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Abstract

Creating high-fidelity head avatars from multi-view videos
is essential for many AR/VR applications. However, cur-
rent methods often struggle to achieve high-quality render-
ings across all head components (e.g., skin vs. hair) due
to the limitations of using one single representation for ele-
ments with varying characteristics. In this paper, we intro-
duce a Hybrid Mesh-Gaussian Head Avatar (MeGA) that
models different head components with more suitable rep-
resentations. Specifically, we employ an enhanced FLAME
mesh for the facial representation and predict a UV dis-
placement map to provide per-vertex offsets for improved
personalized geometric details. To achieve photorealistic
rendering, we use deferred neural rendering to obtain facial
colors and decompose neural textures into three meaning-
ful parts. For hair modeling, we first build a static canon-
ical hair using 3D Gaussian Splatting. A rigid transfor-
mation and an MLP-based deformation field are further
applied to handle complex dynamic expressions. Com-
bined with our occlusion-aware blending, MeGA gener-
ates higher-fidelity renderings for the whole head and nat-
urally supports diverse downstream tasks. Experiments on
the NeRSemble dataset validate the effectiveness of our de-
signs, outperforming previous state-of-the-art methods and
enabling versatile editing capabilities, including hairstyle
alteration and texture editing. The code is released in
https://github.com/conallwang/MeGA.

1. Introduction

Generating photorealistic rendering of animatable head
avatars has been a long-standing focus in computer vision
and graphics, with applications spanning AR/VR commu-
nication [14, 24, 30], gaming [39], and remote collabora-
tions [42].

Existing methods have explored mesh-based representa-
tions [1, 13, 24, 28], NeRF-based representations [15, 27,

40, 45], 3D Gaussians-based representations [9, 32, 41, 44]
and achieved remarkable progress in this field. However,
the human head is a complex “object” containing compo-
nents with drastically different characteristics so there may
not exist one single representation that can model all of
them well simultaneously. For instance, the human hair
contains volumetric thin structures while the human face is
predominantly surface-like regions and can be animated in
a low dimensional space [23]. Thus, using only one rep-
resentation to model different head components inevitably
sacrifices the rendering quality of one part for another.

Ideally, we expect the head avatar representation can
be rendered in photorealistic quality and can be eas-
ily controlled to perform vivid facial animations. For
high-quality facial rendering and animation, Pixel Codec
Avatars (PiCA) [28], which adopts neural texture repre-
sentation [38], have demonstrated extraordinary rendering
quality and subtle dynamic texture details while being able
to be animated easily due to its mesh-based representation.
However, it contains noticeable artifacts including texture-
like hair rendering and mesh-like hair boundaries. In con-
trast, GaussianAvatars [32], which adopts rigged 3D Gaus-
sian Splatting (3DGS) [19] representation, successfully re-
constructs high-frequency volumetric human hair but shows
inferior facial texture details (e.g., wrinkles) and interpene-
tration artifacts (e.g., Fig. 4, first row). Additionally, anti-
aliasing of 3DGS remains an open problem [22, 37, 49], sig-
nificantly impairing its rendering quality on human faces,
particularly when zooming in/out.

Therefore, we propose to use more suitable representa-
tions for different head components (i.e., neural mesh for
the face and 3DGS for the hair), resulting in a Hybrid Mesh-
Gaussian Head Avatar (MeGA). Specifically, we adopt the
FLAME mesh [23] as our base mesh to model dynamic hu-
man faces. Additionally, we learn a UV displacement map
conditioned on the driving signal (i.e., FLAME parameters)
to account for the geometric details that cannot be repre-
sented in the FLAME space. For photorealistic rendering,
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we use neural texture and deferred neural rendering tech-
niques [28, 38]. Unlike PiCA [28], our neural texture con-
sists of three components, including a diffuse texture map to
model the base color, an expression-dependent texture map
to model dynamic textures (e.g., wrinkles and dimples), and
a view-dependent texture map to handle view-dependent ef-
fects. For hair modeling, we build an canonical 3DGS hair
from a chosen frame, which is subsequently deformed by
a rigid transformation and an MLP network to capture dy-
namic hair motion.

Another crucial component of MeGA for high-quality
head renderings is the occlusion-aware blending for face
and hair images. Specifically, we conduct occlusion test
using our “near-z” GS depths rather than commonly used
integrated GS depth, enabling more stable training. To min-
imizing blending artifacts, we propose an early-stopping
strategy during the GS hair rendering to exclude the oc-
cluded Gaussians, combined with a soft-blending technique
to create smoother blending boundaries (e.g., hairline).

