
EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer
(Guest Editors)

Volume 37 (2018), Number 2

Controllable Dendritic Crystal Simulation Using Orientation Field

Bo Ren1 and Jiahui Huang2 and Ming C. Lin3 and Shi-Min Hu2,4

1College of Computer and Control Engineering, Nankai University, Tianjin, China
2Department of Computer Science and Technology, Tsinghua University, Beijing, China

3Department of Computer Science, UNC Chapel Hill, USA
4School of Computer Science and Informatics, Cardiff University, UK

Abstract
Real world dendritic growths show charming structures by their exquisite balance between the symmetry and randomness in the
crystal formation. Other than the variety in the natural crystals, richer visual appearance of crystals can benefit from artificially
controlling of the crystal growth on its growing directions and shapes. In this paper, by introducing one extra dimension of
freedom, i.e. the orientation field, into the simulation, we propose an efficient algorithm for dendritic crystal simulation that is
able to reproduce arbitrary symmetry patterns with different levels of asymmetry breaking effect on general grids or meshes,
including spreading on curved surfaces and growth in 3D. Flexible artistic control is also enabled in a unified manner by
exploiting and guiding the orientation field in the visual simulation. We show the effectiveness of our approach by various
demonstrations of simulation results.

CCS Concepts
•Computing methodologies → Physical simulation;

1. Introduction

The natural beauty of crystals has attracted much attention of artist-
s and scientists for decades. One of the most charming pattern-
s of crystals is dendritic crystal. Often formed when temperature
falls below freezing point or in already supercooled liquids, it can
be commonly observed in snowflake formations and frost patterns
on the window. It is also one of the most common forms of so-
lidifying composites, metals and alloys, such as in electrolytically
refined metal crystals and mineral stones. There is a wide varia-
tion in the visual appearances of dendrites, while perfectly sym-
metrically structured shapes, such as hexagonal snowflakes exist-
s, certain extent of disorder, or symmetry breaking, is widely ob-
servable in real-world dendritic crystals, leading to semi-structured
self-organized shapes, e.g. feather-like pattern, eye-shaped struc-
ture and spherulite, etc. It is often the case that the natural beauty
of dendrites inherits from the exquisite balance between structures
of symmetry and asymmetry in the crystal formations.

On the other hand, in graphics applications, the crystal simu-
lation can even go beyond reproducing natural shapes. Similar to
guided simulation in gas and liquids, there is also potential for den-
dritic crystal simulation to form artistically directed shapes while
preserving the intrinsic symmetric patterns. However, although it
stands as an important part of solid-liquid phase transition and is
commonly observable in daily life – either in scientific and indus-
trious environments, little research has been devoted to the natural
formation of dendritic crystals or the artistic control of such growth.

Meanwhile, the existing works can only reproduce a limited subset
of real-life dendrite patterns, or they do not provide enough free-
dom for adjusting symmetry breaking, variable symmetric patterns
on arbitrary grids and meshes, or there is little to no artistic control
of dendrite growth. These challenges remains in current literature.

In this paper, we present an extended non-isothermal dendritic
crystal growth model that is not only capable of capturing a wide
range of real-world dendritic crystal patterns, but can also provide
flexible artistic control for simulations on mesh surfaces. Observing
that ordered orientations appear in solid crystal molecules but not in
liquids, dendritic crystallization is highly relevant to the changing
process of orientations from disorder to order. In our approach, the
conventional phase field equations for dendritic crystallization is
enhanced by introducing one more variable in calculating the evo-
lution of solid and liquid molecular orientation direction. We also
provide a unified 3D dendrite simulation strategy in line with con-
ventional 2D framework. By introducing orientation fields, control-
lable symmetry-breaking patterns can be reproduced on arbitrary
2D and 3D grids or meshes. The introduction of orientation fields
also provides easy, intuitive artistic control to the dendrite shape.
Our main contributions include:

• Physically-based dendritic crystallization method capable of
capturing a wide range of real-world crystal shapes with an
added dimension of local orientation calculation.

• Dendrite growth model reproducing arbitrary symmetry patterns
in 2D and 3D on standard grids or 3D meshes, with controllable
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symmetry breaking patterns that allow more diverse and richer
appearance.
• Flexible and stable algorithmic framework, enabling direct artis-

tic control to visual simulation.

2. Previous Works

Graphics research over the solidification process of liquid into sol-
id dates back to [KG93], which proposes an physically-based icicle
growth model. A random-walk strategy is adopted in their work to
model the probabilistic freezing of water drops on the ice surface.
Icicle formation is investigated again in [KAL06], where the liquid
water freezing process is resolved by solving the thin-film Stefan
problem. Later, ice freezing simulation is enhanced with contained
air bubbles in [MTSK09,NIDN12,MX15], where water is assumed
to bring dissolved air that forms bubbles during the freezing pro-
cess. In these works, structured crystal patterns are not involved in
the study.

In computer graphics, 2D structural dendritic crystallization has
been studied by [KL03, KHL04]. A physical ice crystal growth
model is proposed in [KL03] able to capture growth of ice den-
drites, but their model confines to either perfect symmetry or
isotropic patterns in 2D. A diffusion limited aggregation (DLA)
model is further integrated in [KHL04] providing more realistic
symmetry breaking appearance of ice crystal formation on surfaces.
However, this hybrid approach in turn suffers from grid-dependent
artifacts; the growth direction tends to follow the grid alignment.
This algorithm is on hexagonal grids for water crystal simulation
and the ability to simulate variable symmetric patterns on arbi-
trary grids or meshes is largely limited to DLA-based symmetry-
breaking mechanics. Post-process bump/crease generation strate-
gies are provided to enhance the rendering effect of the ice crys-
tal shape, though no direct artistic control on the crystal growth
is given. In our approach, by introducing a fast, local orientation
calculation, we show how arbitrary growth patterns and variable
randomness can be simultaneously achieved. The introduction of
local orientation also enables direct artistic control and further en-
hancement of crystal rendering.

