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Abstract

Vision-language models (VLMs) like CLIP have been
widely used in various specific tasks. Parameter-efficient
fine-tuning (PEFT) methods, such as prompt and adapter
tuning, have become key techniques for adapting these mod-
els to specific domains. However, existing approaches rely
on prior knowledge to manually identify the locations re-
quiring fine-tuning. Adaptively selecting which parame-
ters in VLMs should be tuned remains unexplored. In
this paper, we propose CLIP with Adaptive Selective Tun-
ing (CLIP-AST), which can be used to automatically se-
lect critical parameters in VLMs for fine-tuning for spe-
cific tasks. It opportunely leverages the adaptive learning
rate in the optimizer and improves model performance with-
out extra parameter overhead. We conduct extensive ex-
periments on 13 benchmarks, such as ImageNet, Food101,
Flowers102, etc, with different settings, including few-shot
learning, base-to-novel class generalization, and out-of-
distribution. The results show that CLIP-AST consistently
outperforms the original CLIP model as well as its vari-
ants and achieves state-of-the-art (SOTA) performance in
all cases. For example, with the 16-shot learning, CLIP-
AST surpasses GraphAdapter and PromptSRC by 3.56%
and 2.20% in average accuracy on 11 datasets, respectively.
Code will be publicly available.

1. Introduction
With the rise of large-scale image-text pretraining, vision-
language models (VLMs) [8, 29, 38, 44, 45, 54] have shown
strong capabilities in multimodal representation. These
models learn the distribution between visual and textual fea-
tures by jointly training on large-scale image and text paired
data, which enables them to perform well across specific
tasks. For example, CLIP [38], trained with hundreds of
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Figure 1. Comparison of fine-tuning methods across key dimen-
sions. Prompt tuning and adapter tuning rely on prior knowledge
to define positions for fine-tuning. In contrast, our method per-
forms adaptive selective tuning. It automatically identifies the
most critical positions for tuning. Additionally, no extra param-
eters are introduced, improving efficiency and performance.

millions of image-text pairs using the contrastive learning
framework, aligns image and text representations in a high-
dimensional feature space, which gives CLIP strong gener-
alization capabilities and makes it widely used in various
applications [7, 10, 24, 43, 47, 51, 56, 58, 61].

While CLIP has shown strong general capabilities, its
performance often remains suboptimal on specific tasks
without task-oriented fine-tuning. However, performing
full fine-tuning on large pre-trained models often intro-
duces challenges, including increased computational cost,
potential overfitting, and reduced transferability across di-
verse tasks and domains. Parameter-efficient fine-tuning
(PEFT) [2, 4, 15, 27] has been widely adopted to mitigate
the computational cost and overfitting risks associated with
the full fine-tuning of large pre-trained models.

Although PEFT reduces computational costs and im-
proves results, most existing methods rely on prior knowl-
edge to decide which model components to fine-tune. These
methods typically introduce specialized learnable modules
at predefined positions in the model. For example, prompt

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4280



tuning [41, 59, 60] incorporates learnable prompt vectors
at the input layer or specific transformer layers of CLIP,
guiding the model’s representation learning. In contrast,
adapter tuning [15, 32, 37, 46] inserts additional lightweight
modules within the transformer layers or at the final layer
of CLIP to adapt to new tasks. However, these methods
rely on the manual selection of model locations for fine-
tuning, which can be suboptimal and often results in ex-
tra parameter overhead. Automatically selecting and fine-
tuning the most critical parameters remains underexplored.
Accurately selecting critical parameters can effectively ad-
dress these limitations, thereby enhancing model perfor-
mance without extra parameter costs.

To tackle this challenge, as illustrated in Fig. 1, we pro-
pose CLIP with Adaptive Selective Tuning (CLIP-AST),
which aims to automatically select and fine-tune the most
important parameters in CLIP without inserting extra learn-
able modules. CLIP-AST leverages the adaptive learning
rate feature of the AdamW optimizer [28], where the effec-
tive learning rate of a parameter is inversely proportional
to the second-moment estimate of its gradients. Parameters
with lower second-moment estimates receive higher effec-
tive learning rates, allowing them to adapt quickly to new
tasks. Conversely, parameters with higher second-moment
estimates receive smaller updates, preventing large adjust-
ments due to noisy gradients. By utilizing this property, we
use second-moment estimates as importance scores to select
and fine-tune the most critical parameters for the task.

