
Graphical Models xxx (2012) xxx–xxx
Contents lists available at SciVerse ScienceDirect

Graphical Models

journal homepage: www.elsevier .com/locate /gmod
Efficient synthesis of gradient solid textures

Guo-Xin Zhang a,⇑, Yu-Kun Lai b, Shi-Min Hu a

a TNList, Department of Computer Science and Technology, Tsinghua University, China
b School of Computer Science and Informatics, Cardiff University, UK

a r t i c l e i n f o
Article history:
Received 30 August 2012
Received in revised form 17 October 2012
Accepted 26 October 2012
Available online xxxx

Keywords:
Solid textures
Synthesis
Vector representation
Gradient
Vectorization
Distance fields
Tricubic interpolation
Editing propagation
Real-time rendering
2D exemplars
1524-0703/$ - see front matter � 2012 Elsevier Inc
http://dx.doi.org/10.1016/j.gmod.2012.10.006

⇑ Corresponding author.
E-mail addresses: zgx.net@gmail.com (G.-X. Zh

cardiff.ac.uk (Y.-K. Lai), shimin@tsinghua.edu.cn (S.-

Please cite this article in press as: G.-X. Zhang
10.1016/j.gmod.2012.10.006
a b s t r a c t

Solid textures require large storage and are computationally expensive to synthesize. In
this paper, we propose a novel solid representation called gradient solids to compactly
represent solid textures, including a tricubic interpolation scheme of colors and gradients
for smooth variation and a region-based approach for representing sharp boundaries. We
further propose a novel approach to directly synthesize gradient solid textures from exem-
plars. Compared to existing methods, our approach avoids the expensive step of synthesiz-
ing the complete solid textures at voxel level and produces optimized solid textures using
our representation. This avoids significant amount of unnecessary computation and stor-
age involved in the voxel-level synthesis while producing solid textures with comparable
quality to the state of the art. The algorithm is much faster than existing approaches for
solid texture synthesis and makes it feasible to synthesize high-resolution solid textures
in full. We also propose a novel application—instant editing propagation on full solids.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Textures are essentially important for current rendering
techniques as they bring in richness without involving
overly complicated geometry. Most previous work on
texture synthesis focuses on synthesizing 2D textures,
which require texture mapping with almost unavoidable
distortions when they are applied to 3D objects. Solid tex-
tures represent color (or other attributes) over 3D space,
providing an alternative approach to 2D textures that
avoids complicated texture mapping and allows real solid
objects to be represented with consistent textures both
on the surface and in the interiors alike.

Due to the extra dimension, solid textures represented
as attributes sampled at regular 3D voxel grids are extre-
mely expensive to synthesize and store. To provide
sufficient resolution in practice, a typical solution is to
. All rights reserved.

ang), Yukun.Lai@cs.
M. Hu).

et al., Efficient synthesis o
synthesize only a small cube (e.g. 1283), and tile the cube
to cover the 3D space. However, tiling may cause visual
repetition (see Fig. 8). While repetitions could be alleviated
with some rotations, they cannot be eliminated completely
when the volumes are sliced with certain planes. Further it
is possible only when the solid textures have no interac-
tion with the underlying objects, and thus cannot respect
any model features or user design intentions. To address
this, previous approaches [4,42] synthesize solid textures
on demand; however, handling high-resolution solid
textures is still expensive in both computation and storage.

Inspired by image vectorization, for pixels (or voxels)
with dominantly smooth color variations (within each
homogeneous region), vectorized graphics provide signifi-
cant advantages such as being compact, resolution indepen-
dent and easy-to-edit. The possibility and effectiveness of
vectorizing solid textures have been recently studied in
[33]. This work is essentially a 3D generalization of image
vectorization, which requires voxel-level (raster) solid tex-
tures as input and inherits similar advantages over tradi-
tional raster solid textures. It remains computationally
f gradient solid textures, Graph. Models (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.gmod.2012.10.006
mailto:zgx.net@gmail.com
mailto:Yukun.Lai@cs. cardiff.ac.uk
mailto:Yukun.Lai@cs. cardiff.ac.uk
mailto:shimin@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://www.sciencedirect.com/science/journal/15240703
http://www.elsevier.com/locate/gmod
http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006

2 G.-X. Zhang et al. / Graphical Models xxx (2012) xxx–xxx
costly and involves large intermediate storage for raster so-
lid textures to synthesize high resolution solid textures
with a nonhomogeneous spatial distribution (e.g. [42]).

This paper is an extended version of the conference
paper [43] with substantially extended technical details,
experimental results, evaluation and applications includ-
ing solid vectorization and instant editing. In this paper,
instead of first synthesizing the full voxel solid textures be-
fore vectorizing them [33], we propose a novel approach to
directly synthesize vectorized solid textures from exem-
plars. Inspired by gradient meshes in image vectorization
[29], we propose a novel gradient solid representation that
uses a tricubic interpolation scheme for smooth color
variations within a region, and a region-based approach
to represent sharp boundaries with separated colors. This
representation is compact, more regular than Radial Basis
Functions (RBFs) [33] and thus particularly suitable for
real-time rendering and efficient solid texture synthesis.
Our approach can be used to vectorize input solids, which
is over 100 times faster than [33] and leads to reduced
approximation errors in most practical cases, as shown
later by extensive comparative experiments. As discussed
later in the paper, while the proposed representation is
not suitable for all textures, it is sufficient to represent a
variety of practical solid textures in high quality, in partic-
ular those having dominantly smooth color variations
within each homogeneous region.

We further treat solid texture synthesis as an optimiza-
tion process of control points of gradient solids to produce
synthesized solids with similar sectional images as given
exemplars. Compared with traditional solid texture syn-
thesis, we have far less control points than voxels, leading
to a much more efficient algorithm. While we solve both
bitmap solid synthesis and solid vectorization together
and produce solid textures with comparable quality as
the state of the art, it is over 10 times faster than existing
synthesis methods.

The main contributions of this paper are:

� A new gradient solid representation with regular struc-
ture that is compact, resolution-independent and capa-
ble of representing smooth solids and solids with
separable regions.
� A novel optimization-based algorithm for direct synthe-

sis of high quality solid textures vectorizing high resolu-
tion solids which is efficient both in computation and
storage.
� We also propose a novel application—instant solid

editing, as demonstrated in the paper.

To the best of our knowledge, this is the first algorithm
that synthesizes vector solid textures directly from exem-
plars, allowing high resolution, potentially spatially non-
homogeneous solid textures to be synthesized in full.
Thanks to the new compact representation, solid textures
can be directly synthesized in this representation, signifi-
cantly reducing the computational and memory costs.
Our representation also allows instant editing without
resorting to time-consuming conversion between vector
and raster solids. Both of these would be difficult to
achieve, if possible, by previous methods. This addresses
Please cite this article in press as: G.-X. Zhang et al., Efficient synthesis o
10.1016/j.gmod.2012.10.006
major drawbacks of using solid textures in practical appli-
cations, namely large storage requirements and synthesis
time. Various techniques have also been developed to
effectively improve the quality or reduce the computa-
tional cost.

A typical example of high-resolution gradient solid tex-
ture synthesis and editing is given in Fig. 1. In Section 2, we
review prior work in texture synthesis and vectorization.
Our vector solid representation is described in Section 3
and the algorithm details given in Section 4. Experimental
results, applications and discussions are presented in
Section 5 and finally concluding remarks are given in
Section 6.
2. Related work

Our work is closely related to example based texture
synthesis and vector images/textures.

Solid texture synthesis: Texture synthesis has been an
active research direction in computer graphics for many
years. Please refer to [35] for a comprehensive survey of
example-based 2D texture synthesis and [28] for a recent
survey of solid texture synthesis from 2D exemplars.