The dendritic crystallization problem has long received much
attention in computational physics and crystal growth areas, with
variants of phase-field based methods among the most effective
models to reproduce real-world dendrite patterns. [Kob93] propos-
es a phase-field crystallization model that successfully generates
dendrite patterns in single-component melt growth.

In [GBP02a, GBP02b, GPW∗03, GPW04], isothermal models
using orientation field are derived for 2D dendrite formation in
alloy solutions, where concentration dynamics have to be mod-
eled. Using axis-aligned assumption or small-angle approxima-
tion, [GW02,HhZfN08,PBG05] study octahedral growth in 3D. We
take advantage of the orientation concept from [GBP02a,GBP02b]
and integrate it into visual simulation of existing graphics non-
isothermal framework saving the concentration calculation. The en-
hanced graphical model is capable of recovering dendrite shapes
generated by the isothermal crystal growth models; it covers non-
solution crystallization such as ice formation, and it also provides
a precise strategy for arbitrary 3D orientation calculation free from
approximations in previous methods, handling 2D and 3D simula-
tions in a unified framework.

Our method has connections to graphics direction field design-
ing and geometry synthesis works, where designing and analysis
of rotational symmetric functions in 2D and 3D are studied. N-
fold symmetric direction field designing on 2D manifolds are s-
tudied in [PZ07, RVAL09], where anisotropy is later considered
in [DVPSH14]. In [HTWB11], 3D cubic-symmetric field is rep-
resented by the fourth band of spherical harmonics. However the
above works do not cover all symmetry patterns for 3D anisotropy
functions existing in dendritic crystallization model. We provide
straightforward recipes to formulate most typical symmetry pat-
terns in our approach. In addition, a geodesic polar map is used
to represent relative location of nearby vertices on a triangle mesh
in [LBZ∗11], which is connected to the molecular orientation field
calculation in 3D in our algorithm. An extensive survey for further
reading on these research areas can be found in [VCD∗16].

The dendritic crystal growth phenomenon is also linked to proce-
dural modeling to some extent, where a large variety of tree mod-
els, urban districts are reconstructed from a simple set of genera-
tion rules and parameters, sharing a similarity with dendrite sim-
ulation [SPK∗14, KFWM17, STBB14]. Structural models are also
studied by example-based approaches such as in [ROM∗15]. By us-
ing physically-based growth mechanisms, our approach reproduces
real-world structured crystal shapes as well as provide flexible artis-
tic control in the simulation.

3. Theoretical Foundations of Controllable Dendrite Growth

In this section we first briefly review the phase field theory for crys-
tal growth in [Kob93, KL03, KHL04], i.e. the Kobayashi formula-
tion adopted by previous works. Then, we introduce our extended
model with support of local molecular orientation calculation.

3.1. Kobayashi Formulation Using Phase-Field Theory

The phase field theory for dynamics of crystallization is described
by the evolution of a continuous phase-field value η ∈ [0,1], with
η = 0 indicating pure liquid phase and η = 1 indicating pure solid
phase. A free energy is linked to each phase state, and the sys-
tem evolves toward minimizing the free energy. Then the minimum
points of free energy function correspond to steady states of the
physical system, and governing equations can be derived from the
free energy function using variational approach. For non-isotropic
dendrite growth, since the steady state should be pure solid phase
or pure liquid phase, the free energy function should have a double-
well form, i.e. having exactly two local minima at η = 0 and η = 1.
Temperature should affect the relative magnitude relation of the
minima, making the global minimum position at η= 1 below freez-
ing point and at η = 0 above it, in order that the system tend-
s to settle at solid state below freezing point and vice versa. The
free energy should also be higher in the phase front (|∇η| > 0)
region to encourage phase transition there and discourage mixed
state. In [Kob93], the free energy is given by

F(η,ξ) =
∫

1
2

ε
2|∇η|2 + f (η,ξ(T ))dr (1)

In the above equation, ξ(T ) = α

π
arctan(γ(Te−T )) links the poten-

tial function f and the free energy function F with the temperature
T , where Te is equilibrium temperature and α ∈ (0,1) is a constant.
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The anisotropy function ε is given as:

ε(θ) = ε̄(1+δcos( j(θ0−θ))) (2)

where ε̄,δ are constants that affect the strength and peak-
sharpness of the anisotropy function. The local phase front di-
rection θ is linked to the phase field value η by θ = −∇η =
−arccos[(∂η/∂x)/|∇η|] and θ0 is a constant representing initial
solid orientation. The equation for phase-field evolution is then de-
rived by variational approach from Eqn.(1):

∂η

∂t
= Mη(∇·

∂F
∂∇η

− ∂F
∂η

) (3)

where Mη is constant phase mobility coefficient that describes how
easily the phase field changes. In [Kob93], after substituting E-
qn.(1) into Eqn.(3), the equation for η has the form of:

∂η

∂t
= Mη(∇· (ε2∇η)− ∂

∂x
(ε

∂ε

∂θ

∂η

∂y
)+

∂

∂y
(ε

∂ε

∂θ

∂η

∂x
)

+η(1−η)(η− 1
2
+ξ(T )))

(4)

The last term comes from their choice of double-well function
f (η,ξ) which we will discuss in more detail later. The evolvement
of temperature is governed by:

∂T
∂t

= a2∇2T +K
∂η

∂t
(5)

where a2 is heat diffusion coefficient and K is a latent heat constant.
A higher K value leads to slower growth but with more branching
effects in the final results.

The above phase field method is an effective model in simulat-
ing dendrite crystals, as is demonstrated in [KL03]. However it can
only reproduce dendrites with little or no symmetry breaking other
than complete isotropic growth. [KHL04] targets at this problem
by integrating the DLA method into the simulation and successful-
ly reproduces some extent of symmetry breaking effect, but they
in turn suffer from grid-dependent artifacts where growth direction
largely align with the grid formation, limiting ability of arbitrary
growth other than ice crystallization on a hexagonal grid. By in-
cluding calculation on the local molecular orientation, we introduce
a more powerful simulation scheme.