Building on the dynamic learning rate property in the
optimizer, CLIP-AST introduces adaptive selective fine-
tuning. For each transformer layer, we rank the parameters
based on importance scores and fine-tune the top K most
important ones while freezing the others. This adaptive
selective fine-tuning preserves the knowledge of the pre-
trained model. It enhances task-specific adaptation without
extra parameters during training and inference.

The main contributions are as follows:
• We propose CLIP-AST, a novel method that automati-

cally selects and fine-tunes the most critical parameters
in CLIP without extra parameters, thus maintaining the
same inference efficiency as the original CLIP model.

• We introduce an automatic parameter identification
strategy based on AdamW’s adaptive learning rates
to select important parameters with lower second-
moment estimates of the gradient.

• Extensive experiments on 13 benchmark datasets
demonstrate that CLIP-AST consistently outperforms
the original CLIP and its variants, achieving state-of-
the-art performance.

2. Related Work
Vision-Language Models. Vision-Language Models
(VLMs) [18, 29, 38, 44, 54] aim to efficiently handle

cross-modal tasks by jointly learning visual and linguis-
tic information. Some methods, such as CLIP [38] and
ALIGN [18], utilize hundreds of millions or even billions
of image-text pairs for training to bridge the gap between
visual and textual data. The vast amount of training data
enables VLMs to exhibit exceptional capabilities. Among
these models, the most representative is the CLIP model,
which employs contrastive learning to map images and texts
into the same feature space, thereby achieving efficient
zero-shot learning. Due to its powerful cross-modal and
zero-shot capabilities, CLIP has been widely used in vari-
ous downstream tasks [10, 25, 30, 36, 43, 48, 51, 56, 58].
However, a gap exists between most downstream tasks and
the original CLIP model, necessitating fine-tuning for ef-
fective transfer. Therefore, this work investigates the fine-
tuning of CLIP, allowing CLIP to be effectively adapted to
specific domains while maintaining its strong performance.

Parameter-Efficient Fine-Tuning for VLMs. Recently,
with the rapid development of parameter-efficient fine-
tuning (PEFT) [15, 16, 27] in the field of NLP, it has be-
come a common paradigm for fine-tuning VLMs. Common
PEFT methods include adapters [4, 11, 15, 22, 32, 37, 46],
which introduce additional lightweight trainable module, as
well as prompt tuning [19, 59, 60], which optimizes in-
put prompts. In the context of applying PEFT to VLMs,
CoOp [60] modifies the static text encoder prompts in the
original CLIP model into adaptable, trainable vectors. Tip-
Adapter [55] develops a key-value caching mechanism to
facilitate efficient knowledge retrieval. PromptSRC [21]
implements a self-regulation technique to mitigate overfit-
ting. MMA [52] introduces a multimodal adapter to en-
hance the alignment between text and visual representa-
tions. Unlike previous methods, which choose the fine-
tuning locations based on prior knowledge, we automati-
cally find the important parameters in the original model
that need to be trained and complete the fine-tuning of the
model.

Selective Fine-tuning. Unlike approaches that retrain all
model weights or add new trainable modules, selective fine-
tuning [12, 40, 53, 57] focuses on training specific parame-
ters within the model to achieve fine-tuning. A notable ex-
ample is linear probing [3, 13, 38], where only the model’s
last layer is trained. However, restricting training to the
last layer often yields suboptimal results. BitFit [53] in-
troduces bias-only fine-tuning, which adjusts only the bias
parameters (or a subset of them), keeping the rest of the
model parameters fixed. These methods, however, rely on
empirical insights or observations to select parameters for
training, like the previous PEFT methods for VLMs. In
contrast, BSR [40] introduces a systematic selective fine-
tuning approach that identifies critical layers by compar-
ing outputs from pre-trained and fine-tuned models. Lay-
ers showing significant output changes are prioritized for
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Figure 2. Overview of the proposed CLIP-AST pipeline, consisting of (a) transformer fine-tuning and (b) (c) adaptive selective fine-tuning
stages. In (a), we fine-tune the transformer layers of both visual and text encoders to extract parameter importance scores. (b) illustrates
the process of ranking sub-layer parameters using importance scores, followed by the adaptive selection of the top K sub-layers. (c) shows
the selective fine-tuning process where only the most important sub-layers are updated while other components remain frozen, enhancing
efficiency without compromising model performance.

