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Abstract. Effectively bridging between image level keyword annotations and

corresponding image pixels is one of the main challenges in weakly supervised

semantic segmentation. In this paper, we use an instance-level salient object de-

tector to automatically generate salient instances (candidate objects) for train-

ing images. Using similarity features extracted from each salient instance in the

whole training set, we build a similarity graph, then use a graph partitioning al-

gorithm to separate it into multiple subgraphs, each of which is associated with

a single keyword (tag). Our graph-partitioning-based clustering algorithm allows

us to consider the relationships between all salient instances in the training set

as well as the information within them. We further show that with the help of at-

tention information, our clustering algorithm is able to correct certain wrong as-

signments, leading to more accurate results. The proposed framework is general,

and any state-of-the-art fully-supervised network structure can be incorporated

to learn the segmentation network. When working with DeepLab for semantic

segmentation, our method outperforms state-of-the-art weakly supervised alter-

natives by a large margin, achieving 65.6% mIoU on the PASCAL VOC 2012

dataset. We also combine our method with Mask R-CNN for instance segmenta-

tion, and demonstrated for the first time the ability of weakly supervised instance

segmentation using only keyword annotations.

Keywords: Semantic segmentation, weak supervision, graph partitioning.

1 Introduction

Semantic segmentation, providing rich pixel level labeling of a scene, is one of the most

important tasks in computer vision. The strong learning ability of convolutional neural

networks (CNNs) has enabled significant progress in this field recently [5,27,29,46,47].

However, the performance of such CNN-based methods requires a large amount of

training data annotated to pixel-level, e.g., PASCAL VOC [11] and MS COCO [28];

such data are very expensive to collect. As an approach to alleviate the demand for

pixel-accurate annotations, weakly supervised semantic segmentation has drawn great

attention recently. Such methods merely require supervisions of one or more of the
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(a) input images (b) salient instances (c) proxy GT (d) output results

Fig. 1: Input images (a) are fed into a salient instance detection method (e.g., S4Net

[12]) giving instances shown in colour in (b). Our system automatically generates proxy

ground-truth data (c) by assigning correct tags to salient instances and rejecting noisy

instances. Traditional fully supervised semantic/instance segmentation methods learn

from these proxy ground-truth data; final generated segmentation results are shown in

(d).

following kinds: keywords [19, 22, 23, 42, 43], bounding boxes [36], scribbles [26],

points [2], etc. , making the collection of annotated data much easier. In this paper,

we consider weakly supervised semantic segmentation using only image-level keyword

annotations.

In weakly supervised semantic segmentation, one of the main challenges is to ef-

fectively build a bridge between image-level keyword annotations and corresponding

semantic objects. Most previous state-of-the-art methods focus on generating proxy

ground-truth from the original images by utilizing low-level cue detectors to capture

pixel-level information. This may be done using a saliency detector [4, 20, 22, 42] or

attention models [4, 42], for example. Because these methods give only pixel-level

saliency/attention information, it is difficult to distinguish different types of semantic

objects from the heuristic cues produced. Thus, the ability to discriminate semantic in-

stances is essential. With the rapid development of saliency detection algorithms, some

saliency extractors, such as MSRNet [24] and S4Net [12], are now not only able to pre-

dict gray-level salient objects but also instance-level masks. Inspired by the advantages

of such instance-level salient object detectors, in this paper, we propose to carry out

the instance distinguishing task in the early saliency detection stage, with the help of

S4Net, greatly simplifying the learning pipeline. Fig. 1(b) shows some instance-level

saliency maps predicted by S4Net.

In order to make use of the salient instance masks with their bounding boxes, two

main obstacles need to be overcome. Firstly, an image may be labeled with multiple

keywords, so determining a correct keyword (tag) for each class-agnostic salient in-

stance is essential. For example, see Fig. 1(b): the upper image is associated with two

image-level labels: ‘sheep’ and ‘person’. Allocating the correct tag to each detected in-

stance is difficult. Secondly, not all salient instances generated by the salient instance



Associating Inter-Image Salient Instances 3

detector are semantically meaningful; incorporating such noisy instances would de-

grade downstream operations. For example, in the lower image in Fig. 1(b), an obvious

noisy instance occurs in the sky (shown in gray). Such instances and the associated

noisy labels frequently arise using current algorithms. Therefore, recognizing and ex-

cluding such noisy salient instances is important in our approach. The two obstacles

described above can be regarded as posing a tag-assignment problem, i.e., , associating

salient instances, including both semantically meaningful and noisy ones, with correct

tags.