Early work on solid texture synthesis focuses on proce-
dural approaches [26,27]. Since rules are used to generate
solid textures, very little storage is needed. Procedural
solid textures can be generated in real-time [2]. However,
only restricted classes of textures can be effectively syn-
thesized and it is inconvenient to tune the parameters.
Exemplar-based approaches do not suffer from these prob-
lems, and thus received more attention. 2D exemplar
images are popular due to their wide availability. Wei
[34] extends non-parametric 2D texture synthesis algo-
rithms to synthesize solid textures. An improved algorithm
is proposed in [13] to generate solid textures based on
texture optimization [14] and histogram matching [8]. Fur-
ther extended work [3] considers k-coherent search and
combined position and index histograms to improve the
results. To synthesize high resolution solid textures, Dong
et al. [4] propose an efficient synthesis-on-demand algo-
rithm based on deterministic synthesis of certain windows
from the whole space [16] necessary for rendering, based
on the fact that only 2D slices are needed at a time for nor-
mal displays. This work is extended in [42] that introduces
user-provided tensor fields as guidance for solid texture
synthesis. This approach allows synthesizing solid textures
with nonhomogeneous spatial distributions, thus cannot
be achieved by tiling small fixed cubes.

Alternative approaches for solid texture synthesis exist.
Jagnow et al. [10,11] propose an algorithm based on stere-
ological analysis which provides more precise modeling of
solid textures. Du et al. [5] synthesize solid textures by
analyzing the shapes and colors of particles from 2D exem-
plars and appropriately placing particles to form consistent
sectional images as the exemplars. This is conceptually
similar to salient structural element analysis in 2D texture
synthesis [24]. The method is particularly suitable for
semi-regular solid texture synthesis. However, these ap-
proaches only work for restricted types of solid textures
with well separable pieces. Lapped textures have been
f gradient solid textures, Graph. Models (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006

Fig. 1. High-resolution gradient solid texture synthesis and editing. From left to right: the input exemplar, the synthesized gradient solid texture following
a given directional field, a closeup, internal slices and instant editing (user interaction and the output). Part of the figure was previously published in [43]
and is republished with permission by Springer.

G.-X. Zhang et al. / Graphical Models xxx (2012) xxx–xxx 3
extended to synthesize 3D volumetric textures [30]. 3D
volumetric exemplars instead of 2D image exemplars are
needed as input. Solid texture synthesis has also been used
for other applications. Ma et al. [21] use similar techniques
for motion synthesis.

Unlike previous methods, our approach directly synthe-
sizes gradient solid textures from 2D exemplars. This
provides the benefits from both procedural and exemplar-
based approaches: the representation is more compact
and high resolution solid textures can be synthesized in full
efficiently. The algorithm is flexible to synthesize various
solid textures using 2D exemplars and follow given tensor
fields if specified by the user. The whole solid textures need
only to be synthesized once which reduces overall
computation.

Vector images and vector solid textures: Different
from raster images, vector graphics use geometric primi-
tives along with attributes such as colors and their gradi-
ents to represent the images. Due to the advantages of
vector graphics, plenty of work recently focuses on gener-
ating vector representations from raster images. Recent
work proposes automatic or semi-automatic approaches
to high-quality image vectorization using quadrilateral
gradient meshes [29,15] or curvilinear triangle meshes
for better feature alignment [37]. Diffusion curves [23]
model vector images as a collection of color diffusion
around curves. Some works consider combining raster
images with extra geometric primitives [1,32,25] to obtain
benefits such as improved editing and resizing.

Vector graphics have recently been generalized to solid
textures [33,31]. Compared to raster solids, vector solids
have the advantages of compact storage and efficient ren-
dering. Wang et al. [33] propose an automatic approach to
vectorize given solid textures using a RBF-based represen-
tation. However, this approach relies on raster solids as
input, thus an expensive raster solid texture synthesis
algorithm [13] needs to be performed first if only 2D exem-
plars are given as input. Diffusion surfaces [31], a general-
ization from diffusion curves [23], was used to represent
vector solids; their focus however is user design of solids
rather than automatic generation.

Vector representation is loosely related to volume com-
pression techniques (e.g. [22,41]) as both consider more
compact representations than raster solids. The focus of
vector representation however aims at creating compact
and resolution-independent representation suitable for
graphics applications that produce visually similar and
Please cite this article in press as: G.-X. Zhang et al., Efficient synthesis o
10.1016/j.gmod.2012.10.006
pleasing results even when magnified while the purpose
of volume compression techniques is to reconstruct large
volumes as close as possible to the original even under sig-
nificant compression. Research work on volume compres-
sion tends to use blocks and block-based coding which
leads to less smooth reconstruction.

We propose a novel algorithm that synthesizes gradient
solids directly from 2D exemplars, bypassing intermediate
bitmap solid synthesis and subsequent bitmap-to-vector
conversion, leading to an efficient algorithm in both com-
putation and storage that produces high quality solid
textures. The representation although with a somewhat
different aim may be useful for certain volume compres-
sion applications.

3. Gradient solid representation

We give details of the gradient solid representation,
allowing efficient representation of smooth regions and re-
gions with boundaries.

3.1. Representing smooth regions

We first consider representing regions with smoothly
varying colors. We use an n � n � n grid of control points
with axes u, v, w to represent the solid textures. At each
control point (i, j,k), we store a feature vector f including
r, g, b color components and additional feature channels
such as the signed distance measuring the distance as well
as inside/outside to some surfaces that separate the
volume into two sides. This is useful for better structure
preservation [17] as well as region separation. The latter
use will be detailed in the next subsection. In addition,
the gradients of f, i.e. df

du ;
df
dv ;

df
dw are also stored allowing flex-

ible control of variations in 3D space. 3D tricubic interpo-
lation with gradients [7,18] is used to obtain the feature
vector ~f for any voxel inside the grid. Similar tricubic inter-
polation has been used in isosurface extraction from volu-
metric data for visualization [12]. Assume that p = 1,2, . . . ,8
represents the 8 control points in the cube that covers the
voxel and assume second or higher order derivatives of f to
be zero, ~f at parameter (u,v,w)(0 6 u,v,w 6 1) can be
evaluated as

~fðu;v ;wÞ ¼
X3

i;j;k¼0

aijkuiv jwk: ð1Þ
f gradient solid textures, Graph. Models (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006

4 G.-X. Zhang et al. / Graphical Models xxx (2012) xxx–xxx
The coefficients aijk are determined by setting the inter-
polated function to give identical values, gradients and
some selected higher order derivatives as stored values at
each corner of the cube. The higher order constraints are se-
lected to be isotropic (consistent with different axes) and
introduced to ensure uniqueness of the solution. As proved
in [18], all the 64 coefficient vectors aijk are weighted sums

of 32-dimensional vectors V ¼ � � � fðpÞ; dfðpÞ

du ; dfðpÞ

dv ; dfðpÞ

dw � � �
� �

and

the interpolation is C1 continuity not only at cube corners
but also over the whole volume.

The geometric positions of control points in our repre-
sentation are fixed, however, these points still carry other
attributes such as color and gradients which control the
appearance of the solids. Assuming the displacement be-
tween adjacent control points is d, the geometric position
of the control point (i, j,k) is (id, jd,kd). The displacement
determines the number of voxels located within each cube
of the control grid. Larger d leads to more compression
while smaller d implies better capture of details. In all of
our experiments we use d = 4 which means that the num-
ber of control points is roughly 1

64 ¼ 1:56% of voxels.
This simple representation has several significant

advantages. For any fixed point with known parameter
(u,v,w), since uivjwk can be pre-computed, the expensive
evaluation of Eq. (1) can be reduced to a weighted sum
of elements in V. In practice, we pre-compute these coeffi-
cients for a regular grid with 333 samples in each cube,
with interval at 1

8 voxel for accuracy. A fixed look-up table
irrelevant to the input is pre-computed and stored, with
333 � 32 entries (about 4.4 MB), and the interpolated fea-
ture at any space position can be computed as a linear
combination of V with these prebuilt weights.