fine-tuning based on task adaptability. SPT [12] takes a
data-driven approach by computing parameter sensitivity
on downstream tasks. It identifies the most impactful pa-
rameters and employs structured fine-tuning methods (e.g.,
LoRA or Adapter) rather than direct adjustments. Despite
these advances, adaptive selective fine-tuning for CLIP re-
mains relatively unexplored. This work addresses this gap
by introducing an automated method for identifying the
modules in CLIP that benefit most from fine-tuning, ad-
vancing the efficiency and effectiveness of fine-tuning for
vision-language models.

3. Method
As illustrated in Fig. 2, CLIP-AST includes two stages:
transformer fine-tuning and adaptive selective fine-tuning.
Initially, we fine-tune the pre-trained layers of the trans-
former to extract importance scores from the optimizer. The
optimizer measures the importance of parameters by esti-
mating the second-order moments of the gradients in each
transformer layer, as described in Sec. 3.1. After a few it-
erations, these scores are ranked to select the parameters
requiring training, as specified in Sec. 3.2. Then, the im-
portant parameters in each layer of the transformer are fine-

tuned to complete the fine-tuning of CLIP.

3.1. Transformer Fine-Tuning
To assess the importance of all the parameters of the trans-
former layer in the pre-trained CLIP model, as shown in
Fig. 2 (a), we first fine-tune the CLIP transformer block.
The CLIP model includes a visual encoder Ev and a textual
encoder Et, both responsible for mapping images and text
into a unified feature space. This design facilitates the in-
teraction of features across different modalities. During the
fine-tuning of CLIP’s transformer, we first sampled a batch
of training data from the dataset, which included N images
X ∈ RN×3×H×W , corresponding labels Y ∈ RN , and
the names of C classes T = {Tk}, k ∈ {1, . . . , C} in the
dataset. Subsequently, the visual encoder Ev extracts visual
embeddings G ∈ RN×D from the X:

[G0, I0] = PatchEmbedding(X),

[GL, IL] = Transformer([G0, I0]),

[G, I] = VisualProj([GL, IL]),

(1)

where G0 and I0 represent the initial global and visual em-
beddings generated by the PatchEmbedding block from
the input visual X. The Transformer block processes these
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embeddings through multiple layers to refine the features,
resulting in GL and IL, which are the final global and vi-
sual embeddings at the last layer. Finally, the VisualProj
block projects these embeddings onto a feature space, pro-
ducing G and I as the final visual embeddings.

For the text encoder Et, the class names T are combined
with a predefined template (e.g., ”a photo of [CLASS]”) to
generate class descriptions Tp. Then, each class descrip-
tion is sent to the text encoder to obtain the corresponding
class embeddings W ∈ RC×D:

W0 = TextEmbedding(Tp),

WL = Transformer(W0),

W = TextProj(WL).

(2)

Here, W0 represents the initial text embeddings generated
by the TextEmbedding layer. In contrast, WL is the fea-
ture produced by passing W0 through multiple layers of the
transformer, extracting semantic information further at each
layer. Finally, TextProj projects the text features into a uni-
fied feature space, producing W as the final text embedding
that aligns with the visual features.

After obtaining the G and W, we first calculate the prob-
ability ŷi,j of each image being predicted for each class and
then calculate the loss function with the label:

ŷi,j =
exp(sim(Gi,Wj)/τ)∑c
k=1 exp(sim(Gi,Wk)/τ)

,

LCE = − 1

N

N∑
j=1

C∑
i=1

yi,j log(ŷi,j),

(3)

where sim(·, ·) represents the cosine similarity function, τ
is a temperature parameter.