In this paper, we take into consideration both the intrinsic properties of a salient in-

stance and the semantic relationships between all salient instances in the whole training

set. Here we use the term intrinsic properties of a salient instance to refer to the appear-

ance information within its (single) region of interest. In fact, it is possible to predict

a correct tag for a salient instance using only its intrinsic properties: see [19, 22, 42].

However, as well as the appearance information within each region of interest, there are

also strong semantic relationships between all salient instances: salient instances in the

same category typically share similar semantic features. We will show that taking this

property into account is important in the tag-assignment operation in Section 5.2.

More specifically, our proposed framework contains an attention module to pre-

dict the probability of a salient instance belonging to a certain category, based on its

intrinsic properties. On the other hand, to assess semantic relationships, we use a se-

mantic feature extractor which can predict a semantic feature for each salient instance;

salient instances sharing similar semantic information have close semantic feature vec-

tors. Based on the semantic features, a similarity graph is built, in which the vertices

represent salient instances and the edge weights record the semantic similarity between

a pair of salient instances. We use a graph partitioning algorithm to divide the graph into

subgraphs, each of which represents a specific category. The graph partitioning process

is modelled as a mixed integer quadratic program (MIQP) problem [3], for which a

globally optimal solution can be found. The aim is to make the vertices in each sub-

graph as similar as possible, while taking into account the intrinsic properties of the

salient instances.

Our approach provides high-quality proxy-ground-truth data, which can be used to

train any state-of-the-art fully-supervised semantic segmentation methods. When work-

ing with DeepLab [5] for semantic segmentation, our method obtains mean intersection-

over-union (mIoU) of 65.6% for PASCAL VOC 2012 test set, beating the current state-

of-the-art. In addition to pixel-level semantic segmentation, this paper demonstrated for

the first time the ability of weakly supervised instance segmentation using only keyword

annotations, by fitting our instance level proxy ground-truth data into latest instance

segmentation network, i.e., Mask R-CNN [14]. In summary, the main contributions of

this paper are:

– the first use of salient instances in a weakly supervised segmentation framework,

significantly simplifying object discrimination, and performing instance-level seg-

mentation under weak supervision.

– a weakly supervised segmentation framework exploiting not only the information

inside salient instances but also the relationships between all objects in the whole

dataset.
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2 Related Work

While longstanding research has considered fully supervised semantic segmentation,

e.g., [5, 27, 29, 46, 47], more recently, weakly-supervised semantic segmentation has

come to the fore. Early work such as [41] relied on hand-crafted features, such as color,

texture, and histogram information to build a graphical model. However, with the advent

of convolutional neural network (CNN) methods, this conventional approach has been

gradually replaced because of its lower performance on challenging benchmarks [11].

We thus only discuss weakly supervised semantic segmentation work based on CNNs.

In [32], Papandreou et al. use the expectation-maximization algorithm [8] to per-

form weakly-supervised semantic segmentation based on annotated bounding boxes

and image-level labels. Similarly, Qi et al. [36] used proposals generated by Multi-

scale Combinatorial Grouping (MCG) [35] to help localize semantically meaningful

objects. Scribbles and points are further used as additional supervision. In [26], Lin et

al. made use of a region-based graphical model, with scribbles providing ground-truth

annotations to train the segmentation network. Bearman et al. [2] likewise leveraged

knowledge from human-annotated points as supervision.

Other works rely only on image-level labels. Pathak et al. [33] addressed the

weakly-supervised semantic segmentation problem by introducing a series of constraints.

Pinheiro et al. [34] treated this problem as a multiple instance learning problem. In [23],

three loss functions are designed to gradually expand the areas located by an attention

model [48]. Wei et al. [42] improved this approach using an adversarial erasing scheme

to acquire more meaningful regions that provide more accurate heuristic cues for train-

ing. In [43], Wei et al. presented a simple-to-complex framework which used saliency

maps produced by the methods in [6, 21] as initial guides. Hou et al. [19] advanced

this approach by combining the saliency maps [18] with attention maps [45]. More re-

cently, Oh et al. [31] and Chaudhry et al. [4] considered linking saliency and attention

cues together, but they adopted different strategies to acquire semantic objects. Roy and

Todorovic [38] leveraged both bottom-up and top-down attention cues and fused them

via a conditional random field as a recurrent network. Very recent work [17, 22] tack-

les the weakly-supervised semantic segmentation problem using images or videos from

the Internet. Nevertheless, the ideas used to obtain heuristic cues are similar to those in

previous works.

In this paper, differently from all the aforementioned methods, we propose a weakly

supervised segmentation framework using salient instances. We assign tags to salient

instances to generate proxy ground-truth for fully supervised segmentation network.