With this decomposed representation, MeGA not only
achieves state-of-the-art rendering quality for the complete
head but also supports a range of downstream operations,
including hairstyle alterations and texture editing.

Our contributions are summarized below:

* We are the first to propose a hybrid mesh-Gaussian
full-head representation, adopting more suitable rep-
resentations to model different head components (i.e.,
neural mesh for the face, 3DGS for the hair).

* The decomposed representation naturally supports var-
ious downstream applications, including high-quality
hair alteration and texture editing.

» Experimental results on the NeRSemble dataset show
that our approach produces higher-quality renderings
for novel expressions and views.

2. Related Works
2.1. Animatable Head Avatars

Creating high-fidelity, animatable 3D head avatars from im-
ages or videos has always been of great interest in the com-
puter vision and graphics community. Traditional explicit
geometric modeling methods [2, 17, 18] usually rely on
low-poly meshes and suffer from inaccurate details, espe-
cially around hair regions. With the rise of neural network-
based approaches, Codec Avatars [24, 26, 28, 34, 40, 43]
utilize coarse tracked meshes together with neural networks
to model and render facial performance sequences by cap-
turing them from multi-view videos. The captured avatars
can be animated using a driving model [24] that maps con-
trol signals to the avatar latent codes; however, this ap-
proach may lack intuitive controls. Another line of work
[11-13, 16, 32, 44, 46, 50-52, 54] aims to model head
avatars that can be directly driven using parameters from ex-
isting parametric models (e.g., FLAME [23]). It is notewor-

thy that methods utilizing multi-view video inputs [32, 44]
typically significantly outperform those relying on monoc-
ular inputs [11-13, 16, 46, 50-52, 54]. Our work follows
the multi-view video setting like the GaussianAvatars [32].

2.2. 3D Representations for Head Avatars

Traditional 3D head avatars [2, 17, 18] typically em-
ploy a topological consistent, morphable mesh model (e.g.,
3DMM) [5, 23] for facial modeling and animation. How-
ever, it is exceedingly challenging to faithfully reconstruct
the intricate details of the face and complicated hair re-
gions using standard 3DMMs. To address these challenges,
implicit head avatar models integrate neural networks into
the avatar modeling and rendering processes. For instance,
the Neural Head Avatar [13] and IM Avatar [51] leverage
neural networks to model the geometric and texture de-
tails beyond the FLAME model [23]. The Deferred Neu-
ral Rendering [38] approach achieves high-quality, photo-
realistic rendering with imperfect 3D assets by substituting
the graphics rendering pipeline with a neural network-based
rendering process. In addition to the mesh-based repre-
sentations [4, 13, 51], there are research works based on
point-based representations [40, 52], volume-based repre-
sentations [25, 46], the mixture of volumetric primitives
[26], NeRF-based representations [0, 11, 12, 16, 50], and
more recent 3D Gaussians-based representations [9, 29, 32,
41, 44, 47]. Different from previous methods, we employ a
hybrid mesh-Gaussian representation to decouple the mod-
eling of the human face and hair.

Note that GaussianAvatars [32] only uses the mesh as
the underlying deformation proxy to obtain an animatable
3DGS-based head. The potential artifacts (e.g., inferior fa-
cial details and interpenetration artifacts) of 3DGS are en-
larged due to large scale (e.g., jaw open) and non-rigid de-
formation (e.g., extreme expressions). DELTA [10] lever-
ages mesh and NeRF to model faces and hair separately,
which is conceptually similar to our approach. However, by
incorporating deferred neural rendering and advancing from
NeRF to 3DGS, our MeGA achieves higher-quality render-
ings and greatly improved efficiency, while also supporting
a broader range of downstream applications.