The interpolation is achieved in rendering via GPU
acceleration, as detailed in Section 5.3. This allows effi-
cient evaluation, particularly important as solid textures
are computationally intensive. The look-up table does
not need to be stored and is calculated on the fly. It is
of fixed size even for very large volumes (equivalent to
e.g. 5123 or 10243) and in such cases becomes negligible.
Compared with the RBF-based representation [33], we
have regular structures suitable for texture synthesis. As
demonstrated in Figs. 11 and 12, our local interpolation
representation has much better color reproduction. There
is no need to store the positions of control points, which
further saves storage. The regularity also helps efficient
direct solid texture synthesis and supports other applica-
tions such as instant editing propagation, as detailed
later.

3.2. Representing region boundaries

If the given texture only contains gradual change of col-
ors, the representation described in Section 3.1 is sufficient
(e.g. Fig. 11). If the texture contains sharp boundaries that
need to be preserved, a feature mask image is often used in
texture synthesis as an additional component (other than
color) to better preserve structures. Similar to previous
work both in 2D and 3D textures [17,33], we assume re-
gions can be separated using a binary mask. To represent
the boundary in the solid textures, we also use a signed
Please cite this article in press as: G.-X. Zhang et al., Efficient synthesis o
10.1016/j.gmod.2012.10.006
distance field stored at the same regular n � n � n grid.
We store both the signed distance D and its gradients
dD
du ;

dD
dv and dD

dw and use the same tricubic interpolation as in
Section 3.1 to calculate the interpolated signed distanceeD at each voxel. The sign of eD indicates which side of the
regions in the binary mask this voxel belongs to. Different
from [33], gradients are stored in addition to the distance,
and thus we process the distance field consistently with
colors and represent region boundaries with flexibility.
For each control point that is adjacent to at least one cube
with both positive and negative distances, other than the
distance component where one version is sufficient, two
feature vectors fP (positive distance) and fN (negative dis-
tance) and their gradients are stored. Any voxel with posi-
tive (or negative) distance will be evaluated using the same
interpolation in Section 3.1 but with fP (or fN) and their
gradients instead. This guarantees C1 smoothness within
each region while also allowing sharp boundaries to be
produced between regions. Our gradient solid representa-
tion is easy to evaluate but also sufficient to represent
various solid textures, as demonstrated in Section 5.
Although the representation is more restrictive than gradi-
ent meshes in that control points are located at fixed posi-
tions, it allows more efficient evaluation and synthesis. The
representation still bears major properties of traditional
vector representation such as being resolution indepen-
dent and more compact than raster solids.
4. Gradient solid texture synthesis

Our algorithm synthesizes gradient solid textures
directly from 2D exemplars, which may include optional
binary masks (if sharp boundaries exist between regions).
In addition, a smooth tensor field may be given to specify
the local coordinate systems the exemplar images align
with [42]. We use an optimization based approach to syn-
thesize gradient solid textures, with local patches aligned
to the field if given.
4.1. Algorithm overview

The algorithm pipeline is summarized in Fig. 2, which
involves several key steps: initialization, iterative optimi-
zation and final gradient solid refinement. Our gradient so-
lid representation is first initialized based on the input
exemplar. The synthesis is then carried out using a multi-
resolution approach from coarse to fine. At each level, an
optimization based approach is used that first identifies
similar patches from the exemplar that best matches the
current gradient solid and the gradient solid is then up-
dated based on the samples in the patches. An approximate
but sufficient fast evaluation of the vector solid representa-
tion is used in the intermediate stages. In the last stage,
accurate evaluation as given in Eq. (1) is used to optimize
the control points for the best approximation. We will also
discuss techniques to ensure efficiency in both computa-
tion and storage. If the binary mask is given, we pre-com-
pute a signed distance field for the image with the absolute
value at each pixel being the distance to the region bound-
ary and different signs (positive or negative) for different
f gradient solid textures, Graph. Models (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006

Initialization Finding Matched
Patches from Exemplars

Generated
Solid Textures

Representation
Update

Iterative
Tensor Field

(Optional)

Representation
Refinement

2D Texture
(Input)

Fig. 2. Algorithm pipeline of gradient solid texture synthesis. The figure was previously published in [43] and is republished with permission by Springer.

G.-X. Zhang et al. / Graphical Models xxx (2012) xxx–xxx 5
regions. This signed distance is considered as an extra com-
ponent in the feature vector f [17].

4.2. Initialization

We simply start from a randomized initialization. For
each control point, we randomly select a pixel from the
exemplar image, and assign the feature vector at the pixel
to the control point. All the gradients are initialized to zero.

4.3. Optimization-based synthesis

Optimization is the key step in our gradient solid tex-
ture synthesis pipeline. It involves iterations of two alter-
nating steps, namely choosing optimal patches from
exemplars that best match the current representation
and updating the representation to better approximate
the exemplar patches. Unlike traditional texture optimiza-
tion [14,13], we optimize the feature vectors in the control
points of the gradient solids, a much more compact repre-
sentation than voxels. New challenges exist due to the dif-
ferent nature of the representation which we will address
with various technical solutions. We apply NO iterations
for each synthesis level, and use a modified coarse-to-fine
strategy detailed in Section 4.3.3. NO = 3 is sufficient and
used for all the experiments in the paper.

4.3.1. Finding matched patches from exemplars
We first identify those local patches from the exemplars

that best match the current gradient solid. These patches
will then be used to improve the representation. Since gra-
dient solids have much sparser control points than voxels,
we randomly choose a small number NC of check points
within each cube of the grid (NC = 3 provides a good bal-
ance and is used for all the examples in the paper). At each
check point, we sample three orthogonal planes each with
N � N samples (denoted as sx, sy and sz respectively) which
Ex

Ey

Ez

Sx

Sy

Sz

Fig. 3. Illustration of crossbars.

Please cite this article in press as: G.-X. Zhang et al., Efficient synthesis o
10.1016/j.gmod.2012.10.006
are evaluated based on our representation (as illustrated in
Fig. 3). A fast approximate evaluation is used in intermedi-
ate synthesis to significantly improve the performance
without visually degrading the quality (see Section 4.3.4).

We then find three local patches from exemplars that
best match these sampled patches. If all the three slices
are equally important, we use three independent searches
as [13]. Many practical solid textures are anisotropic and
it is not possible to keep all three slices well matched with
a single exemplar image. In such cases, it is known that
matching two slices instead of three may lead to better re-
sults [13]. We propose a new approach that takes crossbar
consistency into account, which works best when two
slices are matched. Crossbars are those voxels shared by
two or three slices (see Fig. 3) and inconsistent crossbars
may result from independent best searches. For computa-
tional efficiency, we first search for the patch Ex from exem-
plars that best matches sx, as usual. We then search for the
patch Ey that best matches sy from a set of N1 candidates
with the most consistent crossbar voxels as Ex. If three
slices are matched, we similarly search for the best match
Ez of sz from a set of N2 candidates with the most consistent
crossbars as Ex and Ey. N1 = 20 and N2 = 50 are used for all
the experiments in the paper. This leads to improved syn-
thesis results with better structure preservation, which
shows the importance of crossbar consistency, as demon-
strated in Fig. 4. While crossbar matching has been used
in correction-based synthesis [4], using this in optimization
based synthesis is new.