3.2. Evolution of Local Orientation

The structure of dendrites is a result of microscopic ordering of
molecular orientations in the solid phase. During the solidification
process, unordered liquid molecules eventually settle into the same
orientations as the nearby solid molecules. If this match of orien-
tations is always perfect, the resulting dendrite will also be per-
fectly symmetric. Symmetry breaking happens when solidification
proceeds too fast for complete orientation alignment, as the mis-
oriented molecules will in turn influence newly solidifying ones
and possibly change the growth direction.

Based on the above observation, it is natural to introduce a new
degree of freedom into the phase field model that deals with align-
ing of molecular orientations in the simulation. Inspired by isother-
mal alloy dendrite growth models [GBP02a,GBP02b], we integrate
a new equation calculating local molecular orientation changes dur-
ing the solidification process into the Kobayashi model described
in §3.1.

From an energy-based perspective, the reason behind the align-
ing tendency during dendritic crystallization is that misalignment
between nearby molecules in solid crystals will result in higher free
energy, while misalignment between liquid molecules cast little or
no influence to the free energy. For clarity, we first write the free
energy function in a more complete form than in Eqn.(1):

F =
∫

1
2

ε
2|∇η|2 +g(η)+ p(η)( fs(T )+ fori(|∇θori|))

+(1− p(η)) fl(T )dr
(6)

where fs(T ) and fl(T ) are temperature-dependent pure-solid-phase
and pure-liquid-phase free energie densities,

fori(|∇θori|) = H|∇θori| (7)

is misalignment energy density proportional to |∇θori|, absolute
value of gradient of local molecular orientation θori. Note θori re-
places θ0 in Eqn.(2), and is now a variable. H is a constant coeffi-
cient. g(η) = 1

4 η
2(η−1)2 from [GBP02a] ensures the free energy

has a double-well form. p(η) is an interpolation function on [0,1].
Comparing with the Kobayashi model, it is easy to verify that by
dropping the fori(|∇θori|) term and using fl = 0, fs = − ξ(T )

6 and
p(η) = η

2(3−2η), Eqn.(6) is simplified to Eqn.(1).

The phase field equation can be derived similarly by Eqn.(3):

∂η

∂t
= Mη(∇· (ε2∇η)− ∂

∂x
(ε

∂ε

∂θ

∂η

∂y
)+

∂

∂y
(ε

∂ε

∂θ

∂η

∂x
)

−g′(η)− p′(η)( fs− fl + fori))

(8)

Again this is similar to Eqn.(4) with the main difference being a
newly introduced term fori.

An equation for θori can be similarly derived using ∂θori
∂t =

−Mori(∇· ∂F
∂∇θori

− ∂F
∂θori

). From [GPW04], the second term is omit-
table, which gives:

∂θori

∂t
=−MoriH∇· (p(η)

∇θori

|∇θori|
) (9)

Mori is a dimensionless orientational mobility and can be written as
Mori = Mori,s +(Mori,l−Mori,s)(1− p(η)), with Mori,s, Mori,l rep-
resenting the orientational mobility in pure solid and liquid phases.
Assuming no mobility in pure solid, i.e. Mori,s = 0, we drop the l,s
footnote and re-write Eqn.(9) more explicitly as:

∂θori

∂t
=−MoriH(1− p(η))∇· (p(η)

∇θori

|∇θori|
) (10)

where Mori is now a constant coefficient.

It is worth noting that from Eqn.(10), θori does not change
whether in pure liquid or pure solid phases since either p(η) or
1− p(η) is 0 there. During the solidification, change in molecu-
lar orientation only happens within a layer at crystal growth front,
which reflects exactly the physical behavior.

In our implementation we also choose fl = 0, fs = − ξ(T )
6 and

p(η) = η
2(3− 2η) in the calculations, and Eqns.(5,8,10) serve as

the fundamental equations of our model.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Bo Ren & Jiahui Huang & Ming C. Lin & Shi-Min Hu / Controllable Dendritic Crystal Simulation Using Orientation Field

4. Enhanced Orientation-based Dendrite Growth Simulation

In this section we further investigate the potential of introducing
orientation calculation. We also extend the orientation-based model
to 3D.

4.1. Effect of Orientation Energy and the Orientation
Equation

Intuitively the orientation energy density Eqn.(7) penalizes any
neighborhood misorientation within regions where η > 0. As a re-
sult, according to Eqn.(10), liquid molecules tends to align with the
solid crystal molecules until perfect alignment is achieved. Note the
speed of this procedure is controlled by the orientation mobility co-
efficient Mori. From a physical perspective, if Mori is high enough
or the crystallization process is slow enough, perfect symmetric
dendritic crystals will form as all molecules align to each other.
However, if Mori is small compared to the phase transition rate,
it will be possible that solidification is completed before perfec-
t alignment is achieved, thus introducing symmetry-breaking pat-
terns into the crystal structure. By adjusting the orientation mobil-
ity, we are able to introduce various levels of symmetry breaking
effects, as is shown in Fig.1.

Eqn.(7) is capable of reproducing a set of real-world dendrite
crystal growth. However, it still lack certain control on the final
state of symmetry breaking. Taking the spherulite shown in the
bottom line of Fig.5 as an example, while the branching direction
is largely random on the local level, they also follow an obvious
“bending” global pattern forming eye-shaped features in the den-
drite.

For such more complex patterns a modified version of Eqn.(7)
similar to that from [GPW04] can be used:

fori =
H
h
(xS0 +(1− x)S1) (11)

S0 = |sin(2πmh|∇θori|)|, h|∇θori|<
3

4m
, otherwise 1 (12)

S1 = |sin(2πnh|∇θori|)|, h|∇θori|<
1

4n
, otherwise 1 (13)

where x ∈ [0,1] is an interpolation factor. m,n are constants, h is
grid width. The period of the sine function in S1 is usually fixed to
a large enough value so that it is monotonically increasing within
the domain, while that in S0 is smaller in order to form the shape
of fori using the linear combination. Other than the zero point, the
final shape of the fori curve has an extra local minimum with finite
misorientation value, whose position can be controlled by adjusting
m. Fig.3 shows fori shapes under different m and x values.