The tag-assignment problem is modeled as graph partitioning, in which both the rela-

tionships between all salient instances in the whole dataset, as well as the information

within them are taken into consideration.

3 Overview and Network Structure

We now present an overview of our pipeline, then discuss our network structure and

tag-assignment algorithm. Our proposed framework is shown in Fig. 2. Most previous

work which relies on pixel level cues (such as saliency, edges and attention maps) re-

gards instance discrimination as a key task. However, with the development of deep
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Fig. 2: Pipeline. Instances are extracted from the input images by a salient instance de-

tector (e.g., S4Net [12]). An attention module predicts the probability of each salient

instance belonging to a certain category using its intrinsic properties. Semantic features

are obtained from the salient instances and used to build a similarity graph. Graph par-

titioning is used to determine the final tags of the salient instances. The fully supervised

segmentation network (e.g., DeepLab [5] or Mask R-CNN [14]) is trained using the

proxy ground-truth generated.

learning, saliency detectors are now available that can predict saliency maps along with

instance bounding boxes. Given training images labelled only with keywords, we use

an instance-level saliency segmentation network, S4Net [12], to extract salient instances

from every image. Each salient instance has a bounding box and a mask indicating a

visually noticeable foreground object in an image. These salient instances are class-

agnostic, so the extractor S4Net does not need to be trained for our training set. Al-

though salient instances contain ground-truth masks for training a segmentation mask,

there are two major limitations in the use of such salient instances to train a segmen-

tation network. The first is that an image may be labelled by multiple keywords. For

example, a common type of scene involves pedestrians walking near cars. Determining

the correct keyword associated with each salient instance is necessary. The second is

that instances detected by S4Net may not fall into the categories in the training set. We

refer to such salient instances as noisy instances. Eliminating such noisy instances is a

necessary part of our complete pipeline. Both limitations can be removed by solving a

tag-assignment problem, in which we associate salient instances with correct tags based

on image keywords, and tag others as noisy instances.

Our pipeline takes into consideration both the intrinsic characteristics of a single

region, and the relationships between all salient instances. A classification network

responds strongly to discriminative areas (pixels) of an object in the score map for

the correct category of the object. Therefore, inspired by class activation mapping

(CAM) [48], we use an attention module to identify the tags of salient instances di-
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rectly from their intrinsic characteristics. One weakness of existing weakly supervised

segmentation work is that it treats the training set image by image, ignoring the relation-

ships between salient instances across the entire training set. However, salient instances

belonging to the same category share similar contextual information which is of use in

tag-assignment. Our architecture extracts semantic features for each salient instance; re-

gions with similar semantic information have similar semantic features. These are used

to construct a similarity graph. The tag-assignment problem now becomes one of graph

partitioning, making use not only of the intrinsic properties of a single salient instance,

but the global relationships between all salient instances.

3.1 Attention Module

The attention module in our pipeline is used to determine the correct tag for each salient

instance from its intrinsic characteristics. Formally, let C be the number of categories

(excluding the background) in the training set. Given an image I , the attention module

predicts C attention maps. Each pixel in a map indicates the probability that the pixel

belongs to the corresponding object category. Following FCAN [4], we make use of a

fully convolutional network as our classifier. After prediction of C score maps by the

backbone model, e.g., off the shelf VGG16 [40] or ResNet101 [15], the classification

result y is output by a sigmoid layer fed with the average of the score maps using a

global average pooling (GAP) layer. Notice that y is not a probability distribution, as

the input image may have multiple keywords. An attention map denoted by Ai can

be produced by feeding the i-th score map into a sigmoid layer. As images may be

associated with multiple keywords, we treat network optimization as C independent

binary classification problems. Thus, the loss function is:

La = −
1

C

C
∑

i

(ȳi logyi + (1− ȳi) log(1− yi)), (1)

where ȳi denotes the keyword ground-truth. The dataset for weakly supervised semantic

segmentation is used to train the classifier, after which the attention maps for the images

in this dataset can be obtained.

Assuming that a salient instance has a bounding box (x0, y0, x1, y1) in image I , the

probability of this salient instance belonging to the i-th category pi is:

pi = −
1

(x1 − x0)(y1 − y0)

x1
∑

x=x0

y1
∑

y=y0

Ai(x, y), (2)

and the tag for this salient instance is given by argmax(p).

3.2 Semantic Feature Extractor

The attention module introduced above assigns tags to salient instances from their in-

trinsic properties, but fails to take relationships between all salient instances into consid-

eration. To discover such relationships, we use a semantic feature extractor to produce
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feature vectors for each input region of interest, such that regions of interest with sim-

ilar semantic content share similar features. To avoid the need for additional data, we

use ImageNet [9] to train this model.