Fine-tuning the transformer requires only a few training
iterations. As its name implies, only the transformer part
of the two encoders is trainable during the training process.
After training, we can obtain parameter importance scores
v, which are embedded within the AdamW optimizer.

3.2. Adaptive Selective Fine-tuning
After transformer fine-tuning, we introduce the adaptive se-
lective fine-tuning strategy, which uses the square root of
the second-moment estimate of the gradient in the AdamW
optimizer [28] as importance scores. The parameter update
process in the i-th iteration of AdamW optimization can be
described as follows. First, we compute the gradient gi with
respect to the model parameters θ:

gi = ∇θf(θi−1). (4)

Next, we update the first-moment estimate mi and the
second-moment estimate vi:

mi = β1 ·mi−1 + (1− β1) · gi,
vi = β2 · vi−1 + (1− β2) · g2i ,

(5)

where β1 and β2 are the hyperparameters controlling the ex-
ponential decay rates for the moment estimates. To correct
the bias introduced in the early stages of optimization, we
compute the bias-corrected estimates:

m̂i =
mi

1− βi
1

, v̂i =
vi

1− βi
2

. (6)

The final parameter update rule is then expressed as:

θi = (θi−1 − α · λ · θi−1)−
α√
v̂i + ϵ

· m̂i, (7)

where α denotes the learning rate, λ represents the weight
decay coefficient that controls the strength of regularization
applied to the model parameters, and ϵ is a small constant
added for numerical stability to prevent division by zero.

In our adaptive selective fine-tuning, the importance of
each parameter is assessed using the square root of the
second-moment estimate of gradient v̂i, which has the same
dimensionality as the parameter itself. Specifically, we
compute the scalar average importance score v′ of the trans-
former layer sub-layer parameter i as follows:

v′i = Avg

(
1√
v̂i

)
. (8)

This score measures the magnitude of parameter updates
during training. A higher v′i means the parameter receives
larger updates, suggesting it is more actively involved in
learning and adapting to the task-specific data. Such pa-
rameters will likely capture essential features and contribute
significantly to model predictions. Conversely, a lower v′i
implies that the parameter receives smaller updates, possi-
bly because it requires less adjustment or is less sensitive to
the current data.

By focusing on parameters with higher importance
scores, we can adaptively and selectively fine-tune the
model, prioritizing the most influential for the specific task.
This selective fine-tuning strategy maintains model perfor-
mance while reducing computational costs, as it concen-
trates updates on the most critical components without com-
promising the overall model integrity.

During the adaptive selective fine-tuning, shown in Fig. 2
(b) and (c), we select the most important components at
the sub-layer level (e.g., weights or biases of the linearq
layer). For each layer in the transformer module, we select
the top K important parameters of the sub-layer for train-
ing while freezing all others. This adaptive selective fine-
tuning strategy enhances the efficiency and effectiveness of
the model, allowing for focused updates that improve task-
specific adaptation without compromising overall model in-
tegrity.
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3.3. Loss Function
We utilize the self-consistency loss (SCL) [21] to mitigate
overfitting during selective fine-tuning. SCL employs an
additional frozen CLIP model to extract original visual em-
beddings G̃ and textual embeddings W̃ from the training
data. By using an L1 loss, SCL enforces consistency be-
tween the features produced by the frozen model and the
features produced by the fine-tuned model:

LSCL-image =

d∑
i=1

|G̃−G|,

LSCL-text =

d∑
i=1

|W̃ −W|.

(9)

In addition, SCL introduces logit-level consistency reg-
ularization, further strengthening the constraints and maxi-
mizing the alignment of features before and after training.
This is achieved by minimizing the Kullback-Leibler diver-
gence to align the trained logit distribution with the logits
generated by the frozen CLIP model, as expressed in the
following formula:

LSCL-logits = DKL(sim(G̃,W̃), sim(G,W)). (10)

Finally, we incorporate the cross-entropy loss discussed
in Sec. 3.1. The total loss our model aims to minimize is
a combination of these types of losses, represented by the
equation:

L = Lce+λ1·LSCL-image+λ2·LSCL-text+λ3·LSCL-logits, (11)

where λ1, λ2 and λ3 are weights that balance the contribu-
tions of LSCL-image, LSCL-text and LSCL-logits, respectively.