With orientation energy density fori in Eqn.(11), at the phase
transition front, if a molecule has a smaller misorientation value,
it can reduce the free energy by aligning itself to the solid crystal
neighborhood. With larger misorientations, it will in turn settle to a
branching direction corresponding to the minimum position of the
fori curve.

Eqn.(11) can be directly inserted into Eqn.(8). Eqn.(10) needs to
be slightly modified:

∂θori

∂t
=−MoriH(1− p(η))∇·(2p(η)π(xS̃0m+(1−x)S̃1n)

∇θori

|∇θori|
)

(14)
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Figure 3: fori curve in Eqn.(11) under different m and x values.
The extra finite minima position is controlled by m.

S̃0 = sign[sin(2πmh|∇θori|)]cos(2πmh|∇θori|),

h|∇θori|<
3

4m
, otherwise 0

(15)

S̃1 = sign[sin(2πnh|∇θori|)]cos(2πnh|∇θori|),

h|∇θori|<
1

4n
, otherwise 0

(16)

4.2. Three-Dimensional Dendritic Crystallization Model

Dendritic crystals show more complex and visually interesting
shapes in three dimensional space, however previous works only
provide limited access to 3D simulations of dendrite growth. By
modifying the 3D orientation equation, we extend the above crystal
growth model to three dimensions and provide precise formulations
of 3D calculation with full support to various symmetry patterns.

Theoretically, in three dimensional space there are three rotation-
al freedoms. However, in the simulation we rely on the phase field
to recover the phase front direction which has only two rotation-
al freedoms corresponding to the front normal direction. To avoid
arbitrary calculation in self-rotation, we assume self-rotational an-
gle is always zero. This simplification transforms the problem into
two-dimensional space. Note that this is equivalent to assuming the
mobility in self-rotational dimension to infinite, and can be jus-
tified by observing the real-world crystals, whose shapes seldom
twist around its growth axis.

The local phase front direction θ and molecular orientation di-
rection θori are substituted with spatial directions Ω(θ,ϕ) = −∇η

and Ωori(θori,ϕori). Using the phase field, we can define θ =
−arccos((∂η/∂z)/|∇η|) and ϕ = −arctan((∂η/∂y)/(∂η/∂x)).
The 3D phase equation corresponding to Eqn.(8) can then be de-
rived by variational approach which gives:

∂η

∂t
= Mη(∇· (ε2∇η)+

∂

∂x
(

ε

τ

∂ε

∂θ

∂η

∂x
∂η

∂z
− ε

τ2
∂ε

∂ϕ
|∇η|2 ∂η

∂y
)

+
∂

∂y
(

ε

τ

∂ε

∂θ

∂η

∂z
∂η

∂y
+

ε

τ2
∂ε

∂ϕ
|∇η|2 ∂η

∂x
)

− ∂

∂z
(ε

∂ε

∂θ
τ)−g′(η)− p′(η)( fs− fl + fori(||∇Ωori||))

(17)

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Bo Ren & Jiahui Huang & Ming C. Lin & Shi-Min Hu / Controllable Dendritic Crystal Simulation Using Orientation Field

Figure 1: Comparison of symmetry breaking strategies. Top: Our result using orientation field. Different extent of symmetry breaking is
achieved for a 5-fold pattern using large to small orientational mobilities (from left to right, Mori is set to 30,20,15,10,5). Middle: Adding
noise to phase field from the previous model [Kob93,KL03]. From left to right, noise level is set to 5,15,25,60,100. Broken linkage of phase
field appears at relatively small randomness and eventually the result becomes no longer natural. Bottom: Alternatively using ’pin points’
to randomly vary orientation direction instead of calculating Eqn.(10). Similar results with the top line is achieved with varying amount of
random pin point numbers (from left to right: 0.1%,0.2%,1%,3%,10% of total grid numbers).

where τ =
√

( ∂η

∂x )
2 +( ∂η

∂y )
2. The orientation equations Eqn.(10,14)

remains exactly in the same form except θori is substituted for Ωori,
e.g. Eqn.(10) now turns into:

∂Ωori

∂t
=−MoriH(1− p(η))∇· (p(η)

∇Ωori

||∇Ωori||
) (18)

The algebraic operation of Ωori has to be defined in order to
compute its gradient in 3D. Although Ωori can be represented by
points ω on the unit sphere and parameterized by sphere coordi-
nates (θ,ϕ) confined to the unit surface, such representation is in-
convenient to define the “difference” between two orientation di-
rections. Mathematically, the difference consists of two parts: one
is the central angle calculated from the great circle distance be-
tween the two corresponding points on the unit sphere; the other is
the direction of the great circle arc pointing from one point to the
other. Due to the complex formula for calculating central angles
in sphere coordinates, using (θ,ϕ) parameters in the differential e-
quations, especially in the orientation equation, is exhaustive and
unnecessary. We in turn derive a novel strategy that can compute
the precise difference of Ωori. Specifically, at each ω position, all
points on the unit sphere are represented in a designed local polar
coordinates (ρ,λ) as follows. Given local coordinate axes at ω, a
point on the unit sphere has its ρ value equal to the central angle it
forms through great circle with ω; λ equals the angle value of that

point after stereographic projection using the local coordinate at ω.
Then any difference between two ω (or Ωori) can be represented by
a (ρ,λ) pair in one of the ω’s local polar coordinate. Note the (ρ,λ)
pair is equivalent to a geodesic polar map [LBZ∗11] of points on
unit sphere with respect to ω.

