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Abstract

We investigate the problem of generating 3D meshes

from single free-hand sketches, aiming at fast 3D modeling

for novice users. It can be regarded as a single-view re-

construction problem, but with unique challenges, brought

by the variation and conciseness of sketches. Ambiguities in

poorly-drawn sketches could make it hard to determine how

the sketched object is posed. In this paper, we address the

importance of viewpoint specification for overcoming such

ambiguities, and propose a novel view-aware generation

approach. By explicitly conditioning the generation pro-

cess on a given viewpoint, our method can generate plausi-

ble shapes automatically with predicted viewpoints, or with

specified viewpoints to help users better express their in-

tentions. Extensive evaluations on various datasets demon-

strate the effectiveness of our view-aware design in solving

sketch ambiguities and improving reconstruction quality.

1. Introduction

Sketch-based 3D modeling has been studied for decades,

intended to free people from the tedious and time-

consuming modeling process. With the widespread usage of

portable touch screens and emergence of VR/AR technolo-

gies, the need of 3D content creation for novice users is in-

creasing [37]. However, existing sketch-based 3D modeling

techniques either require precise line-drawings from multi-

ple views or simply retrieve from existing models, both fail-

ing to provide easy-to-use interface and customizability at

the same time. We aim at fast and intuitive 3D modeling

for people without professional drawing skills, and inves-

tigate the problem of mesh generation from a single free-

hand sketch. It is in general a single-view reconstruction

problem, but has its unique challenges due to the character-

istics of free-hand sketches. Unlike real images, free-hand

sketches can be poorly-drawn with drastic simplifications

and geometric distortions, and lack important visual cues

like textures or shading. This makes it difficult, sometimes
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Figure 1. Ambiguities in free-hand sketches. It could be hard to

determine how the sketched object is posed.

even impossible, for algorithms to understand sketches cor-

rectly. One tricky scenario results from the “camera-shape

ambiguity” [21], as shown in Fig. 1. Subjectivity of sketch

creation could lead to different explanation of the same

sketch, like which side being the front of the car (left). Fur-

thermore, a recent study shows that existing single-view re-

construction approaches mainly rely on the recognition of

input images, rather than actually performing geometry re-

construction. Therefore, they can be hard to generalize to

unseen data and perform worse on hand-drawn sketches,

which are created with barely any constraint, showing more

diverse in appearance.

Recall how human cognitive system works for the task

of 3D reconstruction. Human relies on visual memory and

visual rules to recover 3D geometry from imagery [28]. Vi-

sual memory contains priors gained from daily life, like

what an object of a certain class might look like, while

visual rules act like a regularizer, requiring that an object

should match what it looks like from a certain viewpoint.

When seeing a sketch, we search our visual memory and

try to find a solution that also obeys visual rules. However,

this search process may not go well when (1) we could not

figure out how the sketched object is posed, thus finding dif-

ficulty applying visual rules; (2) multiple solutions exist due

to the ambiguity of the sketch. Both problems result from

the lack of details in sketches, and we address that view-

point specification can be essential to the above problems.

If we are told which viewpoint the object is sketched from,

search space can be easily reduced, which lowers search

difficulty and may eliminate ambiguities.
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Based on the above observations, we think that explic-

itly specified viewpoints can directly guide the reconstruc-

tion algorithm to find the correct shape described by the

user. Moreover, viewpoints offer extra information for the

understanding of hand-drawn sketches, which can improve

generalization ability for out-of-distribution data. To utilize

view information, we propose a view-aware sketch-based

3D reconstruction method, which explicitly conditions the

generation process on a given viewpoint. We extend the tra-

ditional encoder-decoder architecture used in some recent

works [20, 22]. In the encoder, image features are decom-

posed to a latent view code and a latent shape code. The

latent view code is used to predict viewpoint for the input

sketch, and the latent shape code is combined with a latent

view code to generate the output shape. Just like other dis-

entangling problems, the network would take a short path

and fail to decompose certain properties if no other con-

straints are made. To ensure that only view information is

contained in the latent view space, a view auto-encoder is

learned to transform viewpoints to latent view space and

vice versa. To force the decoder network to depend on the

given view code, we propose a simple but effective ran-

dom view reinforced training strategy, where random views

along with ground truth views are fed to the decoder, forc-

ing the network to learn how to match the input sketch from

different viewpoints. We use synthetic sketch data for train-

ing, due to the lack of paired sketch-3D dataset, and ap-

ply domain adaptation technique to bridge the gap between

synthetic sketches and real sketches. In the inference stage,

our method can generate 3D mesh based on a single free-

hand sketch automatically using the predicted viewpoint, or

semi-automatically using a user-specified viewpoint.