4. Experiments
4.1. Experimental Settings
Few-shot learning. We aim to evaluate the model’s ability
to generalize with limited labeled examples in the few-shot
learning setting. We simulate a low-shot scenario by provid-
ing only a few labeled samples per class, typically 1, 2, 4,
8, 16. In this setting, we use the 11 commonly used classifi-
cation datasets introduced in Sec. 4.2 to reflect the few-shot
tasks in the real world. The performance under this setting
is measured by top-1 accuracy.
Base-to-novel class generalization. The base-to-novel
class generalization setting evaluates the model’s adaptabil-
ity to novel classes it has not seen during fine-tuning. In
this setting, the model is trained on a base set of classes
with 16-shot per class and is then tested on novel classes,
assessing its capability to transfer knowledge from the base
classes to novel, unseen classes. Following the previous
work [21, 60], we partition the dataset into base and novel

classes, ensuring no overlap between the two. The metrics
include the top-1 accuracy of the base class (Base) and the
novel class (Novel), as well as the harmonic mean (HM) of
the two.
Out-of-distribution setting. In the out-of-distribution set-
ting, we test the model’s robustness against data that differs
from the training distribution. This setting aims to assess
the model’s ability to handle unexpected inputs. We train
on ImageNet as an in-distribution dataset and test on out-of-
distribution datasets. The performance is evaluated for aver-
age accuracy on both in-distribution and out-of-distribution
samples.

4.2. Datasets
For few-shot learning and base-to-novel class generaliza-
tion, we conduct experiments on 11 commonly used classi-
fication benchmarks, including Caltech101 [9], DTD [5],
EuroSAT [14], FGVC Aircraft [31], Flowers102 [33],
Food101 [1], ImageNet [6], OxfordPets [34], Stanford-
Cars [23], SUN397 [50], UCF101 [42]. For the out-of-
distribution setting, We use ImageNet-Sketch [49] and Im-
ageNetV2 [39] as out-of-distribution datasets.

4.3. Implementation details
For the adaptive selective fine-tuning stage, the preprocess-
ing steps during training include randomly cropping the in-
put images, with the crop size ranging from 0.5 to 1.0 times
the original image size. The cropped images are then re-
sized to a fixed size of 224× 224 pixels. Next, each image
undergoes horizontal flipping with a probability of 0.5. Fi-
nally, each channel of the images is normalized. We use
the AdamW optimizer for training. For the few-shot learn-
ing and out-of-distribution settings, we train for 30 epochs,
and for the base-to-novel class generalization setting, we
train for 20 epochs. To ensure a fair comparison, we fol-
low previous methods [21, 52] and use the ViT-B/16 CLIP
model. For the transformer fine-tuning stage, we train for 1
epoch, with other settings being the same as adaptive selec-
tive fine-tuning. All experiments are implemented using the
Jittor [17] and PyTorch [35] frameworks.

4.4. Comparison with State-of-the-art
Few-shot learning. In this setting, we benchmark CLIP-
AST against state-of-the-art (SOTA) few-shot learning
methods, including CoOp [60], Tip-Adapter [55], Prompt-
SRC [21], and GraphAdapter [26]. As shown in Tab. 1,
CLIP-AST consistently achieves the highest average ac-
curacy across the ImageNet dataset as the shot count in-
creases, demonstrating that our proposed method is on par
with, or even surpasses, previously introduced methods
such as prompt tuning and adapters. To further clarify the
comparison, we present the overall and detailed results for
11 datasets at varying shot levels in Fig. 3. Notably, CLIP-
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Figure 3. Comparison with previous SOTA across 11 datasets under 1, 2, 4, 8, and 16-shot settings demonstrates that our approach
consistently outperforms existing methods, setting a new SOTA.