Algorithm 1 Calculation of∇Ωori

for each grid position p do
Represent Ωori,p by point ωp on the unit sphere
Specify stereographic projection and polar coordinate at ωp
for each grid position q in p’s neighborhood do

Represent Ωori,q by point ωq on the unit sphere
Set ρq to central angle by great circle between ωp,ωq
Project ωq to ω̃q by stereographic projection onto a plane
Set λq to the angle value of ω̃q in polar coordinate

end for
Calculate ∇Ωori at p as matrix product of ∇ and obtained

vector field (ρ,λ) in p’s neighborhood.
end for

This approach enables explicit calculation of ∇Ωori in 3D e-
quations. Within calculation of the current grid, the Ωori values
in neighborhood grids are transformed into local polar coordinate
(ρ,λ) parameterization at the current-grid ω point from their (θ,ϕ)
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Figure 2: 3D dendrites of different symmetry patterns and their anisotropy function diagrams. Top: “perfect” patterns (octahedral and
cubic). Bottom: “semi-perfect” patterns using Eqn.(26), with a = 3,b = 2, l = 1 and a = 3,b = 4, l = 2 separately.

parameterizations. ∇Ωori is then represented on this local coordi-
nate as a 3× 2 matrix, which is the product of the 3× 1 operator
∇ and 1× 2 vector field (ρ,λ). Then ||∇Ωori|| is calculated using
the 2-norm of the matrix, which is needed for the computation of
phase equation. A pseudo code for calculation of∇Ωori is given in
Algorithm.4.2.

In our 3D simulation scheme, the orientation equation Eqn.(18)
is calculated at each ω’s local polar coordinate using the (ρ,λ) rep-
resentation. Specifically, we first obtain ∂Ωori

∂t as a (ρ̃, λ̃) pair from
the right hand side of the equation, then Ωori,t+1 should correspond
to the point ∆t(ρ̃, λ̃) in the local polar coordinate (since Ωori,t corre-
sponds to (0,0)). Finally, Ωori,t+1 is transformed back to the global
(θ,ϕ) coordinate.

4.3. Three-dimensional Anisotropy Functions

The anisotropy function ε still needs to be extended to cope with
full 3D simulations. Symmetry patterns in 3D links to the spher-
ical symmetry groups. We derive anisotropy functions for typi-
cal symmetric formations of graphics interest and describe further
designing methods in this part. A useful observation is that den-
drite growth follows the maxima directions of the anisotropy func-
tions. As will be summarized in §5.5, this helps in designing the
anisotropy functions, e.g. we can put maxima on each symmetric
axis and the resulting crystal will show the kind of symmetry.

In some “perfect” symmetric patterns the intersections of sym-
metry axes with the unit sphere evenly samples the surface domain,
such as in the tetrahedral, octahedral or icosahedral classes. Basic
octahedral symmetry has been studied in previous computational
physics works [HhZfN08] with the anisotropy function given as:

εo(n) = c1 + c2(sin4
θ̃(sin4

ϕ̃+ cos4
ϕ̃)+ cos4

θ̃) (19)

It is not difficult to verify that the above equation degenerates into

the 2D case to 4-fold symmetry represented by Eqn.(2) with proper-
ly chosen constant coefficients c1,c2. We use θ̃ and ϕ̃ representing
the parameterization of the phase front direction Ω in the spherical
coordinate with orientation direction Ωori as equator, which will be
discussed in detail later. n = n(θ̃, ϕ̃) is unit vector describing dif-
ference between phase front direction and crystal molecular orien-
tation, which is also possible to be transformed into local Cartesian
coordinates using n = (sinθ̃cosϕ̃,sinθ̃sinϕ̃,cosθ̃).

The tetrahedral symmetry pattern can be reproduced using

εt(n) = (c1 + c2cosθ̃sin2
θ̃cos2ϕ̃)2 (20)

The cubic symmetry pattern can be derived from Eqn.(20) with

εc(n) =
1
2
(εt(θ̃, ϕ̃)+ εt(π− θ̃, ϕ̃)) (21)

The θ̃, ϕ̃ values can not be simply calculated as θ−θori,ϕ−ϕori,
which does not ensure correct calculation in latitudinal differences
when neither Ω,Ωori directions align with the equator. However the
phase-field equation Eqn.(17) needs to calculate partial derivatives
of the anisotropy function to θ and ϕ, so given Ωori, we need to ana-
lytically represent θ̃, ϕ̃ as functions θ̃(θ,ϕ), ϕ̃(θ,ϕ). This is done by
transforming the parameterizations between the global coordinate
and Ωori-equator spherical coordinate as follows.

The result of a direction vector counter-clockwisely rotated
around a direction k by an angle Θ is given by the Rodrigue’s rota-
tion formula

nrot = Rn = (I + sinΘK+(1− cosΘ)K2)n (22)

where

K =

 0 −kz ky
kz 0 −kx
−ky kx 0

 (23)

Note that (θ,ϕ) can be represented by unit vector
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u = (sinθcosϕ,sinθsinϕ,cosθ) in the global Carte-
sian coordinate as well as (θori,ϕori) by uori =
(sinθoricosϕori,sinθorisinϕori,cosθori). A matrix R defined
by using k = uori × u0 and Θ = θori, where u0 = (0,0,1)
is the unit vector in global z direction, can transform u to a
local Cartesian coordinate with (θori,ϕori) as z direction, i.e.
ũ = Ru = (x̃(θ,ϕ), ỹ(θ,ϕ), z̃(θ,ϕ)). Then θ̃ = arccosz̃ and
ϕ̃ = arctan(ỹ/x̃) can be analytically calculated from (θ,ϕ) values.
We can apply the chain rule to compute the derivatives:

∂ε

∂θ
=

∂ε

∂θ̃

∂θ̃

∂θ
+

∂ε

∂ϕ̃

∂ϕ̃

∂θ
(24)

∂ε

∂ϕ
=

∂ε

∂θ̃

∂θ̃

∂ϕ
+

∂ε

∂ϕ̃

∂ϕ̃

∂ϕ
(25)

The Rodrigue’s rotation formula also helps in changing the
anisotropic function itself. For example, ε(Rn) will define a rotated
anisotropy function around a certain vector.