3. Hybrid Mesh-Gaussian Head Avatar

Our goal is to create an animatable head avatar from multi-
view videos that can be driven by FLAME parameters.
Specifically, As illustrated in Fig. 1, given the driving signal
(i.e., FLAME shape 3, expression v, and pose ¢ parame-
ters) and view vector d, we employ three decoders to gener-
ate a UV displacement map G, a view texture map T,,, and
a dynamic texture map Tdy. The UV displacement map Ga
captures geometric details beyond the FLAME. The view
texture map T,, dynamic texture map Tdy and diffuse tex-

ture map T, are combined to produce facial neural textures
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Figure 1. Hybrid Mesh-Gaussian Head Avatar. MeGA models different head components with more suitable representations. For facial
modeling, we propose a neural mesh-based representation, including a UV displacement map Gy for geometric details, a disentangled
neural texture map composed by T, Tdy, and T, to learn the diffuse colors, dynamic textures, and view-dependent colors, respectively.
For hair modeling, a canonical 3D Gaussian Splatting is reconstructed and then animated using a rigid transformation and an MLP-based
non-rigid deformation field. A mesh occlusion-aware blending is proposed to properly blend the face and hair images. MeGA naturally
supports hair alteration and texture editing due to the disentangled representations. Learnable parameters are highlighted using green boxes.

T'. Facial colors are then obtained through efficient mesh
rasterization, followed by a lightweight per-pixel decoder.
For hair modeling, we create a static canonical 3DGS hair
from a chosen frame and incorporate a global rigid trans-
formation and an MLP-based non-rigid deformation field
for animation. Finally, a mesh occlusion-aware blending is
proposed to properly blend the face and hair images.

3.1. Animatable Facial Mesh

To precisely control head avatars and robust generalization
to unseen expressions, we use an enhanced FLAME mesh
as our facial geometry, along with a UV displacement map
to capture personalized geometric details. Disentangled
neural textures are mapped onto this refined facial mesh and
decoded into RGB colors via our per-pixel texture decoder.

Enhanced FLAME Mesh. To increase the expressiveness
of FLAME mesh, similar to [13], we densify the FLAME
mesh using four-way subdivision and add faces for human
teeth, generating our enhanced FLAME mesh:

T(B,4,¢) ={V(B,9,9), F}, ()

where V € R16428x3 represents the vertices of the enhanced
mesh, calculated using the shape 3 € R3%0, expression
1 € R'90 and pose ¢ € RS parameters via linear blend
skinning (LBS). The faces of the enhanced mesh are de-
noted by F € R40212x3,

Geometry Refinement. Building on the enhanced FLAME
mesh, and inspired by [36, 40], we predict a UV displace-
ment map G conditioned on the FLAME expression pa-
rameters v and pose parameters ¢. The refined mesh 7. is
defined as follows:

Tr (8,90, ¢0) ={Vr(B,¢,¢), F},
where Vr(ﬁa ¥, ¢) - V(ﬁ, ¥, (,25) + S(é”d)

S(+) samples values based on the UV coordinates.

2)

In contrast to previous geometry refinement networks
[13] that rely on MLPs to predict per-vertex offsets, our
approach uses a UV displacement map, which inherently
promotes smoothness in the refined mesh due to the locality
properties of Convolutional Neural Networks (CNNs). Ad-
ditionally, by using S(+), our geometry refinement supports
unlimited mesh resolution, i.e., the computation cost does
not increase as the number of vertices increases.

Disentangled Neural Texture. Given the strengths of neu-
ral textures in expressing high-quality dynamic textures and
rendering efficiency [28], we adopt deferred neural render-
ing [38] to generate colors for facial regions. To model ob-
servations more reasonably, we disentangle neural textures
T € R1024x1024%4 jntq three components:

T =Ty + T, + Ty, where T} | € R1024x1024x4 (3,

The diffuse texture Tdi is defined as learnable parame-
ters, representing the base diffuse colors of each face.
The view texture T}, and dynamic texture Tdy are pre-
dicted using CNNs conditioned on the view vector d and
FLAME expression parameters 1) respectively to capture
view-dependent effects and dynamic texture details.

Per-Pixel Texture Decoding. To achieve fast and high-
fidelity rendering, we utilize a compact MLP with just 307
learnable parameters for per-pixel decoding [28] to pro-
duce RGB colors. Unlike PiCA [28], our RGB colors
are predicted solely from UV coordinates and neural tex-
tures, which enhances generalization to unseen expressions.
Excluding the XYZ coordinate inputs from the decoder
prevents from overfitting to a specific coordinate system,
thereby improving the renderings for novel expressions.

3.2. Wearable Gaussian Hair

We adopt 3DGS [19] for hair modeling since it can better re-
construct high-frequency volumetric structures than mesh-
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based representations [13, 28]. Specifically, we first select
one training frame (all views) to build a 3DGS-based canon-
ical human hair with static modeling. For dynamic model-
ing, a rigid transformation is computed via the ICP algo-
rithm [3] to align the canonical hair with each new frame.
Additionally, an MLP-based deformation field [7, 33, 53]
accounts for subtle non-rigid movements.