Extensive experiments are conducted to demonstrate the

effectiveness of our design. We first perform case stud-

ies to show characteristics of our view-aware architecture,

and how specified views can be used to eliminate ambi-

guities. To evaluate how our method performs on free-

hand sketches and inspire further research, we collect a

ShapeNet-Sketch dataset based on the ShapeNet dataset,

which contains 1,300 sketch-shape pairs. Results on various

datasets show that our method can generate higher-quality

shapes and better convey user’s intentions comparing to al-

ternative baselines, which demonstrates the advantages of

introducing viewpoint specification. Ablation studies are

performed to show the necessity of serveral parts of our

method.

To summarize, our contributions are as follows:

• We are the first to investigate the problem of gener-

ating 3D mesh from a single free-hand sketch, which

provides a fast and easy-to-use 3D content creation so-

lution for novice users.

• We address the importance of viewpoint specifica-

tion in the sketch-based reconstruction task, and de-

sign a view-aware generation architecture to condi-

tion the generation process explicitly on viewpoints.

Quantitative and qualitative evaluations on various

datasets demonstrate our method can generate promis-

ing shapes that well convey user’s intentions and gen-

eralize better on free-hand sketches.

2. Related Work

2.1. Single­View 3D Reconstruction

Recovering 3D geometry from a single image is an ill-

posed problem. Early approaches utilize perceptual cues,

such as shading [14] and texture [39], to get a clue about

surface orientations. With the emergence of online 3D

model collections and large-scale 3D model datasets [1],

data-driven approaches are developed to infer category-

specific shapes directly from image features [3, 4, 8, 10, 16,

24, 29, 38], in the form of voxel [4, 10], point cloud [8],

triangle mesh [16,29,38], and implicit function [3,24]. Re-

cently, differentiable rendering techniques [20,22,27,33,40]

are proposed to relax the need for ground truth 3D models

in training, which enables supervision with solely 2D im-

ages. Our method is based on the single-view reconstruc-

tion process of [22]. We extend the original approach by

disentangling image features into a latent shape space and

a latent view space, and achieve view-aware generation by

applying special designed training strategy. Note that no 3D

information is needed in our training process.

2.2. Sketch­Based 3D Modeling

3D modeling based on sketches, has been studied for a

long time. Olsen et al. [28] categorized traditional sketch-

based modeling techniques into evocative [2,9,34] and con-

structive [17, 19, 25, 26] ones. Evocative approaches create

models from template primitives or retrieve objects from

model collections, while constructive ones directly map the

input strokes to a 3D model, providing free-form modeling

abilities. Either of the two paradigms has its shortcomings:

evocative methods are confined to generate certain shapes or

primitives, and the lack of prior knowledge in constructive

methods often requires large efforts to get the desired shape.

Deng et al. [6] proposed to extract free-form shapes from

single images in an interactive way, inspired by the lofting

technique in CAD systems. By utilizing deep learning tech-

niques, several works [5, 11, 12, 15, 23, 31, 32, 35, 36] have

achieved to gain priors from existing 3D models, while be-

ing able to leverage user inputs. However, very few of them

focuses on reconstruction from free-hand sketches [35, 36],

instead of precise line drawings. Wang et al. [36] proposed

a retrieval-based apporach to generate 3D voxels from free-

hand sketches. The work most similar to ours is that of

Wang et al. [35], where point cloud is generated according
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Figure 2. Network architecture of (a) baseline methods [20, 22] and (b) our method. Purple and blue blocks denote inputs and trainable

parameters respectively. R is the differentiable rendering module. Our method extends the encoder-decoder model by decomposing image

features into shape space S and view space V . We train a view encoder Ev and a view decoder Dv to ensure only view-related information

is contained in view space, and force the decoder D to use view information by training with an additional random view Vr . Shape quality

is preserved by a shape discriminator Ds.

to a single free-hand sketch, and rotated to a canonical view

by predicted viewpoint to match the ground truth. Differ-

ent from their work, we regard viewpoint as an additional

input to the generation process, and rely on them to inter-

pret sketches. The authors proposed sketch standardization

steps to synthesize sketches from edge maps, while we try

to bridge the domain gap in feature space.