The network architecture of the semantic feature extractor is very similar to that of

a standard classifier. ResNet [16] is used as the backbone model. We add a GAP layer

after the last layer of ResNet to obtain a 2048-channel semantic feature vector f . During

the training phase, a 1000-dimensional auxiliary classification vector y is predicted by

feeding f into a 1× 1 convolutional layer.

Our training objective is to maximize the distance between features from regions

of interest with different semantic content and minimize the distance between features

from the same category. To this end, in addition to the standard softmax-cross entropy

classification loss, we employ center loss [44] to directly concentrate features on similar

semantic content. For a specific category of ImageNet, the standard classification loss

trains y to be the correct probabilistic distribution, and the center loss simultaneously

learns a center c for the semantic features and penalizes the distance between f and c.

The overall loss function is formulated as:

L = Lcls + λLc, Lc = 1−
f · cȳ

‖f‖ ‖cȳ‖
, (3)

where Lcls is the softmax-crossentropy loss, ȳ is the ground-truth label of a training

sample and cȳ is the center of the ȳ-th category.

In every training iteration, the center for the category of the input sample is updated

using:

ct+1
ȳ = ctȳ + α · (f − ctȳ), (4)

4 Tag-Assignment Algorithm

In order to assign a correct keyword to every salient instance with or identify it as a noisy

instance, we use a tag-assignment algorithm, exploiting both the intrinsic properties

of a single salient instance, and the relationships between all salient instances in the

whole dataset. The tag-assignment process is modeled as a graph partitioning problem .

Although the purpose of graph partitioning can be considered as clustering, traditional

clustering algorithms using a hierarchical approach [37], k-means [30], DBSCAN [10]

or OPTICS [1], are unsuited to our task as they only consider relationships between

input data points, and ignore the intrinsic properties of each data point.

In detail, assume that n salient instances have been produced from the training set

by S4Net, and n semantic features extracted for each salient instance, denoted as fj ,

j = 1, . . . , n. As Sec. 3.1 described, we predict the probability of every salient instance

j belonging to category i, written as pij , i = 0, . . . , C, j = 1, . . . , n, where category 0

means the salient instance is a noisy one.

Let the image keywords for a salient instance j be the set Kj . The purpose of the

tag-assignment algorithm is to predict the final tags of the salient instances xij , i =
0, . . . , C, j = 1, . . . , n, such that xij ∈ {0, 1} if i ∈ Kj and otherwise xij ∈ {0}, and
∑

i xij = 1, where x0j = 1 means that instance j is considered noisy.
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(a) Similarity graph (b) A vertex in detail (c) Subgraphs

Fig. 3: Graph partitioning. (a): similarity graph, thickness of edges indicating edge
weights; color shows the correct tags of the vertices. (b): consider the vertex bounded
by a dotted square— only by including it in the red subgraph can the objective be opti-
mized. (c): subgraphs after partitioning.

We associate semantic similarity with the edges of a weighted undirected similarity
graph having a vertex for each salient instance, and an edge for each pair of salient in-
stances which are strongly similar. Edge weights give the similarity of a salient instance
pair. Tag-assignment thus becomes a graph partitioning process. The vertices are par-
titioned intoC subsets, each representing a speci�c category; their vertices are tagged
accordingly. As salient instances in the same category have similar semantic content
and semantic features, a graph partitioning algorithm should ensure the vertices inside
a subset are strongly related while the vertices in different subsets should be as weakly
related as possible. We de�ne the cohesiveness of a speci�c subgraph as the sum of
edge weights linking vertices inside the subgraph; the optimization target is to maxi-
mize the sum of cohesiveness over all categories. This graph partitioning problem can
be modeled as a mixed integer quadratic program (MIQP) problem as described later.

4.1 Construction of the Similarity Graph

Let the similarity graph of vertices, edges and weights beG = ( V; E; W). Initially, we
calculate the cosine similarity between every pair of features to determineW :

(
Wij = f i � f j

kf i kk f j k + 1 ; i 6= j;

Wij = 0 ; i = j;
(5)

If every pair of vertices is related by an edge,G would be a dense graph, the number
of edges growing quadratically with the number of vertices, and in turn, cohesiveness
would be dominated by the number of vertices in the subset. In order to eliminate the
effect of the size of the subgraph, we turnG into a sparse graph by edge reduction,
so that each vertex retains only thosek linked edges with the largest weights. In our
experiments, we setk = 3 .

4.2 The Primary Graph Partitioning Algorithm

As described above, the cohesiveness of a subseti can be written in matrix form as
xT

i W x i . Asx i is a binary vector with lengthn, this formula simply sums the weights of




