Preliminaries: 3D Gaussian Splatting. Given calibrated
multi-view images and an initial point cloud (e.g., from
StM [35]), a static scene can be reconstructed using a set of
anisotropic Gaussians G = {x%,7%, 5% o', sh'};—1.n [19].
Here, ¢ represents the ¢-th Gaussian, /N the number of Gaus-
sians, ' € R? the center of the i-th Gaussian, r* € R*
the orientation (represented by a unit quaternion), s’ € R3
the scale, o € R the opacity, and sh’ € R*® the spheri-
cal harmonics coefficients (up to degree 3), used to model
view-dependent appearance.

To render a pixel’s color C, all 3d Gaussians intersected
with its view vector d are blended using alpha blending:
i—1
C=> ca[[(1-a)), “
i j=1
where ¢; is the color of the i-th Gaussian computed from
sh* and the view vector d. The blending weight o is given
by evaluating the 2D projection of the i-th Gaussian [55]
multiplied by o’. All Gaussians are sorted by depth before
performing the alpha blending calculation.

Static Modeling of the Canonical Hair. To obtain the

canonical human hair G. = {z%,7%,s%, 0%, shl}i—1.n, We
optimize a 3DGS from multi-view images of one chosen
frame. Note that we initialize the point cloud by sampling
on- and off-surface points according to the scalp region of
the tracked FLAME mesh and only use image pixels under

the hair mask regions for photometric training.

Rigid Hair Transformation between Two Frames. To
handle head movement between different frames, we com-
pute per-frame rigid transformations { R;, ¢; };=1.n g relative
to the FLAME mesh in the canonical frame using the ICP
algorithm [3]:

(Ri,ti) = ICP(V* ™ (Bi, 4hi, 1), V" (Be, e, b)), (5)
where Ny represents the total number of training frames,
B¢, Ve, and ¢. the FLAME parameters of the canonical
frame, V%P the pre-defined scalp vertices. ICP(-) com-
putes an alignment (i.e., a rigid transformation) by mini-
mizing the Euclidean distance between the two point sets.

With the rigid transformations, we obtain initial trans-
formed hair Gaussians G, = {z@,r., s%, 0., sh’}iz1.n
which are used for the next dynamic hair modeling.
Non-Rigid Hair Deformation between Two Frames. To

account for variations caused by different poses/expressions
and achieve sharper renderings, we learn a non-rigid defor-

mation field parameterized by an MLP M ;:

Mg p — (0, 6r,ds,d0,dsh), (6)
where 1) represents the FLAME expression parameters. The
final Gaussian hair including both rigid and non-rigid defor-
mations is Gg = {al +dz, ri +0r, st +Jst, 0!+ 0%, shi+
dsh'}i—1.n.

3.3. Occlusion-Aware Blending

A basic idea for blending is to compare the depth maps of
the 3DGS hair and facial mesh, and set the color of the final
image pixel to that of the closer one (i.e., hard-blending).
In practice, our occlusion-aware blending module (Fig. 2)
needs to solve two critical challenges: training stability and
blending artifacts (e.g., hairline seams).

Ensuring Stable Training. We adopt a simpler but more
robust “near-z” depth Ijnz for our occlusion test, which
is defined as the depth value of the first Gaussian (depth
sorted) whose opacity value is larger than a predefined
threshold (0.05 in our settings). If an image pixel’s “near-z”
depth is larger than its mesh depth, we know the GS hair is
occluded by the facial mesh with high confidence. In con-
trast, using 3DGS-rendered depth for occlusion test is un-
stable because the rendered GS hair depth is close to mesh
depth, which fluctuates due to minor training errors and
causing a frequently changing occlusion state. We denote
the resulting binary occlusion mask as M, = ﬁm < ﬁh.

Reducing Blending Artifacts. Firstly, we propose an
early-stopping rendering strategy. Specifically, for regions
under M, there exist Gaussians before the mesh, which
should be accounted for during rendering, and Gaussians
occluded by the mesh, which should be ignored during ren-
dering. Thus, during the Gaussian rendering process, we
will stop the color/alpha accumulation if the next Gaussian
(depth sorted) is too far (i.e., the other side of the head) from
the current one for a given ray, obtaining an accumulated al-
pha map A, of the Gaussian hair for later blending.