We can also design “semi-perfect” symmetry patterns corre-
sponding to the dihedral symmetry class using

ε = 1+ csinl(aθ̃)cosl(bϕ̃) (26)

where c is constant coefficient and a,b are integer values, l can
be 1 or 2. Various symmetry patterns generated using the above
formulas are shown in Fig.2.

Figure 4: 3D dendrites with smaller orientational mobility setting
in simulation. Left: octahedral with Mori = 60; Middle: octahedral
with Mori = 30; Right: cubic with Mori = 50.

The above strategies give straightforward recipes to formulate
most typical symmetry patterns. Note that spherical harmonics
ym

l (θ,ϕ) can help in the designation of anisotropic functions in 3D,
e.g. the formulation of tetrahedral and cubic patterns can be linked
to y−2

3 and y2
3 bases. The base modes of the spherical harmonics

further give a variety of symmetry functions, e.g. cubic-symmetric
fields can be represented by the fourth band of spherical harmonic-
s [HTWB11].

5. Implementation

In this section implementation issues are discussed. We address nu-
merical problems raised for stable simulation and provide artistic
control guidelines using the new orientation freedom. Following
previous works [KL03, Kob93, GBP02a], the phase field equation
and the orientation equation are solved explicitly. A convolution-
al method using Gaussian kernel described in [Bri08] is adopted
for temperature equation to accelerate the computation. At the ini-
tial stage, the liquid phase is set to have random orientation values,
and a solid phase seed is placed with a preset orientation value. A
pseudo code of our algorithm framework is given in Algorithm.4.3.

Algorithm 2 Simulation Framework
Set initial random liquid orientation field
Set initial solid seeds and orientations
if useFixedGuideField then

Set fixed orientation field value at given position
end if
while itr < itrmax do

Solve phase field equation (Eqn.8, Eqn.17), store ∂η

∂t
for all positions where orientation field is not fixed do

Solve orientation equation (Eqn.10, Eqn.18)
end for
Solve Temperature equation (Eqn.5) using stored ∂η

∂t
Output dendrite mesh from phase and orientation fields(§5.4)

end while

5.1. Numerical Issues in Solving the Governing Equations

We store the physical quantities in a staggered manner. We store
the phase field and temperature field at the grid centers, and store
the orientation field on grid edges. Standard staggered grid can be
used for 2D and 3D simulations. The previous work [GPW04] re-
ported that orientation equation must be solved at a time step 1/20
of other equations. In our experiments with our staggered storage
strategy time steps can be uniformed and the checker-board artifact
originally appearing under higher time-step can be avoided.

Direct implementation of Eqn.(14) faces certain numerical insta-
bility since the function xS̃0m+(1− x)S̃1n is discontinuous at the
finite minimum of fori defined by Eqn.(11). This gives false esti-
mation of the divergence if one directly calculates the difference
between two neighboring storage positions when the h|∇θ| values
of the two positions are on opposite sides of the discontinuity point.
In this case we virtually create a “shrinked” grid inside the origi-
nal grid centered at the current position, ensuring all points in the
shrinked grid have h|∇θ| values on the same side of the disconti-
nuity point. We interpolate the needed values on the shrinked grid
from the original grid whenever necessary and compute the outer-
most divergence in Eqn.(14) on this virtual grid, giving a correct
estimation.

Due to symmetry, when calculating difference between two di-
rections, the result should be transformed into a congruent range
modulo symmetry. For example, in a 4-fold symmetry in 2d, sub-
traction result between two direction angles should lie in the range
[− π

4 ,
π

4 ]. In 3D, semi-perfect cases from Eqn.(26) are handled sim-
ilarly with θ,ϕ separately rounded. For perfect symmetry patterns,
one can virtually place one of the two directions on a maximum
direction of the anisotropy function and calculate the difference to
be the difference from the other point to its nearest neighboring
maximum.

5.2. Dendrite Growth on Arbitrarily Curved Surface

Axis-aligned growth models [KL03, KHL04, Kob93] are not s-
traightforward to be applied to arbitrarily curved surfaces repre-
sented by general triangle meshes. On arbitrarily curved surfaces
it is often impossible to find a consistent global coordinate sys-
tem or a consistent parameterization mapping function especially
when the triangle mesh is a closed surface. Since the anisotropic
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functions are fixed on the direction of coordinates, dendrite growth
directions cannot keep consistent on the whole curved surface but
non-physically changes its direction according to local coordinate
axes. Grid-dependent artifacts appearing in the simulation in pre-
vious work [KHL04] also prevent the extension to general triangle
meshes of such methods.

Our approach does not fix growth direction with coordinate
axes and define the anisotropy function based on difference be-
tween phase front direction and orientation direction. It avoids grid-
dependent artifacts and enables application to arbitrarily represent-
ed surfaces by calculating consistent transformations of the orien-
tation field between local coordinates of the vertices. On curved
surfaces represented by triangle meshes, we adopt the affine tech-
nique from [RYL∗17]. Specifically, the curved surface is locally
flattened to a plane and the governing equations are evaluated on
this plane within a 2d local coordinate. The phase front direction θ

and orientation direction θori fields are equivalently represented as
2d normalized direction vectors n and nori fields. They are stored
within each vertex’s local coordinate, and consistently transformed
between local coordinates whenever needed using an affine matrix
Mi j in [RYL∗17]. Then differentials of variables can be calculat-
ed using a finite-volume based scheme on the triangle mesh. Such
calculation does not require special mesh structure, so a standard
triangle mesh can be used, and we store scalar and vector fields on
mesh vertices as in [RYL∗17].

5.3. Artistic Control of Growth Patterns

Our approach is able to control the extent of symmetry breaking
effect by varying the orientation mobility, as is shown in §4.1 and
Fig.1. In the simulation, higher mobility of orientation leads to
more regular dendritic growth patterns, and vice versa.