3. Method

To generate 3D mesh from a single free-hand sketch, we

first propose a baseline approach, that works the same way

as single-view reconstruction for real images. Then we ex-

tend the baseline architecture by decomposing image fea-

tures into a latent view space and a latent shape space, and

condition the generation process on the choice of viewpoint.

3.1. View­Aware Generation

Given an input sketch I , we wish to generate a 3D mesh

M , under the constraint that the sketch represents the object

seen from a specific viewpoint V .

As a basis of our method, the single-view mesh recon-

struction framework proposed in [20,22] is built upon a sim-

ple encoder-decoder architecture, shown in Fig.2(a). The

encoder E is a convolutional neural network, which extracts

image features from input image I and outputs a compact

feature vector z = E(I). The decoder D calculates from z

the vertex offsets of a template mesh, and deforms it to get

the output mesh M = D(z). By approximating gradients

of the rasterization process in the differentiable rendering

module R, the network can be end-to-end trained by com-

paring rendered silhouettes and ground truth ones, without

the need for ground truth 3D shapes.

To explicitly condition the generation process on view-

points, we design a novel view-aware architecture, shown

in Fig.2(b). In our encoder, the image feature vector z is

further mapped to a latent view space V and a latent shape

space S . The decoder takes a latent view code zv and a

shape code zs, and get a deformed mesh M . Denote the

image space and mesh space to be I and M, our encoder

and decoder can be expressed as:

E : I → V × S (1)

D : V × S → M (2)

We also introduce a view auto-encoder, denoted as Ev

and Dv , to encode an arbitrary viewpoint to the latent view

space and vice versa:

Dv(Ev(V )) = V (3)

Ev(V ) ∈ V (4)

such that only view-related information are held in the latent

view space. We predict the viewpoint for the input sketch

from the latent view code zv given by the encoder:

V̂ = Dv(zv) (5)

Intuitive as it seems, it is not straightforward to ensure

that shapes are generated by taking the latent view code zv
into consideration. A common degradation could happen,

that M is directly generated from zs, totally ignoring zv , if

trained without any other constraint. We propose a random

view reinforced training strategy to solve this problem. In

addition to the ground truth viewpoint V , we feed a ran-

dom viewpoint Vr to the decoder network and generate a
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mesh Mr. By forcing consistency between the projected

silhouette of Mr under Vr and the input silhouette, the net-

work will learn to match the input sketch under any given

viewpoint. However, interpreting input sketches with an ar-

bitrary viewpoint is not feasible. This will cause the net-

work to generate distorted shapes, which only satisfy the

silhouette constraint, but are not meaningful objects. To

avoid distortions as much as possible, we introduce a shape

discriminator Ds, which is trained jointly with the encoder

and decoder in an adversarial manner. The random view

reinforced training and the shape discriminator work as a

balance between view-awareness and shape quality. The

network may not produce shapes strictly matching the in-

put silhouette under Vr, but still be aware of the impacts of

viewpoints to the generation results.

3.2. Training and Inference

Domain adaptation. Due to the lack of paired sketch-

shape data, we use synthetic sketches of ShapeNet objects

as training data, which are precise line-drawings of objects,

and have different appearances from free-hand sketches.

Performance drop occurs when the model trained on syn-

thetic sketches is tested on hand-drawn ones. To bridge

the gap between them, previous works mostly try to mimic

hand-drawn sketches when generating synthetic data by

hand-crafted rules or image translation techniques. We first

propose to bridge this gap in feature space instead of image

space, inspired by existing domain adaptation approaches.

Our intention is to make image features of synthetic and

hand-drawn sketches indistinguishable. To do this, we learn

a domain discriminator to separate features coming from the

two domains, and train it with the encoder adversarially.