To speed up the computation, a PCA projection of the
matching vectors is used [9], which effectively reduces
dimensions from hundreds to 10–20 while keeping most
of the energy. After this, the searches can be effectively
accelerated with ANN approximate nearest neighbor
library.
4.3.2. Representation update
Each matched patch at every check point gives N � N

samples, which will be used to update the gradient solid
representation. To efficiently collect samples, we conceptu-
ally build a bucket for each voxel in the grid that holds all
the samples located in the voxel. After considering check
points in all the cubes, each bucket may end up with none
or a few samples. For buckets with more than one samples,
in order to determine the feature vector, simply averaging
all the samples in the bucket tends to produce blurred vox-
els. Previous methods [36,13] use mean shift clustering to
avoid blurring, which is expensive as all the samples in
the buckets need to be preserved and clustering algorithms
need to be performed many times. We propose two novel
approaches to significantly improve the efficiency.
f gradient solid textures, Graph. Models (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006

Fig. 4. Results without (left) and with (right) crossbar matching. The figure was previously published in [43] and is republished with permission by
Springer.

open

closed

2N

Fig. 5. Illustration of bucket reuse.

6 G.-X. Zhang et al. / Graphical Models xxx (2012) xxx–xxx
Quantization. To avoid blurring without storing all the
samples in each bucket, we propose a novel approach
based on vector quantization. We preprocess the given
exemplar to quantize colors of all the pixels into NT clus-
ters. A small number of NT (e.g. 12) is sufficient for practical
textures. For the texture with a binary mask, we start from
two clusters for both positive and negative regions, and
iteratively allocate the new cluster to regions with most
significant average quantization error, until all the NT clus-
ters are allocated. We use a two-pass approach in the syn-
thesis. In the first pass, for every bucket, only the number
of samples belonging to each cluster is recorded. In the sec-
ond pass, we compute the average feature vector only for
those samples belonging to the two dominant clusters
(with maximum counts in the first pass). Since the domi-
nant clusters are known before the second pass, whenever
a sample is generated we test if it should be included for
averaging. Only the sum and the number of samples need
to be kept which significantly saves the storage. This
avoids using the computationally expensive clustering
algorithm for each voxel but also significantly reduces
blurring, as demonstrated in various results in Section 5.
Using quantization in the finest level is sufficient, accord-
ing to our experience.

Bucket reuse. Although conceptually the number of
buckets is the same as the number of voxels, i.e. O(n3),
we can significantly reduce the memory requirement by
bucket reuse. We update our representation in the 3D
scanline order of control points. Depending on the tem-
plate size N, check points more than

ffiffi
2
p

2 N voxels away will
not produce any sample in the current bucket, where N

2 is
half the template size and

ffiffiffi
2
p

is introduced due to rotation.
As illustrated in Fig. 5 for a 2D illustration, we keep track of
two references in the dominant dimension (one of the
three dimensions that can be chosen arbitrarily) that mark
the boundaries of the open region (where new samples
will be generated) and the closed region (where no more
samples will be produced and we can safely update the
gradient solid representation). In case the two-pass algo-
rithm in quantization is used, this buffer needs to be dou-
bled i.e. up to 2

ffiffiffi
2
p

N span in the dominant dimension is
sufficient, or the memory cost is O(n2N). This is because
either pass has an affected region as we discussed and
the second pass relies on the results collected from the first
pass. The required buffering space does not increase with
Please cite this article in press as: G.-X. Zhang et al., Efficient synthesis o
10.1016/j.gmod.2012.10.006
more synthesis iterations as buckets are cleared after each
synthesis iteration and no further propagation as in [4]
happens. Since N� n and often constant for various exam-
ples, this effectively saves the storage by reducing the com-
plexity from n3 to n2, without any extra recomputation.
This is possible, because after each iteration of optimiza-
tion, only a very compact gradient solid representation is
kept, while traditional solid texture synthesis requires
the whole dense volume to be accessible. By using this
technique, we can synthesize gradient solid textures corre-
sponding to 10243 voxels within 2GB memory, even less
than storing the voxels alone.

After obtaining the average feature vector for any buck-
et with at least one sample, we assign each non-empty
bucket to the closest control point. The feature vector as
well as gradients of the control point are updated by min-
imizing the fitting error in the least-squares sense. For a
particular control point, assume s buckets are related with
relative coordinates dut, dvt, dwt and feature vector ft(1 6
t 6 s), we find fc;

fc
du ;

fc
dv ;

fc
dw that minimizes

EC ¼
Xs

t¼1

fc þ
fc

du
dut þ

fc

dv dv t þ
fc

dw
dwt � ft

���� ����2

: ð2Þ

This can be considered as a local first-order Taylor
expansion of our representation which can be efficiently
solved by small linear systems. This approximation is suf-
ficient for intermediate computation and we optionally use
the accurate evaluation in the final stage.

4.3.3. Multi-resolution synthesis
To capture features at multiple scales, a multi-resolu-

tion approach is also used in our algorithm. However, since
f gradient solid textures, Graph. Models (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006

G.-X. Zhang et al. / Graphical Models xxx (2012) xxx–xxx 7
a sparse control grid is used, reducing the resolution is not
feasible as it would be too coarse in low resolutions to
effectively capture details. Instead, inspired by fractional
sampling [16], in each successive coarser level we keep
the resolution of the control grid unchanged and double
the spacing between sample pixels in exemplar image
and voxels in the 3D space. From coarse to fine we use
three levels of synthesis with N = 9, 11, 21 respectively.
The finest level uses a significantly larger neighborhood
in order to cover a few control points at minimum in our
sparse representation.

4.3.4. Fast approximate evaluation
Our gradient solid representation is relatively easy to

evaluate; however, in the solid texture synthesis process,
many evaluations are needed. We suggest two approxima-
tions for improved performance. In the intermediate syn-
thesis process, instead of evaluating the accurate values
at each sample point, we use a first-order Taylor expansion
as an approximation. For any point p whose closest control
point is c with feature vector fc and its gradients fc

du ;
fc
dv ;

fc
dw,

the approximate feature vector at p with relative coordi-
nates dup, dvp, dwp, can be evaluated as fp ¼ fc þ fc

du dupþ
fc
dv dvp þ fc

dw dwp. This approximation does not ensure
smoothness, but only involves 3 multiplications and 3
additions for each component of the feature vector, thus
only takes about 1/10 of the computation of a full evalua-
tion. In the iterative synthesis, another approximation is to
ignore the region-based calculation given in Section 3.2 (as
if there is no separated region as in the single channel case
such as Fig. 6(middle)). This may mix up voxels in different
regions within the same cube and leads to visual degrada-
tion of the final results; the impact on the intermediate
synthesis however is negligible as it is restricted to a cou-
ple of voxels due to the cube size.

4.4. Gradient solid representation refinement

As the final step, we further optimize the gradient solid
representation to better represent the synthesized gradient
solids.

Region separation. For solids with smooth variation of
colors (e.g. Fig. 11), our algorithm does not require a binary
mask as input and can effectively reproduce the solids with
a single region. For solids with sharp region boundaries
that need to be preserved, we differentiate regions with
Fig. 6. Comparison of results using direct upscaling (left) and our al

Please cite this article in press as: G.-X. Zhang et al., Efficient synthesis o
10.1016/j.gmod.2012.10.006
positive and negative signed distances for the computation
of control point parameters described in Section 4.3.2. For
each control point, we compute positive parameters (fP

and gradients) using samples with positive signed dis-
tance. Similarly, samples with negative signed distance
contribute to negative parameters (fN and gradients). To
improve reliability in the fitting of boundary control
points, we propagate boundary samples (with neighboring
samples having different signs of distance) to the near
neighboring space, similar to dilation in mathematical
morphology. This mainly ensures cubes near region
boundaries have sufficient samples to make fitting reliable.

