFG (Eq. (25)), ESL (Eq. (26)) and E2:1d

(Eq. (23)) on 100 test images shown in Fig. 8, which is used
to generate the statistical data summarized in Fig. 10.

References

[1] M. Nitzberg, D. Mumford, T. Shiota, Filtering, Segmentation, and
Depth, Springer Verlag Inc., New York, 1993.

[2] M. Nitzberg, D.B. Mumford, The 2.1-d sketch, in: IEEE International
Conference on Computer Vision (ICCV’ 90), 1990, pp. 138–144.

[3] E.-H. Adelson, Layered representations for vision and video, in:
Proceedings IEEE Workshop on Representation of Visual Scenes,
1995, pp. 3–9.

[4] J.-Y.-A. Wang, E.-H. Adelson, Layered representation for motion
analysis, in: Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR’ 93), 1993, pp. 361–366.

[5] J.-Y.-A. Wang, E.-H. Adelson, Representing moving images with
layers, IEEE Trans. Image Process. 3 (5) (1994) 625–638.

[6] P. Arbelaez, M. Maire, C. Fowlkes, J. Malik, Contour detection and
hierarchical image segmentation, IEEE Trans. Pattern Anal. Mach.
Intell. 33 (5) (2011) 898–916.

[7] T. Coleman, A. Wirth, Ranking tournaments: local search and a new
algorithm, ACM J. Exp. Algorithmics 14 (2010) 6:2.6–6:2.2.

[8] A. Saxena, S.H. Chung, A.Y. Ng, 3-D depth reconstruction from a
single still image, Int. J. Comput. Vis. 76 (1) (2008) 53–69.
[9] J. Malik, Interpreting Line Drawings of Curved Objects, Ph.D. Thesis,
Stanford University, CA, USA, uMI order no. GAX86-12762, 1986.

[10] Q. Fu, Y.-J. Liu, W. Chen, X. Fu, The time course of natural scene
categorization in human brain: simple line-drawings vs. color
photographs, J. Vis. 13 (9) (2013), http://dx.doi.org/10.1167/
13.9.1060 (Article No. 1060).

[11] S. Esedoglu, R. March, Segmentation with depth but without
detecting junctions, J. Math. Imag. Vis. 18 (1) (2003) 7–15.

[12] A. Torralba, A. Oliva, Depth estimation from image structure, IEEE
Trans. Pattern Anal. Mach. Intell. 24 (9) (2002) 1226–1238.

[13] L.-R. Williams, A.-R. Hanson, Perceptual completion of occluded
surfaces, in: Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR’ 94), 1994, pp. 104–112.

[14] E. Saund, Perceptual organization of occluding contours generated
by opaque surfaces, in: Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR’ 99), 1999, pp. 1063–6919.

[15] D. Hoiem, A.A. Efros, M. Hebert, Recovering occlusion boundaries
from an image, Int. J. Comput. Vis. 91 (3) (2011) 328–346.

[16] J. Wang, M. Betke, E. Gu, Mosaicshape: stochastic region grouping
with shape prior, in: Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR’ 05), 2005, pp. 902–908.

[17] X. Ren, C.C. Fowlkes, J. Malik, Figure/ground assignment in natural
images, in: Lecture Notes in Computer Science (ECCV’ 06), 2006, pp.
614–627.

[18] S.X. Yu, T.S. Lee, T. Kanade, A hierarchical markov random field
model for figure-ground segregation, in: Proc. 3rd Int. Conf. Energy
Minimization Methods in Computer Vision and Pattern Recognition
(EMMCVPR’01), Springer-Verlag, 2001, pp. 118–133.

[19] M.R. Amer, R. Raich, S. Todorovic, Monocular extraction of 2.1d
sketch, in: Proc. Int. Conf. Image Processing (ICIP 2010), 2010, pp.
3437–3440.

[20] N. Ahuja, S. Todorovic, Extracting texels in 2.1d natural textures, in:
IEEE International Conference on Computer Vision (ICCV’ 07), 2007,
pp. 1–8.

[21] X. Chen, Q. Li, D. Zhao, Q. Zhao, Occlusion cues for image scene
layering, Comput. Vis. Image Understan. 117 (1) (2013) 42–55.

[22] R.-X. Gao, T.-F. Wu, S.-C. Zhu, N. Sang, Bayesian inference for layer
representation with mixed markov random field, in: Proc. 6th Int.
Conf. Energy Minimization Methods in Computer Vision and Pattern
Recognition (EMMCVPR’07), 2007, pp. 213–224.

[23] Y.-J. Liu, K. Tang, A. Joneja, Sketch-based free-form shape modelling
with a fast and stable numerical engine, Comput. Graph. 29 (5)
(2005) 778–793, http://dx.doi.org/10.1016/j.cag.2005.08.007.

[24] C.-X. Ma, Y.-J. Liu, H.-Y. Yang, D.-X. Teng, H.-A. Wang, G.-Z. Dai,
Knitsketch: a sketch pad for conceptual design of 2d garment
patterns, IEEE Trans. Automat. Sci. Eng. 8 (2) (2011) 431–437.