Then, to further reduce artifacts around blending bound-
aries (especially the hairline) in the final renderings, we
apply the Gaussian smoothing [8] to the binary occlusion
mask M, resulting in a soft-edge occlusion mask G(M,,).

The final blending map for the hair is computed as
Apir = A, - G(M,), and the final rendering I of our
hybrid representation is then given by:

j - Ahair . jhair + (1 - Ahair) : jhead~ (7)
4. Optimizing Head Avatars

Directly optimizing a complete hybrid facial mesh and
Gaussian hair avatar from scratch is highly under-
constrained and thus inherently unstable. To address this,
our optimization process for MeGA is divided into three se-
quential stages, including facial mesh optimization, canon-
ical hair optimization, and joint optimization.
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Figure 2. Mesh Occlusion-Aware Blending. By comparing the hair “near-z”” depth map D.,,. and the head depth map D, we find pixels
that should use hair renderings (white regions in M,). Further combining soft-edge occlusion mask G(M,) with mesh occlusion-aware
hair opacity map A, which only account for visible Gaussians (i.e., in front of the mesh), we obtain the blending map for final renderings.

Learnable parameters. For clarity, we list all learnable
parameters here. For the Gaussian hair, 0, refers to all
learnable parameters of the canonical Gaussian hair, while
Oqe s represents the MLP parameters for the hair deforma-
tion field. For the facial mesh, Tdi is a learnable latent map
(i.e., neural texture [38]) for representing diffuse color. 6,
refers to the parameters of the view texture decoder, from
which a view-dependent latent map T, is produced. 6,
refers to the parameters of the dynamic texture decoder,
from which an expression-dependent latent map Tdy is pro-
duced. 64;5p represents the parameters of the geometry de-
coder, from which a UV displacement map Gyis produced.
Opi. specifies the parameters of the pixel decoder D, that
decodes neural textures into RGB colors.

Optimizing Facial Mesh. In the first stage, we optimize
all learnable parameters related to the facial mesh (i.e.,
Tdi, 0v,0dy, Odisp, and 0p;,) with two per-pixel photomet-
ric losses Egho and EdFi,pho, a D-SSIM loss £ a shrink

ssim?
loss £F, | two depth-based losses £5 and LI, and three

regularization losses Lf;p, £E and £F.

Photometric losses. LY, and L£LF .  provide supervisions
pho ssim
for rendered facial colors as:
r -
‘cpho = ||Ihead - Ihead||2a

,CF =1- SSIM(Iheadv jhead)a

ssim

®)

where Ij..q is the ground truth image of the head part.
We introduce an extra L2-based photometric loss
L oho = Hheaa — Ijti ,4l|2 to promote more meaningful
texture decomposition, where I fféad is decoded from only
the diffuse latent textures Ty;.
Geometric losses. We use depth and screen-space normal
losses to refine the geometry of the facial mesh as follows:
L£i = ||(Dn = Di) © M|,
L = ||N(Dy) = N(Dp) © Mal|,
where D), denotes the depth map derived from multi-view
images using Metashape software [31]. Dy, is the depth

€))

map rasterized by our facial mesh and N(-) calculates
screen space normals [28]. My is used to penalize those
pixels whose depth errors are less than a depth threshold dp
(set to Smm), minimizing the effect of noise.

Shrink loss. To address the issue of the FLAME scalp often
being oversized and overlapping with the hair, we introduce
a shrink regularization loss Ef .y for the scalp vertices,

L, = |V (8,4, ) — Mean(V*““'P (8,4, ¢)])||2, (10)

where V3¢4P are the scalp vertices visible in the current
frame and are obtained by projecting hair masks back to the
deformed FLAME mesh. By shrinking the scalp towards a
fixed center, the Gaussians can be optimized to their correct
locations without being obscured by a wrong scalp mesh.

Regularizations. Three regularization losses are used to en-
sure a reasonable facial mesh (e.g., no face crossing, revers-
ing). The mesh Laplacian loss Ef;p and normal consistency
loss £, smooth the facial mesh, while the edge length loss

LF keeps the rigidity of the mesh as much as possible.