The orientation field enables direct artistic control of crystal
shapes. It is able to circumvent the calculation of orientation e-
quation at certain “pin points” in the scene. This effectively means
fixing the orientations of those points to controllable initial values.
As a result the crystal growth direction will largely follow the fixed
orientation directions when the phase front reaches those points.
Initial values can also be set randomly to certain positions in the
growth domain, providing an alternative way to generate symmetry
breaking effect. Examples and more discussions will be given in
§6.

It is also possible to map a wire-frame sketch into the simulation
and initialize an orientation field in respect to it. For example, the
random liquid orientation within a small band from the wire-frame
can be initialized to have an average direction same to the tangen-
tial direction of the wire. This strategy enables directional growth
following artistically designed draft shapes.

Furthermore, the form of Eqn.(10) can be exploited to simulate
color variations along the crystal growth. That is, a “color field” C
is defined and evolves using:

∂C
∂t

=−MCH(1− p(η))∇· (p(η)
∇C
|∇C| ) (27)

which can be used in the rendering to generate chromatic appear-
ance of the crystal.

Figure 5: Spherulites simulated using Eqn.(11). Top: from left to
right shows the rendering result with recovered inner details from
orientation field, orientation field, enlargement of the upper-right
part. Bottom: from left to right shows the rendering result and ori-
entation field. Radial veins structure and eye-shaped structure are
reproduced. Figures can be enlarged for more details.

Figure 6: Directly guided growth using our approach. On the right
is color-mapped fixed orientation field guiding the dendrite growth.

5.4. Post-processing of Dendrite Meshes

3D dendrite meshes can be recovered using marching-cube algo-
rithm on the phase field. In 2D simulations, the phase field is flat,
and creases and veins can be recovered following [KL03]. Then
on 2D and curved surfaces, final dendrite mesh is generated from a
height field as in [KL03,RYL∗17]. Alternatively, for certain growth
results where branches merge together forming a large solid plate
of crystal region, we can recover the crystal detail from the ori-
entation field. An intuitive motivation of the alternative approach
is that regions of high orientation gradient are often the results of
encounter of multiple separately-growing phase fronts. This means
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solid phase there appears later and should be thinner if we assume
the thickness growth is linear to time. On the other hand, from an
energy-based perspective, the free energy is higher for solid phase
in such region and will slow down the solidification process as well,
which also makes the solid phase at such region appear later or
even does not appear. This phenomenon can be observed both in
real-world dendrites [GPW04] and in simulation results in §6. Thus
after simulation, we can generate a height map from the orientation
field. Specifically, we mask the output of θori field with the phase
field and consider solid-phase regions only. Then the canny edge
detector [Can86] is used to find edges in the masked θori field. The
distance transform operator [RP68] is then applied on the solid-
phase regions according to the edges. In this way, pixels far away
from the edges in θori field are assigned with larger height value and
vice versa. Fig.5 shows an enhancement result to a spherulite den-
drite, without the post-processing strategy using orientation field,
there will be only a dull plain plate observable.

Figure 7: Leaf-like ice crystal on a glass window. From left to
right: rendered result; the initial field used in the simulation; leaf-
like ice crystal photo from a winter window.

Table 1: Performance

Case Grid/Mesh Size
Avg. Time Total Sim. Time
(msec/step) (min)

Fig.1 512×512 2.1 0.13
Fig.2&4 256×256×256 121.9 2.1 ~ 16.8

Fig.5 1024×1024 8.1 1.0 ~ 1.7
Fig.6 1024×1024 5.1 1.1
Fig.7 1024×1024 8.0 3.0
Fig.8 256×256×256 105.4 1.8 ~ 8.8
Fig.9 2.62M vertices 63.4 15.9

Fig.10 7.49M vertices 214.4 35.7
Fig.11 256×256×256 110.8* 5.54*

* Average time for each dendrite.

5.5. Parameter Control in the Simulation

The final shape of the dendritic crystal simulated is influenced by
a series of parameters K,Mori and isotropy function choices. Here
we give a brief description on their influences.

Mori contributes to the symmetry breaking effect in all cases.
Larger Mori leads to less asymmetry keeping the ordered struc-
ture better. By using smaller Mori in the simulation, asymmetry is
stronger in the final crystal.

K has a large influence on the branching and growth speed of the
phase field of crystals. Under larger K, the crystal generated will

have more detailed branches, at a cost of slower growth speed and
longer total simulation time. We typically use K between 1.5 and
1.8 for 2D simulation and 3 for 3D simulation.

The anisotropy functions ε(n) control the symmetry patterns of
the crystal shapes. Generally, the local growing direction as well as
the final crystal shape will follow the n directions where ε(n) reach-
es maxima. Sharper maxima peaks will generate thinner branch-
es and leave more empty spaces between them in the final shape.
These properties are helpful in designing symmetry patterns as well
as rotating the symmetry axes to arbitrary directions using the Ro-
drigue’s rotation formula.

6. Results

In this section we show various dendritic crystal growth results
based on the orientation field calculation. We use time steps around
2× 10−4s in our simulation. We parallelize the calculation on a
GeForce GTX 1080 Ti GPU. Detailed performances of the simu-
lations are reported in Table.1. The total runtime reported are the
running time from a single starting seed point to the full-growth
shape at the end of simulation. Playback speed of the sequences
in the supplemental video are adjusted to normalize the sequence
lengths.

Fig.1 shows the influence of orientation field on symmetry
breaking patterns on dendritic crystal growth. We compare our re-
sults on a 5-fold-symmetry dendrite with previous strategy given
in [Kob93], whose method is adopted in [KL03], that adds ran-
dom noise to the phase field. The top line shows our results and
the middle line shows results using the method in [Kob93]. It is
obvious that the previous strategy leads to broken and unnatural
growth patterns due to direct modification of phase field using ran-
dom noise, while our approach is able to naturally adjust the extent
of symmetry breaking by changing the orientation mobility. In the
bottom line the alternative way introduced in §5.3 is shown with a
percentage of grids in the simulation domain fixed to random ori-
entation initializations. In general, similar results to the top line is
reproduced, however with this alternative strategy certain features
appearing in real-world crystals, such as the “parallel arm” pattern
in the Mori = 20 result, are not observed in our experiments.