Control point optimization. To further improve the
quality, instead of fitting with first order approximation,
we can also minimize the fitting error of all the samples
between the sample values and those interpolated using
Eq. (1). For a sample point with sampled feature vector f̂ i

located in the cube ci with corner control points collected
as Vi and parameter (ui, vi, wi), the evaluated feature vec-
tors ~f are linear functions of Vi, denoted as f(Vi; ui, vi, wi).
We minimize the following quadratic energy

EC ¼
XNS

i¼1

k~f i � f̂ ik2 ¼
XNS

i¼1

kfðVi; ui;v i;wiÞ � f̂ ik2
; ð3Þ

where NS is the number of sample points. Minimization of
EC leads to a sparse linear system. As we have a good esti-
mation from the previous approximation, the linear system
can be effectively solved in a few iterations. As demon-
strated in Table 1, control point optimization reduces the
approximation error but also takes some extra time. Our
method without this optimization is sufficiently good in
many cases so it is considered as an option to tradeoff
quality with speed.

4.5. Instant solid editing

Editing propagation often takes a sparse set of user in-
put as constraints and extends this to similar regions to
avoid otherwise labor-intensive procedures. Editing propa-
gation has been studied for image/video processing (e.g.
[39,19]), Bidirectional Texture Functions editing (e.g.
[40]) etc. Similarly, 3D solids are expensive to store, and
also time-consuming to edit. We achieve instant solid edit-
ing by adapting a recent development [19] in images and
videos. Alternative approaches for texture editing may in-
volve texture classification (e.g. [38]) to identify similar
gorithm without (middle) and with (right) region separation.

f gradient solid textures, Graph. Models (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006

Table 1
Statistics of solid vectorization results.

Example Error Time

Wang’s Ours w/o opt. Ours w/opt. Wang’s Ours w/o opt. (s) Ours w/opt. (s)

Fig. 11 (‘caustics’) 6.14 2.62 1.50 8 min 25 s 1.08 5.10
Fig. 12 (‘balls’) 8.59 5.83 4.21 24 min 21 s 2.67 11.46

8 G.-X. Zhang et al. / Graphical Models xxx (2012) xxx–xxx
patterns. In this work, we restrict the propagation based on
color similarity and location closeness, which is much
more efficient thus suitable for solid textures, and more ro-
bust as no classification is needed. A typical scenario for
this editing is the user first draws a few strokes with differ-
ent intensities indicating how strong the selected voxels
will be affected by the editing. The user then selects a
reference color, and voxels will be affected based on simi-
larities in the position and the appearance (color) to those
with user specifications. While the editing in [19] is gener-
ally efficient, dealing with large volumes is still relatively
slow. Worse still, if the volume is in some vector represen-
tation, naive application of this method will involve con-
verting to raster representation before editing and back
to vector representation afterwards. We show as follows
that our adaptation of the editing algorithm is instant with
virtually equivalent solution; this cannot be achieved with
Wang’s representation.

For each control point i with color ci = (r,g,b)T and posi-
tion pi = (x,y,z)T, we need to know the influence hi. This is
effectively modeled as m RBFs, the centers of which are
randomly selected from the stroke voxels

hi ¼
Xm

k¼1

xkhi;k

¼
Xm

k¼1

xk exp �aðbjpi � �pkj2 þ jci � �ckj2Þ
n o

; ð4Þ

where �pk and �ck are the position and color of k-th stroke
voxel selected as a RBF center. xk, restricted to be non-neg-
ative, can be obtained by solving a linear programming
problem that minimizes the strength deviation for user
specified voxels [19]. Parameters a and b control the prop-
agation and a = 10�4, b = 0.1 work well in many cases.
Assuming the reference color is cref, to compute the edited
gradient solids, ci and dci

dpi
need to be updated for each con-

trol point, which can be effectively calculated as follows.
We define c0i ¼ ð1� hiÞci þ hi � cref , and thus we have

dc0i
dpi
¼ ð1� hiÞ

dci

dpi
� ðci � cref Þ

dhi

dpi

� �T

; ð5Þ

where

dhi

dpi
¼ �

Xm

k¼1

xk2ahi;k bðpi � �pkÞ þ
dci

dpi

� �T

ðci � �ckÞ
()

: ð6Þ

The editing is demonstrated in Fig. 1 to turn a fish purple in-
stantly. A few strokes on the fish object are drawn to indi-
cate the effect of change and a purplish color sample is
chosen (as in the box). Another example is in Fig. 9 where
‘dinopet’ is turned pink instantly with a few strokes and a
pink reference color (as in the box). The editing algorithm
Please cite this article in press as: G.-X. Zhang et al., Efficient synthesis o
10.1016/j.gmod.2012.10.006
only takes about 0.1 s, providing instant feedback on such
large volumes. Comparatively, direct application on raster
solid of equivalent resolution takes about 1 s and naive
implementation on vector solids takes a few minutes.

5. Results and discussions

Our algorithm is useful for either direct synthesis of so-
lid textures, or vectorizing input solids. We carried out our
experiments on a computer with 2 � 2.26 GHz quad-core
CPU and NVIDIA GTS 450 GPU. Our algorithm involves a
few parameters for various stages of the pipeline. We used
the following settings for experiments in the paper: the
grid size d = 4, the number of iterations NO = 3, the number
of checkpoints NC = 3, the number of quantization clusters
NT = 12, the number of crossbar matching candidates
N1 = 20, N2 = 50, neighborhood size for different levels
N = 9, 11, 21 and editing propagation parameters a = 10�4,
b = 0.1.

5.1. Solid texture synthesis

Our algorithm directly synthesizes more compact and
resolution-independent gradient solid textures from 2D
exemplars. Solids with comparable quality to the state of
the art can be synthesized, as shown in Figs. 1, 4,5,6,
7,8,10. As for other CPU-based algorithms that focus on
synthesizing full solids of a 1283 cube, the typical reported
times have been tens of minutes, e.g. [13] uses 10–90 min
(without tensor fields) and [21] (a CPU-based implementa-
tion similar to [4] with direction fields considered) re-
ported about 30 min with a single core. Our results are
vector solid textures which are resolution-independent.
For simplicity, we consider solid textures with equivalent
detail resolution to raster solid textures when certain res-
olution is referred to in the following discussion. Our cur-
rent implementation, after about 10 s preprocessing of
the input exemplar (which is the same for arbitrarily sized
output volumes), takes only 13 s. Even counting the differ-
ent performance of CPUs, our algorithm is over 10 times
faster. Due to the compactness in representation and the
technique for memory reuse, we can synthesize high-reso-
lution solid textures in full. 5123 solids can be synthesized
within 15 min (Fig. 8). Other examples throughout the pa-
per with about 512 samples in the longest dimension take
3–7 min, while the example in Fig. 10 at resolution of 1024
takes 35 min and within 900 MB memory. Region separa-
tion is not needed if the input texture does not contain
sharp boundaries, as the ‘vase’ and ‘tree’ examples in
Fig. 9. In these examples, the binary mask is used only as
part of the feature vector, not for region separation. The
‘tree’ example shows that our synthesis algorithm can be
f gradient solid textures, Graph. Models (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006

Fig. 7. Synthesized object without (a) and with the field (c); the field is given in (b).