In summary, the complete training loss for our facial
mesh is formulated as a weighted sum of these loss terms:

L = XLl + 3 N Lhho + ALl
+ )‘nﬁg + Assﬁiim + )‘shﬁfhr + ‘Cfegp

where Lf, | = )\lapﬁlFap + M LE + Nt L.

Y

Optimizing Canonical Gaussian Hair. Following the ini-
tialization with points sampled around the scalp mesh (as
mentioned in Sec. 3.2), we optimize the canonical Gaussian
hair parameters (i.e., 045) using two appearance losses ng
and £, as in 3DGS [19], a silhouette loss £, and a

regularization loss £ .
Specifically, two appearance losses are defined as:

tho = HIhair - fhai'r||2a (12)
‘Cfsim =1- SSIM(Ihaira fhair)a

where I}, is the ground truth image of the hair part.
To encourage better disentanglement between the facial
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mesh and Gaussian hair, we introduce a silhouette loss:
H -~
Liin :H(Mhair - Ahair) © A||17

where A(z;) = zémn (lz; = z;][2)-
J

hair

(13)

where M, ;- is the ground truth hair mask, obtained using a
standard facial parsing algorithm [21]. A(-) is a weighting
function that ensures distant incorrect pixels in the rendered
mask are penalized more heavily than pixels that are closer.

We also introduce a regularization loss that encourages
the Gaussian hair to generate a solid hair mask, except
for its boundary regions. Mathematically, this loss is de-
fined as: £, = |[(1 — Ahm-r) © Erode(Mpqir)||1, where
Erode(-) represents the erosion operation.

In summary, the complete loss used to train our canoni-
cal hair is defined as:

['H = Apﬁgw + Assﬁiim + )‘silﬁglh + )‘solﬁgl- (14)

Joint Optimization. With proper initializations of the neu-
ral mesh and canonical 3DGS hair, we jointly optimize the
hybrid mesh-Gaussian avatar across all frames, with a pri-
mary focus on improving the quality of the face-hair over-
lapping region. The objective function is defined as:

L= )\pﬁpho +3- )\p[«g;'.pho + )\ssﬁssim + Asol!cgyl

15)
FAn (872 + [[65]]2 + [[60] |2 +[|6¢][2) + AaLaiap-

In this stage, we optimize for 0.y, T’di, 0, and 84y. Addi-
tionally, we introduce new regularizations to constrain the
per-Gaussian update and an as-isometric-as-possible loss
Laiap [33] to encourage the rigidity of the Gaussian hair.

5. Editing Head Avatars

Due to the disentangled facial mesh and Gaussian hair, our
MeGA naturally facilitates various editing operations.

Hairstyle Alteration. As shown in Fig. 1, our approach can
easily update A’s hairstyle with B’s after alignment (with
scaling). Specifically, we load subject A’s facial mesh (i.e.,
Tdi, 0y, 04dy, 0disp, and 0,;,) and load subject B’s Gaussian
hair (i.e., 04, and Oger). Then, an ICP-based alignment
(with scaling) is conducted to align B’s hair to A’s.

Facial Texture Editing. Our MeGA can easily support tex-
ture editing by updating the diffuse neural texture map Ty
according to the painted image I, and its corresponding
mask M), similar to NeuMesh [48]. Specifically, to edit fa-
cial textures, we first remap the 2d painting mask to the UV
space, obtaining a mask M. Only the latent codes under
this mask are optimized during the subsequent optimization
process. Then we optimize these codes in the diffuse texture
map Ty; with a learning rate 0.01 and the pixel decoder 0,,;,,
with a learning rate 0.0001. Slightly finetuning the pixel de-
coder allows it to show new colors that are not seen during
training head avatars.

Note that we calculate losses for the complete image on
the view I, and calculate losses outside the painting mask

(a) Hair Altcration

Subject with new hairstyles

PR

editing

new hairstyles

“0
editing P

Figure 3. Hairstyle Alteration and Texture Editing. MeGA nat-
urally supports hairstyle alteration and texture editing. The edited
head avatar can be rendered in novel views and expressions.

(b) Texture Editing

on other views. Optimizing the losses on other views serves
as a regularization of the pixel decoder Dp;;, ensuring min-
imal changes on the non-painting regions.

6. Experiments

We evaluate our approach on the NeRSemble dataset [20],
which contains multi-view videos of each subject and cal-
ibrated camera parameters of all 16 cameras. GaussianA-
vatars [32] downsample the images to a resolution of
802 x 550 and generate a foreground mask for each image.
Based on their processed images, we further obtain facial
parsing results for each image using an open-source algo-
rithm [21] and depth maps for each frame using Metashape
software [31].