AST achieves an average accuracy improvement of 2.21%
over the SOTA across 11 datasets. Across all datasets, our
method outperforms previous SOTA approaches, with par-
ticularly substantial improvements on certain datasets. For
instance, on FGVC Aircraft, CLIP-AST achieves approxi-
mately 10% higher accuracy with 16-shot, surpassing other
methods such as PromptSRC and CoOp, which are specif-
ically designed for prompt optimization. Moreover, as the
sample count increases, the performance advantage of our
model over prior methods also becomes more obvious. The
consistent progress achieved by CLIP-AST on different lev-
els under different samples demonstrates that our proposed
fine-tuning method is a simple yet highly effective strategy
in the few-shot learning setting.

Base-to-novel class generalization. In this setting, we
evaluate the ability of CLIP-AST to generalize from base to
novel classes by comparing it with state-of-the-art methods
in Tab. 2, where CLIP-AST consistently performs favor-
ably in both base and novel class recognition tasks. CLIP-
AST achieves the highest harmonic mean (HM) across mul-
tiple datasets, indicating robust performance in both base
and novel classes. For example, on the EuroSAT dataset,
our method achieves an HM improvement of approximately
4.37% compared to MMA. This demonstrates the capabil-

Method Number of Shot
1 2 4 8 16

CLIP [38] Zero-shot 66.92
CoOp [60] 66.33 67.07 68.73 70.63 71.87
CoCoOp [59] 69.43 69.78 70.39 70.63 70.83
Tip-Adapter [55] 67.55 68.58 69.82 71.42 73.28
PromptSRC [21] 68.13 69.77 71.07 72.33 73.17
GraphAdapter [26] 69.80 70.50 71.40 71.40 73.40
CLIP-AST (Ours) 70.29 71.13 71.81 72.90 73.91

Table 1. Compared with the previous SOTA methods in the Ima-
geNet dataset with the few-shot learning setting.

ity of CLIP-AST to maintain high accuracy across vary-
ing class distributions without overfitting to base classes.
Our results illustrate that selective fine-tuning in a base-to-
new setting allows CLIP-AST to balance learning across
class distributions effectively. By avoiding overfitting to
base classes, our approach maintains strong generalization
to novel classes. The gains across both base and novel cat-
egories prove that CLIP-AST can manage the trade-off be-
tween base and novel class performance.
Out-of-distribution setting. In this setting, we assess the
out-of-distribution robustness of CLIP-AST by comparing
it with leading methods in Tab. 3. CLIP-AST achieves su-
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Dataset CLIP CoCoOp MaPLe PromptSRC MMA CLIP-AST
[38] [59] [20] [21] [52] (Ours)

Average
Base 69.34 80.47 82.28 84.26 83.20 85.94
Novel 74.22 71.69 75.14 76.10 76.80 76.99
HM 71.70 75.83 78.55 79.97 79.87 81.06

Caltech101
Base 96.84 97.96 97.74 98.10 98.40 98.71
Novel 94.00 93.81 94.36 94.03 94.00 94.00
HM 95.40 95.84 96.02 96.02 96.15 96.30

DTD
Base 53.24 77.01 80.36 83.37 83.20 84.03
Novel 59.90 56.00 59.18 62.97 65.63 65.34
HM 56.37 64.85 68.16 71.75 73.38 73.52

EuroSAT
Base 56.48 87.49 94.07 92.90 85.46 95.90
Novel 64.05 60.04 73.23 73.90 82.34 81.72
HM 60.03 71.21 82.35 82.32 83.87 88.24

FGVC Aircraft
Base 27.19 33.41 37.44 42.73 40.57 48.98
Novel 36.29 23.71 35.61 37.87 36.33 38.21
HM 31.09 27.74 36.50 40.15 38.33 42.93

Flowers102
Base 72.08 94.87 95.92 98.07 97.77 97.91
Novel 77.80 71.75 72.46 76.50 75.93 77.73
HM 74.83 81.71 82.56 85.95 85.48 86.66

Food101
Base 90.10 90.70 90.71 90.67 90.13 90.57
Novel 91.22 91.29 92.05 91.53 91.30 91.11
HM 90.66 90.99 91.38 91.10 90.71 90.84

ImageNet
Base 72.43 75.98 76.66 77.60 77.31 78.44
Novel 68.14 70.43 70.54 70.73 71.00 70.22
HM 70.22 73.10 73.47 74.01 74.02 74.10