Fig. 8. Synthesized solids without fields. First row: tiled low resolution (1283) solids. Second row: high resolution (5123) solids.

G.-X. Zhang et al. / Graphical Models xxx (2012) xxx–xxx 9
generalized to synthesize solids with different exemplars
covering different spaces, mimicking the real structure of
a tree.
Please cite this article in press as: G.-X. Zhang et al., Efficient synthesis o
10.1016/j.gmod.2012.10.006
We demonstrate the effectiveness of our algorithm with
various examples. Although our method uses a rather
sparse set of control points, they are much more expressive
f gradient solid textures, Graph. Models (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006

Fig. 9. Synthesized high-resolution solids (about 512 samples in the longest dimension) following given directional fields with our algorithm: ‘vase’, ‘horse’,
‘tree’ and ‘dinopet’ with synthesized solids, close-ups and internal slices. ‘Dinopet’ is turned pink with instant editing. Part of the figure was previously
published in [43] and is republished with permission by Springer.

10 G.-X. Zhang et al. / Graphical Models xxx (2012) xxx–xxx
than voxels at the same resolution. An example is given in
Fig. 6. The left result is synthesized with [42] (using a pro-
portionally downsized exemplar image as input) and looks
sensible at original 323 resolution. We use tricubic interpo-
lation to upscale the volume to 1283 and clear artifacts ap-
pear indicating that 323 volume is not sufficient to capture
the structure of the solid. Our results with also 323 control
points are significantly better and sharp region boundaries
can be recovered with region separation. Tiling small cubes
such as of 1283 size to cover the whole space is commonly
used, due to the prohibitively expensive computation with
most previous algorithms. Synthesizing high resolution
solids is essential to avoid visual repetition (as demon-
strated by ‘table’, ‘cake’ and ‘statue’ in Fig. 8) or produce
solids following certain direction fields (see Fig. 9). A com-
parison of results without or with the field is given in Fig. 7.
High resolution solid textures with 512 and 1024 samples
in the longest dimension are shown in Figs. 1 and 10,
respectively. Note that in all the results we synthesize
the full solids rather than only the visible voxels [4,42].
This is preferred since in many applications objects are
synthesized once but rendered many times on lower-end
systems. Our representation makes rendering algorithm
both efficient and simple to implement.
Fig. 10. Synthesized high-resolution solid texture (1024 samples in the longest d
solid texture; (c) close up; and (d) internal slices.

Please cite this article in press as: G.-X. Zhang et al., Efficient synthesis o
10.1016/j.gmod.2012.10.006
5.2. Vectorization of solid textures

Our approach can also be used for solid texture vector-
ization. In this application, we take each voxel as a sample
and produce gradient solids with the method in Section 4.4
if optimization is used or otherwise a first order approxima-
tion as in Section 4.3.4. We perform comparative experi-
ments on the same computer, using the code directly
from [33]. 5000 RBFs are used to provide sufficient flexibil-
ity, more than most examples in [33], for fair comparison.
Although our algorithm is highly parallel, we only use a sin-
gle core for fair comparison. Detailed running times and fit-
ting errors are given in Table 1. Whilst pixel-wise error
measurement before and after vectorization may not be
the best criterion perceptually, it is widely used in image
vectorization. For most solids suitable for vectorization,
our method produces results with lower per-pixel error
and avoids the spotty artifacts caused by the use of RBFs.
Although RBFs seem to be more flexible, unless using a
(potentially impractically) large number of RBFs for rela-
tively complicated input, spotty artifacts are reasonable
reflection of radial bases and large approximation errors re-
sult. We also experimented with varying RBFs from 3000 to
5000 but the approximation errors in our experiments only
imension) with a field. (a) Input user specified tensor field; (b) synthesized

f gradient solid textures, Graph. Models (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006

Fig. 11. Solid vectorization of the input volume ‘caustic’ without binary mask. (a) Input volume; (b) and (c) our results without and with further
optimization; and (d) result using [33].

Fig. 12. Solid vectorization results with a binary mask. (a) Input volume ‘balls’; (b) input volume rendered in transparency; (c) input mask; (d) vectorized
solid with our algorithm without optimization; (e) our result with optimization; and (f) result using [33].

G.-X. Zhang et al. / Graphical Models xxx (2012) xxx–xxx 11
drop marginally. Wang’s algorithm may also get stuck at
suboptimal solutions due to the highly non-linear nature.
Our vectorization does not suffer from these problems
and is much simpler to optimize as only sparse linear sys-
tems need to be solved.

Our method without control point optimization is on
average 500 times faster and has much reduced recon-
struction error and better color reproduction than [33],
as shown in Figs. 11 and 12 as well as Table 1. If the op-
tional control point optimization is used, the error can be
further reduced at a small cost. This shows that we cur-
rently achieve interactive performance for vectorization
of moderate sized volumes. Direct synthesis of gradient so-
lid textures requires many times of intermediate vectoriza-
tion and evaluation and it would become impractically
slow without the speedup. Since the algorithm is highly
parallel, a parallel GPU-based implementation may further
improve the speed.

We use regions to represent sharp boundaries (Fig. 12)
but our method can deal with input solids that cannot be
naturally separated into multiple regions (see Fig. 11). In
Please cite this article in press as: G.-X. Zhang et al., Efficient synthesis o
10.1016/j.gmod.2012.10.006
this case, no binary mask image needs to be provided. A
more thorough evaluation on the whole dataset provided
by [13] with 21 solid textures shows that for more than
75% of the examples, especially those examples more suit-
able for vectorization (with lower approximation for both
methods), our method outperforms [33] in fitting error
(see the accompanied supplementary material for detailed
statistics).

We quantize each value with 8 bits, and our representa-
tion, without further careful coding, takes only 6.5% (with-
out region separation) or 15% (with region separation) of
the voxel solids, while 17–26% is reported in [33]. The size
of the look-up table is not considered because it does not
depend on input and thus does not need to be stored in
external files and its size is fixed and small enough to be
kept in current graphics card without any problem.

5.3. Rendering

While our current synthesis implementation is CPU-
based, gradient solids are rendered efficiently with
f gradient solid textures, Graph. Models (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006

Fig. 13. An example that a single distance field is not sufficient to fully recover sharp boundaries. (a) Input solid; (b) vectorized solid with a single distance
field; (c) close-up of (b); and (d) vectorized solid with an additional distance field to recover sharp boundaries (close-up).

12 G.-X. Zhang et al. / Graphical Models xxx (2012) xxx–xxx
commodity GPUs. For each visible pixel, we obtain the
interpolated texture coordinate using the vertex shader
and evaluate the color with Eq. (1) using the fragment sha-
der; the colors and gradients at control points are stored as
textures for efficient GPU access. The color at any continu-
ous position is calculated by linear interpolation of entries
in the look-up table described in Section 3 through hard-
ware-supported texture fetches, a commonly used tech-
nique for realtime rendering. For solid textures with
binary masks, the relevant set of feature vectors is used
based on the evaluated signed distance. This is both effi-
cient and ensures accuracy as accurate values are obtained
at 83 times higher resolution than raster solids. This linear
interpolation is accurate at 1

8 voxel resolution and is suffi-
ciently close to the real function such that no visible arti-
fact is produced, even when extremely magnified. In
most practical applications, a precomputed look-up table
with 1

4 voxel resolution is sufficient, which leads to a
look-up table with 173 � 32 entries and taking less than
0.6 MB storage. To avoid jagged boundaries when gradient
solids with two regions are rasterized, we use similar
antialiasing technique as in [33]. The idea is for pixels close
to boundaries, colors evaluated with both positive and
negative regions are linearly blended.