We train our MeGA using the same train/test splits as
GaussianAvatars [32]. Specifically, 9 out of 10 expression
sequences and 15 out of 16 available cameras are used for
training, while the remaining camera and expression se-
quence are reserved for evaluation. All metrics are calcu-
lated based on image pixels under the rasterization mask.
The facial geometry is evaluated using the Mean Absolute
Error (MAE) between the reconstructed depth maps and our
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Figure 4. Comparisons with State-of-the-Art Methods. MeGA generates more realistic facial renditions compared to previous state-of-
the-art methods, especially in terms of detailed skin textures. Note that Gaussian Head Avatar (GHA) uses a super-resolution (SR) module.

Table 1. Comparisons with State-of-the-Art Methods. MeGA
achieves better LPIPS, SSIM, and PSNR (1dB higher than the 2"
best method). We bold (underline) the best (2™ best) results.

Novel-View Synthesis Novel-Expr. Synthesis

Method PSNRT SSIMt LPIPS| | PSNRT SSIM{t LPIPS |
DELTA 24.62 0.871 0.138 22.60 0.858 0.158
PointAvatar 27.08 0918 0.091 25.79 0.916 0.103
Gaussian Head Avatar | 29.48 0.894 0.084 22.02 0.847 0.156
GaussianAvatars 33.54 0.951 0.055 3145 0.947 0.060
MeGA(Ours) ‘ 34.11 0.954 0.052 ‘ 32.59 0.949 0.057

rasterized depth maps.

6.1. Comparisons with State-of-the-Art Methods

We conduct comparisons with GaussianAvatars [32], Gaus-
sian Head Avatar with super-resolution (SR) [47], PointA-
vatars [52], and DELTA [10] to demonstrate the superiority
of our method. All baselines are trained from scratch using
their public codes and the training details are provided in
our Supp. Mat. Tab. | shows that our approach achieves
the best PSNR, SSIM, and LPIPS averaged among all 9 sub-
jects. As shown in Fig. 4, due to the use of expression-
dependent dynamic textures (i.e., Tdy), our MeGA can
model more subtle geometric details (e.g., wrinkles in sub-
ject 306 and 253). Besides, due to the integral-based render-
ing, 3DGS-based facial rendering tends to produce blurry
or interpenetrated results around the eye and mouth regions
(e.g., subject 304 and 218). The possible reason is that when
fitting a close-eye expression, the pixels around the eye re-

gion should ideally only use the Gaussians of the eyelids
for rendering. However, the 3DGS rendering process can-
not distinguish between the Gaussians of the eyelids and
eyeballs, thereby using both of them to perform rendering
and producing interpenetrated artifacts. The blurry mouth is
caused by a similar reason. Note that while Gaussian Head
Avatar produces promising results for novel-view synthesis,
it struggles with novel expression rendering due to its heavy
reliance on the implicit deformation and super-resolution
module. More results are shown in our Supp. Mat.

6.2. Experiments on Head Editing

We present our results for qualitative evaluation only, as, to
the best of our knowledge, no previous methods' are suit-
able for the following types of head editing.

MeGA supports changing someone’s hairstyle to a
new one (i.e., short, medium, and long hair) from an-
other MeGA-pretrained model (Fig. 3a). Recomposed
head avatars can be rendered in novel views and expres-
sions. Fig. 3b demonstrates the texture editing functionality.
Given a painted image of the subject and the corresponding
painting mask, MeGA can embed this modification into the
3D head avatar and render view-consistent images in novel
views and expressions.

IPrevious mesh-based methods [10, 13, 28] are not suitable for texture
editing due to the entanglement of base colors and view-dependent effects.
DELTA [10] produces rather poor renderings in our settings.
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Table 2. Ablation Studies on Subject 306. We demonstrate the effectiveness of each proposed component. (a) shows the importance
of our disentangled texture maps in generating high-quality renderings. (b) shows the positive effects of our mesh subdivision and UV
displacement map. (c) shows the superiority of our occlusion-aware blending. A blank entry indicates the same settings as “MeGA (Ours)”.