Optimization objectives. Our loss functions consist of

five parts: silhouette loss Ls between projected and ground

truth silhouettes, geometry regularizations Lr for gener-

ated shapes, view prediction loss Lv between predicted and

ground truth viewpoints, classification loss Lsd and Ldd for

shape discriminator and domain discriminator.

For input and rasterized silhouettes, we adopt IoU loss

as in [20, 22]. Let S1 and S2 be two binary silhouettes, IoU

loss Liou is defined as:

Liou(S1, S2) = 1−
||S1 ⊗ S2||1

||S1 ⊕ S2 − S1 ⊗ S2||1
(6)

Denote P (·, ·) as the differentiable rasterization function,

which takes a mesh M and a viewpoint V , and output the

rasterized silhouette of M under V . Our silhouette loss is

expressed as:

Ls = Liou(S, P (D(zs, Ev(V )), V ))

+ λrLiou(S, P (D(zs, Ev(Vr)), Vr))
(7)

where V and S is the ground truth viewpoint and silhouette

respectively. Note that we use the latent code for ground

truth viewpoint Ev(V ) in training, instead of the predicted

zv , because we observe negative impacts for training by uti-

lizing inaccurate predictions. Most existing works compute

IoU loss on low resolution silhouettes like 64×64, which ig-

nores fine structures. Considering computational efficiency,

we adopt a multi-scale progressive training strategy, lever-

aging silhouettes of different resolutions. Let Li
s be the sil-

houette loss on the i-th level of the silhouette pyramid, N

be the number of levels, we adopt a progressive silhouette

loss Lsp:

Lsp =
N∑

i=1

λsiL
i
s (8)

In early stage of training, only low resolution silhouettes are

used for loss calculation. Higher resolution ones are used

for shape refinement as the training progresses.

To improve visual quality of generated meshes, we ap-

ply flatten loss and and laplacian loss as regularizations for

mesh structures, as in [20,22,38]. We denote the shape reg-

ularization loss as Lr.

For the representation of viewpoint, we assume fixed dis-

tance to camera and represent viewpoints as Euler angles.

We adopt L2 loss for predicted and ground truth views:

Lv = ||V − V̂ ||2 = ||V −Dv(zv)||2 (9)

To train the view encoder, we adopt a view reconstruction

loss Lvr between original and reconstructed views:

Lvr = ||V −Dv(Ev(V ))||2 (10)

To ease the training process, we apply a gradient reversal

layer before shape discriminator and domain discriminator.

The gradient reversal layer reverses the sign of the gradient

that passes it, which achieves adversarial training in a single

pass. For the shape discriminator, we expect it to output 1

for M and 0 for Mr, and for the domain discriminator, 1 for

synthetic sketches and 0 for hand-drawn sketches, which

lead to the following losses:

Lsd =− EM [log(Ds(M))]

− EMr
[1− log(Ds(Mr))]

(11)

Ldd =− ESs
[log(Dd(Ss))]

− ESh
[1− log(Dd(Sh))]

(12)

where Ss and Sh denote synthetic sketches and hand-drawn

sketches respectively.

Our overall loss function is the weighted sum of the

above objectives:

L = Lsp + Lr + λvLv + λvrLvr

+ λsdLsd + λddLdd

(13)
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Figure 3. Illustrations for effectiveness of our view-aware design. When giving the same sketch as input but specifying different viewpoints,

our model can synthesize different results trying to match the input shape from the corresponding point of view. For each example, the first
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Figure 4. Ablation studies for random view reinforced training

strategy (RVR) and shape discriminator (SD). Without applying

random view reinforced training, the network would fail to gener-

ate meaningful objects under given viewpoints (first row). With-

out shape discriminator, the output shape may not resemble real

objects (second row). We successfully achieve view-aware gener-

ation by adopting both techniques (third row).

During inference, shapes can be generated from an in-

put free-hand sketch automatically or semi-automatically,

depending on the choice of latent view code zv . Users

can use the predicted viewpoint V̂ to get the output mesh

M̂ = D(zs, Ev(V̂ )), or provide a specified viewpoint Ṽ to

get M̃ = D(zs, Ev(Ṽ )).