Our representation has similar real-time rendering per-
formance as [33]. To make a fair comparison, in the perfor-
mance measurement, we have disabled mipmapping for
[33] and enabled antialiasing for both methods. For a
1283 solid with a mesh containing 70 K vertices rendered
at 1024 � 768 resolution, our average frame rate is 80 fps
and the rendering algorithm from [33] achieves on average
75 fps. High resolution solid textures in this paper are ren-
dered with 30–60 fps. The slightly lower frame rates are
due to the relatively complicated geometry and large tex-
tures with lower cache performance.

5.4. Discussions and limitations

Although we can represent sharp boundaries with re-
gions, similar to Wang et al. [33] using a single distance
field we cannot in general recover sharp boundaries if
more than two regions touch. An example is given in
Fig. 13. The input solid (a) can be vectorized with our algo-
rithm producing the reconstructed solid (b) with close-up
(c). Sharp boundaries between triangles cannot be pre-
served with the single binary mask. Compared with [33],
Please cite this article in press as: G.-X. Zhang et al., Efficient synthesis o
10.1016/j.gmod.2012.10.006
our blurring effects are much more local. If such blur is
not acceptable, our algorithm needs to be modified to be
augmented with another distance field to separate adja-
cent triangle pairs, as shown in (d) (a close-up view).

Another limitation is although our fitting error is usu-
ally lower than Wang et al. [33] for typical input, fine de-
tails within a region may not be fully reproduced; this
however is a limitation for virtually all the vectorization
methods. To simulate fine details of textures without
excessive storage, the approximation error at any position
is modeled as a Gaussian distribution. Assume for each po-
sition x, and an arbitrary channel c (including r, g, b) with a
sample pixel value p̂cðxÞ and corresponding reconstructed
value from the vector representation ~pcðxÞ, the residual
rcðxÞ ¼ p̂cðxÞ � ~pcðxÞ is a Gaussian distribution with proba-
bility p satisfying

pðrcðxÞ ¼ yÞ ¼ Gð0;rcðxÞÞ

¼ 1ffi
2prcðxÞ2

q exp � y2

2rcðxÞ2

()
; ð7Þ

where rc(x) is the standard deviation and y an arbitrary
value. We optimize rc(x) such that pðrcðxÞ ¼ p̂cðxÞ� ~pcðxÞÞ
is maximized, which is worked out as rcðxÞ ¼ jp̂cðxÞ�
~pcðxÞj. For efficiency, rc is also compactly represented
using our vector representation, treating as an additional
channel. When rendering at any position, the residual r is
randomly sampled from the distribution. To ensure consis-
tent result, a position determined hash function as Perlin
noise [27] is used. With similar lookup table based GPU
acceleration, extra computation can be efficiently done,
keeping the rendering algorithm realtime (current imple-
mentation with 30–50% of the original fps). An example
is shown in Fig. 14 where richer details are recovered with-
out losing the benefits of vector representation such as res-
olution independence.

As a method to produce vectorized solid textures, our
method is not suitable for all textures. Even with noise
modeling, for textures with large amount of high-fre-
quency details, the method may not reproduce such tex-
tures in the synthesized solids well, as shown in Fig. 15.
Nevertheless, we have demonstrated that our method
works well on a variety of textures throughout the paper.
Our representation is particularly suitable for solid tex-
tures having dominantly smooth color variations within
each homogeneous region, as assumed by virtually all the
f gradient solid textures, Graph. Models (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006

Fig. 14. Vector solid textures without (left) and with added details (right).

Fig. 15. Our method may not perform well on exemplar images with
significant high frequency details. Left: input exemplar image; right:
synthesized solid textures.

G.-X. Zhang et al. / Graphical Models xxx (2012) xxx–xxx 13
vectorization methods. This applies also when textures
contain textons at varying scales, reasonable synthesis re-
sults can be achieved as long as they do not have signifi-
cant high-frequency details, as demonstrated in Fig. 8
where textures contain elementary pieces of different
sizes. A regular grid is used for simplicity which may not
be very efficient if the level of detail changes dramatically
over the volume; alternatively, adaptive sampling may be
used to alleviate this.

The instant editing algorithm in this paper does not
consider the texton structures of the solid textures and
thus may not provide semantically coherent editing re-
sults. Based on our general framework, this could be
achieved with texton analysis and this is expected to be ex-
plored in the future.
6. Conclusions and future work

In this paper, we propose a novel gradient solid repre-
sentation for compactly representing solids. We also
propose an efficient algorithm for direct synthesis of gradi-
ent solid textures from 2D exemplars. Our algorithm is very
efficient in both computation and storage, compared with
previous voxel-level solid texture synthesis methods and
thus allows high-resolution solid textures to be synthesized
in full. The algorithm can be generalized to take 3D solids as
exemplars which will also benefit from the compactness of
our representation. The representation is also potentially
useful for accelerating volume processing. We have demon-
strated instant editing of large volumes, and we would like
to explore other applications such as efficient volumetric
rendering and manipulation of (solid) textures (e.g.
[6,20]) in the future. Our current implementation of the
Please cite this article in press as: G.-X. Zhang et al., Efficient synthesis o
10.1016/j.gmod.2012.10.006
synthesis algorithm is purely CPU based. The algorithm is
highly parallel and we expect to implement this on the
GPU to further improve the performance. Our rendering
implementation can be further augmented with mipmap-
ping for adaptive scaling especially minification and tex-
ture composition to produce richer fractal-like
boundaries, using techniques similar to those in [33]. The
instant solid editing algorithm could be improved for more
semantically meaningful editing by taking into account the
texton structures.
Acknowledgments

This work was supported by the National Basic Research
Project of China (Project Number 2012CB316400), the
Natural Science Foundation of China (Project Number
61120106007 and 61170153), the National High Technol-
ogy Research and Development Program of China (Project
Number 2011AA010503) and the National Science and
Technology Key Projects of China (2011ZX01042-001-002).
Appendix A. Supplementary material

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.gmod.2012.10.006.
References

[1] W. Barrett, A.S. Cheney, Object-based image editing, ACM Trans.
Graph. 21 (3) (2002) 777–784.

[2] Nathan A. Carr, John C. Hart, Meshed atlases for real-time procedural
solid texturing, ACM Trans. Graph. 21 (2) (2002) 106–131.

[3] J. Chen, B. Wang, High quality solid texture synthesis using position
and index histogram matching, Visual Comput. 26 (4) (2010) 253–
262.

[4] Yue Dong, Sylvain Lefebvre, Xin Tong, George Drettakis, Lazy solid
texture synthesis, Comput. Graph. Forum 27 (4) (2008) 1165–1174.

[5] Song-Pei Du, Shi-Min Hu, Ralph R. Martin, Semi-regular solid
texturing from 2D exemplars, IEEE Trans. Vis. Comput. Graph. (in
press), http://dx.doi.org/10.1109/TVCG.2012.129.

[6] Hui Fang, John C. Hart, Textureshop: texture synthesis as a
photograph editing tool, in: ACM SIGGRAPH, 2004, pp. 354–359.

[7] James Ferguson, Multivariable curve interpolation, J. ACM 11 (2)
(1964) 221–228.

[8] D.J. Heeger, J.R. Bergen, Pyramid-based texture analysis/synthesis,
in: Proc. ACM SIGGRAPH, 1995, pp. 229–238.

[9] A. Hertzmann, C.E. Jacobs, N. Oliver, B. Curless, D.H. Salesin, Image
analogies, in: Proc. ACM SIGGRAPH, 2001, pp. 327–340.