Label | Name Texture Mesh Geom. Blending PSNR 1 | SSIM 1 | LPIPS | | Geo. MAE |
| MeGA (Ours) | | | 3357 | 0963 | 0.040 | 2.25mm
(a.1) | MeGA-noview wio T, 31.68 0.958 0.053 2.87mm
(a.2) | MeGA-nodyn w/o Ty, 32.81 0.959 0.050 2.91mm
(b.1) | MeGA-nosubdiv no subdivision 32.81 0.962 0.046 3.38mm
(b.2) | MeGA-nodisp no Gy 32.99 0.959 0.054 7.48mm
(c.1) | MeGA-gsdepth using alpha-acc. depths | 27.94 0.950 0.068 2.25mm
(c.2) | MeGA-allGS no early-stopping 31.42 0.957 0.048 2.25mm

6.3. Ablation Studies

In this section, we present a series of ablation studies to
verify the effectiveness of our major design choices.

Disentangled Texture Maps. Tab. 2 (a.1) and (a.2) illus-
trate the roles of our two disentangled texture maps, with
the corresponding visual results shown in Fig. 5. When the
view texture T}, is disabled (MeGA-noview), MeGA strug-
gles to handle view-dependent effects and fails to capture
highlights in the eyes. When the expression-dependent dy-
namic texture Tdy is disabled (MeGA-nodyn), MeGA loses
the ability to model detailed skin appearance (e.g., the fore-
head wrinkles). Disabling any of them results in worse
quantitative metrics (31.68/32.81 vs. 33.57).

Mesh Geometry. We investigate the effect of mesh sub-
division and the use of the UV displacement map G, for
enhancing geometry details. The quantitative results are re-
ported in Tab. 2 (b.1) and (b.2). Without mesh subdivision,
only 5023 vertices are adapted to fit the facial depths, lead-
ing to inferior facial geometry and renderings (3.38mm vs.
2.25mm Geo. MAE, 32.81 vs. 33.57 PSNR). Using a UV
displacement map Gy significantly improves the evaluation
metrics (2.25mm vs. 7.48mm Geo. MAE, 33.57 vs 32.99
PSNR). The visual results are shown in Fig. 5.

Blending Strategies. To verify the effectiveness of our
mesh occlusion-aware blending approach, we test alterna-
tive blending strategies and report the quantitative results in
Tab. 2 (c.1)-(c.2). “MeGA-gsdepth” attempts to obtain the
visibility of the Gaussian hair using 3DGS-rendered depths,
instead of the “near-z” depths. However, 3DGS-rendered
depths may fluctuate due to minor training errors and make
occlusion relations between the head and 3DGS hair chang-
ing constantly, resulting in the optimization objective of
3DGS shifting throughout the training process and unstable
optimization. “MeGA-allGS” disables our early-stopping
strategy and uses both invisible and visible Gaussians for
hair rendering. In this case, if a single Gaussian mistak-
enly appears in front of the facial mesh, the invisible Gaus-
sians will be used to fit the facial appearance, disrupting the
learning of facial textures and leading to inferior facial ren-

MeGA{Ours) MeGA-allGS MeGA-gsdepth

MeGA-nadyn MeGA-nadisp MeGA-nosubdiv

GT

MeGA-noview

Figure 5. Ablation Studies on Disentangles Texture Maps, Ge-
ometry Refinement, and Blending Strategies. Disabling the view
texture 7}, and dynamic texture Tdy loses the highlights in the eyes
and the forehead wrinkles, respectively. Removing any component
in our geometry refinement and occlusion-aware blending module
degrades the final renderings.

derings (31.42 vs. 33.57 PSNR and Fig. 5).

Loss Functions. Removing any loss function degrades the
performance. More details are shown in our Supp. Mat.

7. Conclusion

In this paper, we present hybrid mesh-Gaussian head avatars
(MeGA), which employ neural mesh for face modeling and
3DGS for hair modeling. For high-quality facial modeling,
we enhance the FLAME mesh and decode a UV displace-
ment map for personalized geometric details. Facial col-
ors are decoded via a lightweight MLP from a neural tex-
ture map that consists of disentangled diffuse texture Ty,
view-dependent texture T, and dynamic texture Tdy. For
high-quality hair modeling, we build a static 3DGS hair
and employ a rigid transformation combined with an MLP-
based deformation field for animation. The final renderings
are obtained by blending the hair and head parts with our
occlusion-aware blending module. In addition to achiev-
ing the best rendering results, MeGA naturally supports
various editing functionalities, including hairstyle alteration
and texture editing.
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