OxfordPets
Base 91.17 95.20 95.43 95.33 95.40 96.23
Novel 97.26 97.69 97.76 97.30 98.07 97.37
HM 94.12 96.43 96.58 96.30 96.72 96.80

Stanford
Cars

Base 63.37 70.49 72.94 78.27 78.50 84.21
Novel 74.89 73.59 74.00 74.97 73.10 74.05
HM 68.65 72.01 73.47 76.58 75.70 78.80

SUN397
Base 69.36 79.74 80.82 82.67 82.27 83.05
Novel 75.35 76.86 78.70 78.47 78.57 78.12
HM 72.23 78.27 79.75 80.52 80.38 80.51

UCF101
Base 70.53 82.33 83.00 87.10 86.23 87.38
Novel 77.50 73.45 78.66 78.80 80.03 79.12
HM 73.85 77.64 80.77 82.74 82.20 83.05

Table 2. Compared with the previous SOTA methods in the base-
to-novel class generalization setting, where the model is trained
on the base class with 16-shot and evaluated on the base class and
novel class.

perior performance on both in-distribution (ImageNet) and
out-of-distribution target datasets (ImageNet-Sketch and
ImageNet-V2). CLIP-AST achieves the highest average
accuracy across these datasets, notably achieving a 2.04%
improvement over the next-best method on ImageNet-V2.
This robust performance on challenging out-of-distribution
tasks highlights the strength of our method for maintain-
ing model generalization beyond the source distribution.
These results demonstrate that CLIP-AST can effectively
mitigate the domain shift, balancing in-distribution and out-
of-distribution accuracy.

4.5. Ablation Study
In our ablation study using the few-shot learning setting, we
first analyzed our selected approach’s training and inference
efficiency compared to previous fine-tuning paradigms.
Then, we conducted an ablation study across 11 datasets.
We extensively evaluated different approaches to selective
fine-tuning and then performed a detailed ablation test on
the hyperparameters of the CLIP-AST.

Training and inference efficiency analysis. We com-
pare the training and inference efficiency of various meth-
ods in Tab. 4. Our method achieves the highest accuracy of
85.64% while maintaining competitive training and infer-

Method Source Target Avg Acc(%)ImageNet -Sketch -V2
CLIP [38] 66.73 46.15 60.83 57.90
CoOp [60] 71.51 47.99 64.20 61.23
CoCoOp [59] 71.02 48.75 64.07 61.28
Tip-Adapter [55] 73.23 46.82 65.01 61.68
MaPLe [20] 70.72 49.15 64.07 61.31
PromptSRC [21] 71.27 49.55 64.35 61.72
MMA [52] 71.00 49.13 64.33 61.48
CLIP-AST (Ours) 73.87 48.37 66.37 62.87

Table 3. Compared with the previous SOTA methods in the out-
of-distribution setting, where the model is trained on the Ima-
geNet dataset with 16-shot and evaluated on the ImageNet-V2 and
ImageNet-Sketch benchmarks.

Method Tuning Type Train Inference Acc(%)time(s) FPS
CLIP [38] - 0 1323 66.12
CoCoOp [59] Prompt 2280 54 72.00
Tip-Adapter [55] Adapter 30 1280 83.09
PromptSRC [21] Prompt 630 1236 74.70
MMA [52] Adapter 135 1113 83.60
CLIP-AST (Ours) Adaptive Selection 100 1323 85.64

Table 4. Comparison of training time, inference efficiency, and ac-
curacy across different methods. All methods are compared using
a single NVIDIA 4090 GPU, trained for 10 epochs on the Stan-
fordCars dataset.

ence efficiency. All methods were trained for 10 epochs
on the StanfordCars dataset. Our method requires only
100 seconds of training time, less than needed for prompt
tuning methods. The inference speed is also the same as
the original CLIP model and faster than both prompt and
adapter tuning methods. This indicates that our selective
fine-tuning method improves performance and maintains
high efficiency during the training and inference stages.