[10] R. Jagnow, J. Dorsey, H. Rushmeier, Stereological techniques for solid
textures, in: Proc. ACM SIGGRAPH, 2004, pp. 329–335.
f gradient solid textures, Graph. Models (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1109/TVCG.2012.129
http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006

14 G.-X. Zhang et al. / Graphical Models xxx (2012) xxx–xxx
[11] R. Jagnow, J. Dorsey, H. Rushmeier, Evaluation of methods for
approximating shapes used to synthesize 3d solid textures, ACM
Trans. Appl. Perception 4 (4) (2008) (article 24).

[12] Arie Kadosh, Daniel Cohen-Or, Roni Yagel, Tricubic interpolation of
discrete surfaces for binary volumes, IEEE Trans. Vis. Comput. Graph.
9 (4) (2003) 580–586.

[13] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver Deussen, Dani
Lischinski, Tien-Tsin Wong, Solid texture synthesis from 2D
exemplars, ACM Trans. Graph. 26 (3) (2007) (article 2).

[14] Vivek Kwatra, Irfan Essa, Aaron Bobick, Nipun Kwatra, Texture
optimization for example-based synthesis, ACM Trans. Graph. 24 (3)
(2005) 795–802.

[15] Yu-Kun Lai, Shi-Min Hu, Ralph R. Martin, Automatic and topology-
preserving gradient mesh generation for image vectorization, ACM
Trans. Graph. 28 (3) (2009) (article 85).

[16] Sylvain Lefebvre, Hugues Hoppe, Parallel controllable texture
synthesis, ACM Trans. Graph. 24 (3) (2005) 777–786.

[17] Sylvain Lefebvre, Hugues Hoppe, Appearance-space texture
synthesis, ACM Trans. Graph. 25 (2006) 541–548.

[18] F. Lekien, J. Marsden, Tricubic interpolation in three dimensions, J.
Numer. Methods Eng. 63 (2005) 455–471.

[19] Yong Li, Tao Ju, Shi-Min Hu, Instant propagation of sparse edits on
images and videos, Comput. Graph. Forum 29 (7) (2010) 2049–2054.

[20] Jianye Lu, A.S. Georghiades, A. Glaser, H. Wu, L.-Y. Wei, B. Guo, J.
Dorsey, H. Rushmeier, Context-aware textures, ACM Trans. Graph.
26 (1) (2007) (article 3).

[21] C. Ma, L.-Y. Wei, B. Guo, K. Zhou, Motion field texture synthesis, ACM
Trans. Graph. 28 (5) (2009) (article 110).

[22] Paul Ning, Lambertus Hesselink, Fast volume rendering of
compressed data, in: Proc. IEEE Visualization, 1993, pp. 11–18.

[23] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, D. Salesin,
Diffusion curves: a vector representation for smooth-shaded images,
ACM Trans. Graph. 27 (3) (2008) (article 92).

[24] Bin Pan, Fan Zhong, Shuai Wang, Wei Chen, Qunsheng Peng, Salient
structural elements based texture synthesis, Sci. China Inform. Sci.
54 (6) (2011) 1199–1206.

[25] Darko Pavić, Leif Kobbelt, Two-colored pixels, Comput. Graph.
Forum 29 (2) (2010) 743–752.

[26] D.R. Peachey, Solid texturing of complex surfaces, in: Proc. ACM
SIGGRAPH, 1985, pp. 279–286.

[27] K. Perlin, An image synthesizer, in: Proc. ACM SIGGRAPH, 1985, pp.
287–296.
Please cite this article in press as: G.-X. Zhang et al., Efficient synthesis o
10.1016/j.gmod.2012.10.006
[28] N. Pietroni, P. Cignoni, M.A. Otaduy, R. Scopigno, Solid-texture
synthesis: a survey, IEEE Comput. Graph. Appl. 30 (4) (2010) 74–89.

[29] J. Sun, L. Liang, F. Wen, H.-Y. Shum, Image vectorization using
optimized gradient meshes, ACM Trans. Graph. 26 (3) (2007) (article
11).

[30] Kenshi Takayama, Makoto Okabe, Takashi Ijiri, Takeo Igarashi,
Lapped solid textures: filling a model with anisotropic textures,
ACM Trans. Graph. 27 (3) (2008) (article 53).

[31] Kenshi Takayama, Olga Sorkine, Andrew Nealen, Takeo Igarashi,
Volumetric modeling with diffusion surfaces, ACM Trans. Graph. 29
(6) (2010) (article 180).

[32] J. Tumblin, P. Choudhury, Bixels: picture samples with sharp
embedded boundaries, in: Proc. Eurographics Symposium on
Rendering, 2004, pp. 186–196.

[33] Lvdi Wang, Kun Zhou, Yizhou Yu, Baining Guo, Vector solid textures,
in: Proc. ACM SIGGRAPH, 2010 (article 86).

[34] L.-Y. Wei, Texture synthesis from multiple sources, in: SIGGRAPH
2003 Sketch, 2003.

[35] L.-Y. Wei, S. Lefebvre, V. Kwatra, G. Turk, State of the art in example-
based texture synthesis, in: Eurographics State-of-Art Report, 2009.

[36] Y. Wexler, E. Shechtman, M. Irani, Space-time completion of video,
IEEE Trans. PAMI 29 (3) (2007) 463–476.

[37] T. Xia, B. Liao, Y. Yu, Patch-based image vectorization with automatic
curvilinear feature alignment, ACM Trans. Graph. 28 (5) (2009)
(article 115).

[38] Tian Xia, Qing Wu, Chun Chen, Yizhou Yu, Lazy texture selection
based on active learning, Visual Comput. 26 (3) (2010) 157–
169.

[39] Kun Xu, Yong Li, Tao Ju, Shi-Min Hu, Tian-Qiang Liu, Efficient
affinity-based edit propagation using k–d tree, ACM Trans. Graph. 28
(5) (2009) 118:1–118:6.

[40] Kun Xu, Jiaping Wang, Xin Tong, Shi-Min Hu, Baining Guo, Edit
propagation on bidirectional texture functions, Comput. Graph.
Forum 28 (7) (2009) 1871–1877.

[41] Boon-Lock Yeo, Bede Liu, Volume rendering of dct-based
compressed 3d scalar data, IEEE Trans. Vis. Comput. Graph. 1 (1)
(1995) 29–43.

[42] Guo-Xin Zhang, Song-Pei Du, Yu-Kun Lai, Tianyun Ni, Shi-Min Hu,
Sketch guided solid texturing, Graph. Mod. 73 (3) (2011) 59–73.

[43] Guo-Xin Zhang, Yu-Kun Lai, Shi-Min Hu, Efficient solid texture
synthesis using gradient solids, Lect. Notes Comput. Sci. 7633 (2012)
67–74.
f gradient solid textures, Graph. Models (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.gmod.2012.10.006
http://dx.doi.org/10.1016/j.gmod.2012.10.006

	Efficient synthesis of gradient solid textures
	1 Introduction
	2 Related work
	3 Gradient solid representation
	3.1 Representing smooth regions
	3.2 Representing region boundaries

	4 Gradient solid texture synthesis
	4.1 Algorithm overview
	4.2 Initialization
	4.3 Optimization-based synthesis
	4.3.1 Finding matched patches from exemplars
	4.3.2 Representation update
	4.3.3 Multi-resolution synthesis
	4.3.4 Fast approximate evaluation

	4.4 Gradient solid representation refinement
	4.5 Instant solid editing

	5 Results and discussions
	5.1 Solid texture synthesis
	5.2 Vectorization of solid textures
	5.3 Rendering
	5.4 Discussions and limitations

	6 Conclusions and future work
	Acknowledgments
	Appendix A Supplementary material
	References