4. Experiments

We first perform case studies to show the effectiveness

of our view-aware design and how specified viewpoints

can be used to solve the ambiguity problem. Quantita-

tive and qualitative evaluations on both synthetic and hand-

drawn sketches show that our method generates shapes bet-

ter matching the given sketch comparing to alternative base-

lines.

4.1. Datasets

ShapeNet-Synthetic. We use synthetic sketches to train

our model. We create the synthetic dataset using rendered

images provided by Kar et al. [18]. It contains object ren-

derings of 13 categories from ShapeNet [1]. Images from 20

different views of each object are rendered in 224x224 reso-

lution. We extract the edge map of each rendered image us-

ing canny edge detector, which does not require 3D ground

truth comparing to extracting contours from 3D shapes.

We directly use the edge maps as synthetic sketches, and

use this dataset for training and evaluation, under the same

train/test split as in [22].

ShapeNet-Sketch. To quantitatively evaluate our method

on free-hand sketches and benefit further research, we col-

lect a paired dataset of 3D shape and hand-drawn sketches,

which we call ShapeNet-Sketch. We randomly choose 100

rendered images for each of the 13 ShapeNet categories

from Kar’s dataset [18], and ask people of different draw-

ing skills to sketch the object based on the rendered image

6016



Voxel IoU (↑)

Category airplane bench cabinet car chair display lamp loudspeaker rifle sofa table telephone watercraft mean

Retrieval 0.513 0.380 0.518 0.667 0.346 0.385 0.325 0.468 0.475 0.483 0.311 0.622 0.422 0.455

SoftRas 0.576 0.467 0.663 0.769 0.496 0.541 0.431 0.629 0.605 0.613 0.512 0.706 0.556 0.582

Ours (pred) 0.618 0.477 0.667 0.746 0.515 0.550 0.463 0.624 0.606 0.620 0.470 0.673 0.569 0.584

Ours (gt) 0.624 0.481 0.701 0.751 0.522 0.604 0.472 0.641 0.612 0.622 0.478 0.719 0.586 0.601

Chamfer Distance (↓)

Category airplane bench cabinet car chair display lamp loudspeaker rifle sofa table telephone watercraft mean

Retrieval 0.856 1.384 1.941 0.767 1.878 1.967 3.017 2.468 0.731 2.056 2.151 1.042 1.130 1.645

SoftRas 0.531 0.944 2.271 0.947 1.703 1.762 3.272 2.234 0.495 2.161 1.662 1.307 0.872 1.551

Ours (pred) 0.493 1.003 1.867 0.812 1.488 1.637 3.300 2.021 0.604 1.944 1.790 1.120 1.018 1.469

Ours (gt) 0.470 0.974 1.561 0.790 1.457 1.228 3.263 1.884 0.574 2.011 1.744 0.928 0.897 1.368

Table 1. Comparisons of mean voxel IoU and Chamfer Distance on ShapeNet-Synthetic test set. Our method with either ground truth

viewpoins (gt) or predicted viewpoints (pred) surpasses baseline methods on most of the classes on voxel IoU score, and achieves the best

overall performance regarding to Chamfer Distance.

RVR SD MS airplane bench cabinet car chair display lamp

0.557 (0.565) 0.345 (0.460) 0.597 (0.579) 0.747 (0.753) 0.499 (0.508) 0.457 (0.577) 0.290 (0.421)

X 0.587 (0.469) 0.407 (0.435) 0.674 (0.641) 0.753 (0.736) 0.514 (0.505) 0.525 (0.504) 0.454 (0.451)

X X 0.588 (0.582) 0.459 (0.455) 0.690 (0.658) 0.756 (0.749) 0.510 (0.504) 0.591 (0.540) 0.461 (0.453)

X X X 0.624 (0.618) 0.481 (0.477) 0.701 (0.667) 0.751 (0.746) 0.522 (0.515) 0.604 (0.550) 0.472 (0.463)

RVR SD MS loudspeaker rifle sofa table telephone watercraft mean

0.584 (0.614) 0.500 (0.576) 0.624 (0.643) 0.406 (0.427) 0.522 (0.705) 0.574 (0.575) 0.516 (0.569)

X 0.605 (0.598) 0.570 (0.444) 0.613 (0.612) 0.431 (0.427) 0.651 (0.590) 0.570 (0.551) 0.566 (0.536)