Adaptive selective fine-tuning schemes. Our ablation
study, summarized in Tab. 5, evaluates the impact of dif-
ferent selective fine-tuning schemes on model performance.
We start with a baseline where neither the image encoder
nor the text encoder is fine-tuned, resulting in an average
accuracy of 65.21%. Fine-tuning only the image encoder
or only the text encoder using the adaptive selection strat-
egy yields average accuracies of 84.04% and 81.95%, re-
spectively, indicating significant contributions from both
encoders. Next, We compared BitFit [53], which utilizes
a priori fixed selection of bias as a training parameter, and
found that the method performs poorly. We also compared
the global granularity for adaptive selection, where the top
K important types of sub-layers are trained across the en-
tire transformer, with the layer granularity selection, where
the top K important layers are trained within each layer.
These results highlight the effectiveness of finer-grained
layer granularity selection.
Hyperparameters in adaptive selection. In Fig. 4, we per-
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Trainable Trainable Scheme for Avg Acc(%)Image Encoder Text Encoder Selecting Trainable Layers
✗ ✗ - 65.21
✓ ✗ layer granularity 84.04
✗ ✓ layer granularity 81.95
✓ ✓ fixed bias 79.96
✓ ✓ global granularity 84.25
✓ ✓ layer granularity 85.05

Table 5. Ablation of selective fine-tuning schemes. Fixed bias
trains the bias parameters, global granularity chooses the most im-
portant top K sub-layers across the model, and layer granularity
picks the most important top K sub-layers within each transformer
layer. Avg Acc is the average accuracy across 11 datasets in the
few-shot learning setting with 16-shot.

formed an ablation on the hyperparameters of adaptive se-
lection. First, we ablated the number of epochs for trans-
former fine-tuning used to obtain the importance scores and
found that the number of epochs had little impact on the
results. Next, we ablated the number of training layers K.
We found that smaller or larger values of K did not lead to
optimal results, possibly due to underfitting and overfitting.
Ultimately, we chose 6 sub-layers as the hyperparameter for
the few-shot learning setting.
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Figure 4. Ablation of epoch for transformer fine-tuning and the
number of training layers in adaptive selective fine-tuning.

4.6. Visualization
Statistics of training parameter selection. In Fig. 5, we
visualize the parameter selection results in the few-shot set-
ting for 16-shot across 11 datasets. Firstly, we observe that
the sub-layers chosen for both the image and text encoders
are similar but not identical. Notably, some sub-layers are
consistently selected across different layers, indicating that
these sub-layers might be responsible for extracting general
features. Additionally, the sub-layers selected by the trans-
former layer are also different, indicating that the functions
responsible for shallow and deep layers are not the same.
Image feature analysis before and after training. In
Fig. 6, we visualize the distribution of image features ex-
tracted by the model before and after training using T-
SNE [38]. On the left, the features are scattered with signif-
icant overlap between different classes, indicating that the
model has not yet effectively distinguished visual features.
After training (right side), the features form compact and
distinct clusters, demonstrating that the model has success-
fully learned to extract discriminative features.
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Figure 5. Heatmaps of adaptive parameter selection for image
(left) and text (right) encoders across 11 datasets in the 16-shot
setting.

Figure 6. T-SNE visualization of image features before (left) and
after (right) training. After training, features form clearer clusters,
showing improved class separation.

5. Conclusion

We introduce CLIP-AST, an adaptive selective fine-tuning
method for VLMs that addresses the limitations of exist-
ing PEFT approaches for CLIP. Unlike traditional meth-
ods that rely on the manual selection of adaptation posi-
tions, CLIP-AST uses the adaptive learning rate mecha-
nism of the AdamW optimizer to automatically select criti-
cal parameters with lower second-moment estimates of their
gradients. This enables selective fine-tuning of key sub-
layers, preserving pre-trained knowledge, reducing overfit-
ting, and minimizing computational costs. Extensive exper-
iments show that CLIP-AST outperforms the original CLIP
model and achieves exceptional performance across numer-
ous benchmarks. Overall, it provides a robust framework
for efficient fine-tuning of VLMs, with potential for applica-
tion in other multimodal architectures and further enhance-
ments in parameter selection strategies. Future work could
explore extending this approach to other multimodal archi-
tectures and further refine the parameter selection criteria
for even greater performance gains.
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