[25] M.-M. Cheng, F.-L. Zhang, N.J. Mitra, X. Huang, S.-M. Hu, Repfinder:
Finding approximately repeated scene elements for image editing,
in: ACM SIGGRAPH’ 10, 2010, pp. 83:1–83:8.

[26] Y.-J. Liu, Q.-F. Fu, Y. Liu, X. Fu, A distributed computational cognitive
model for object recognition, Sci. China (Ser. F: Inf. Sci.) 56 (9)
(2013), http://dx.doi.org/10.1007/s11432-013-4994-3 (Article No.
092101(13)).

[27] S. Joshi, A. Srivastava, W. Mio, X. Liu, Hierarchical organization of
shapes for efficient retrieval, in: Lecture Notes in Computer Science
(ECCV’ 04), 2004, pp. 570–581.

[28] C.-X. Ma, Y.-J. Liu, H.-A. Wang, D.-X. Teng, G.-Z. Dai, Sketch-based
annotation and visualization in video authoring, IEEE Trans.
Multimedia 14 (4) (2012) 1153–1165.

[29] Y.-J. Liu, X. Luo, A. Joneja, C.-X. Ma, X.-L. Fu, D.-W. Song, User-
adaptive sketch-based 3-d cad model retrieval, IEEE Trans. Automat.
Sci. Eng. 10 (3) (2013) 783–795.

[30] C.C. Fowlkes, D.R. Martin, J. Malik, Local figure–ground cues are valid
for natural images, J. Vis. 7 (8) (2007) 2:1–2:9.

[31] M.-M. Cheng, G.-X. Zhang, N.J. Mitra, X. Huang, S.-M. Hu, Global
contrast based salient region detection, in: Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR’ 11), 2011, pp.
409–416.

[32] M.-M. Cheng, J. Warrell, W.-Y. Lin, S. Zheng, V. Vineet, N. Crook,
Efficient salient region detection with soft image abstraction, in:
IEEE International Conference on Computer Vision (ICCV’ 13), 2013,
pp. 1529–1536.

[33] M. Crosier, L.D. Griffin, Using basic image features for texture
classification, Int. J. Comput. Vis. 88 (3) (2010) 447–460.

[34] R.M. Haralick, Statistical and structural approaches to texture, Proc.
IEEE 67 (5) (1979) 786–804.

[35] R.M. Haralick, K. Shanmugam, I. Dinstein, Texrural features for image
classification, IEEE Trans. Syst. Man Cybern. SMC-3 (6) (1973) 610–
621.

http://refhub.elsevier.com/S1524-0703(14)00022-8/h0100
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0100
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0100
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0105
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0105
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0110
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0110
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0110
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0115
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0115
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0120
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0120
http://dx.doi.org/10.1167/13.9.1060
http://dx.doi.org/10.1167/13.9.1060
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0130
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0130
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0135
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0135
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0140
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0140
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0145
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0145
http://dx.doi.org/10.1016/j.cag.2005.08.007
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0155
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0155
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0155
http://dx.doi.org/10.1007/s11432-013-4994-3
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0165
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0165
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0165
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0170
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0170
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0170
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0175
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0175
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0180
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0180
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0185
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0185
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0190
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0190
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0190


C.-C. Yu et al. / Graphical Models 76 (2014) 507–521 521
[36] R. Storn, K. Price, Differential Evolution – A Simple and Efficient
Adaptive Scheme for Global Optimization Over Continuous Spaces,
Tech. Rep. TR-95-012, Berkeley, CA (1995).

[37] A. Janoch, S. Karayev, Y. Jia, J.-T. Barron, M. Fritz, K. Saenko, T. Darrell,
A category-level 3-d object dataset: Putting the kinect to work, in:
ICCV Workshop on Consumer Depth Cameras in Computer Vision
2011, 2011, pp. 1168–1174.
[38] D.-E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, Reading Menlo Park, 1989.

[39] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings
of IEEE International Conference on Neural Networks, 1995, pp.
1942–1948.

http://refhub.elsevier.com/S1524-0703(14)00022-8/h0195
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0195
http://refhub.elsevier.com/S1524-0703(14)00022-8/h0195

	A global energy optimization framework for 2.1D sketch  extraction from monocular images
	1 Introduction
	2 Related work
	3 Overview of the proposed method
	4 Local feature extraction
	4.1 F–G relations
	4.1.1 T-junction features
	4.1.2 Boundary features
	4.1.3 Saliency features

	4.2 SL relations
	4.2.1 Color features
	4.2.2 Texture features
	4.2.3 Hierarchical information


	5 A global energy optimization framework
	5.1 A global energy
	5.2 Energy minimization and 2.1D sketch extraction

	6 Algorithm evaluation and comparisons
	6.1 Parameter settings
	6.2 Numerical scheme analysis and performance
	6.3 Evaluation of 2.1D sketch extraction

	7 Conclusion
	Acknowledgments
	Appendix A Appendix
	References