Fig.2 shows different 3D dendrites with their anisotropy func-
tions. The top line contains the octahedral and cubic “perfect” sym-
metry patterns; the bottom line contains “semi-perfect” patterns us-
ing a = 3,b = 2, l = 1,a = 3,b = 4, l = 2 separately. Symmetry axis
is rotated to be non-axis-aligned in some of the simulations, and in
the cubic symmetry case we use K = 3.5. By decreasing the ori-
entation mobility, more varied results are shown in Fig.4. It can be
seen that our approach is able to recover visually interesting 3D
dendrite shapes.

Fig.5 shows two types of real-world spherulite dendrite recov-
ered using fori in Eqn.(11). The first one shows gradual bending
of the branches during crystal formation into an eye-shaped struc-
ture. The second one isotropically expands the phase field during
the simulation using K = 0.8, but with our alternative strategy de-
scribed in §5.4 the inner structures can be reconstructed from the
orientation field.

Fig.6 shows direct artistic guiding results using pin points. On
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the top the simulation domain is set to fixed rotational orientation
directions around the center seed point. On the bottom the simula-
tion domain is divided by horizontal bands that each has a fixed
orientation inside them. One can observe that controlled crystal
growth by designed patterns can be generated using our approach.

Fig.7 uses user-defined curves to guide the growth direction of
dendrites. Bezier curves are used to modify the initial random ini-
tial orientation fields. Within a small band beside the given curve
orientation fields are biasedly randomized, i.e. their average direc-
tion is set to be the same with tangential direction of the curve. As a
result leaf-like crystal shapes similar to ice frost on winter windows
are created.

Figure 8: Dendrite simulation with color field using Eqn.(27).

Fig.8 shows color control results using Eqn.(27) in the 3D sim-
ulations. Polychromatic visual effect is achieved utilizing the color
field obtained from the simulation by mapping the value to different
colors.

Figure 9: Dendrite simulation on a ball using triangle mesh. The
four branches meet at the other end of diameter.

Fig.9 shows dendrite growth on curved triangle mesh. A 4-fold
symmetric dendrite is simulated on a ball mesh. Growing on the
surface without global coordinate, the four branches meet at the
other end of diameter of the ball.

In Fig.10, frosty ice climbs across the human head from several
seeds. We set higher temperature for some regions such as the eyes
to suppress crystal growth in those places. As a result the crystals
automatically climb around these regions.

In Fig.11 various 3D dendrites are formed as “crystal flower-
s”. We use different perfect and semi-perfect symmetry patterns to
generate a set of varied flower shapes on the tree model.

Figure 10: Frosty ice climbs across the human head. Certain re-
gions such as the eyes are set to have higher temperature, letting
crystals grow around them.

Figure 11: Crystal flowers. Different perfect and semi-perfect sym-
metry patterns are used to generate a set of varied flower shapes
on the tree model.

7. Conclusion and Future Work

We have proposed an orientation-based dendritic crystal simulation
method in this paper. The added freedom of orientation calculation
in the physical model captures a wide range of real-world crys-
tal shapes. Our approach reproduces realistic symmetry breaking
effects in crystal patterns, while avoiding grid-dependent artifact
appearing in previous work [KHL04]. With proper handling of the
orientation equation, practical 3D dendrite growth model is pro-
posed for 3D crystal simulation. The orientation field also provides
effective artistic control strategies for graphical applications, such
as artistic design, scientific visualization or science education etc.

There are possible future research directions for more in-depth
study of 3D crystal growth patterns. The simplification of trans-
forming the 3D problem into two-dimensional space implies that
no symmetry breaking happens in the self-rotational dimension of
freedom and perfect alignment is always maintained in this dimen-
sion. As a result, our approach cannot generate artistic effect of
helix-like dendrite shapes that twists around growth axis. Currently
introducing more symmetry axes does not always lead to branch-
ing toward new maxima directions both due to resolution limits
and merging of neighboring branches. Detail enhancing techniques
may lead to more visually interesting results. Integrating designa-
tion methods of arbitrary spherical functions based on spherical
harmonics such as those originally adopted in rendering ( [RH01])
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will also be useful in designation of more complex anisotropy func-
tions. For crystal growth on curved surfaces, it would be worth-
while developing control mechanisms that allow growth directions
following geometric features, such as creases or ridges on the mod-
els. Currently the computation cost is higher on curved surfaces due
to more calculation needed to handle model geometry, and it will
benefit from further acceleration techniques. We would also like to
investigate physical growth mechanism of mineral crystals, whose
shapes consist of orderly aligned facets, such as diamond or quartz
crystals.

Acknowledgments

This work is supported by the National Key R&D Program of
China(2017YFB1002701), Natural Science Foundation of Chi-
na(61602265), and US National Science Foundation.

References
[Bri08] BRIDSON R.: Fluid Simulation for Computer Graphics. A K

Peters/CRC Press, Sept. 2008. 7

[Can86] CANNY J.: A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-8, 6
(Nov 1986), 679–698. 9

[DVPSH14] DIAMANTI O., VAXMAN A., PANOZZO D., SORKINE-
HORNUNG O.: Designing n-polyvector fields with complex polynomi-
als. Comput. Graph. Forum 33, 5 (Aug. 2014), 1–11. 2

[GBP02a] GRÁNÁSY L., BÖRZSÖNYI T., PUSZTAI T.: Nucleation and
bulk crystallization in binary phase field theory. Phys. Rev. Lett. 88 (May
2002), 206105. 2, 3, 7
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