X X 0.606 (0.598) 0.565 (0.560) 0.633 (0.632) 0.429 (0.424) 0.698 (0.638) 0.550 (0.551) 0.580 (0.565)

X X X 0.641 (0.624) 0.612 (0.606) 0.622 (0.620) 0.478 (0.470) 0.719 (0.673) 0.586 (0.569) 0.601 (0.584)

Table 2. Quantitative ablation studies for random view reinforced training (RVR), shape discriminator (SD) and multi-scale progressive

training (MS). Numbers outside and inside parenthesis are mean voxel IoU scores on ShapeNet-Synthetic test set for ground truth and

predicted viewpoints respectively. By adopting all three strategies, we can achieve the highest IoU scores in most cases with or without

groud truth views.

on a touch pad. Our ShapeNet-Sketch dataset contains in to-

tal 1,300 free-hand sketches and their corresponding ground

truth 3D models. We use this dataset for evaluations only.

Existing sketch datasets. We use some existing sketch

datasets designed for other sketch-related tasks to qualita-

tively evaluate our method, and demonstrate the advantages

of our method in dealing with poorly-drawn sketches. In

detail, we use sketches of 7 categories that overlap with

the ShapeNet classes, from Sketchy database [30] and Tu-

Berlin dataset [7].

4.2. Implementation Details

We use ResNet-18 [13] as our image feature extractor

and SoftRas [22] for differentiable rendering of generated

meshes. Detailed network architecture is described in the

supplementary material. We assume a canonical view for

objects in each class and use elevation and azimuth angles to

represent viewpoints. The canonical view is 0 in elevation

and 0 in azimuth, and the distance to camera is fixed. We

use Adam optimizer with learning rate 1e − 4, and train a

separate model for each class. Hyper-parameters are set to

λr = λsd = λdd = 0.1, λv = λvr = 10.

4.3. Effectiveness of View­Aware Design

As is illustrated in Sec.3.1, our generation result relies

on both input sketch image and a viewpoint. With different

viewpoints, the network is expected to generate different

shapes to match the input sketch. Examples in Fig.3 show

how the generated shape changes with the change of ele-

vation and azimuth angle. For each example, the second

row shows how well the generated model matches the in-

put sketch from the given view. In the vehicle example (top

right), the choice of azimuth angle, which represents which

side the vehicle is looking from, influences the output model

to be a van (left, -90 in azimuth) or a truck (right, 90 in az-

imuth). For the badly-drawn table (bottom left), the height

of the table and the thickness of the table top are determined

by the elevation angle.

Fig.4 shows the importance of the proposed random view

reinforced training strategy and shape discriminator to the

generation results. If only normal views are used in training,

the network fails to learn the dependency on input view-

point, and could get confused on given views. Without

shape discriminator, the output mesh may get distorted and

not resemble a real object. Under the influence of both, we

can get view-aware property with promising shape quality.
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Figure 5. Some representative results on our ShapeNet-Sketch dataset. Each model is rendered from a fixed viewpoint, and the projection

on the ground truth viewpoint is given on the bottom right corner of each example for comparison. Our method can generate promising

shapes with hand-drawn sketches. Note that the results shown here use predicted viewpoints for generation. More results are shown in the

supplementary material.

Category airplane bench cabinet car chair display lamp loudspeaker rifle sofa table telephone watercraft mean

Retrieval 0.411 0.219 0.409 0.626 0.238 0.338 0.223 0.365 0.413 0.431 0.232 0.536 0.369 0.370

SoftRas 0.469 0.347 0.545 0.648 0.361 0.472 0.328 0.533 0.541 0.534 0.359 0.537 0.456 0.472

Ours (pred) 0.479 0.357 0.547 0.649 0.383 0.435 0.336 0.526 0.510 0.528 0.361 0.551 0.450 0.470

Ours (gt) 0.487 0.366 0.568 0.659 0.393 0.479 0.338 0.544 0.534 0.534 0.357 0.554 0.466 0.483

Ours + DA (pred) 0.515 0.362 - 0.659 0.385 - - - 0.511 0.533 0.360 - - 0.475

Ours + DA (gt) 0.526 0.367 - 0.679 0.398 - - - 0.535 0.548 0.357 - - 0.489

Table 3. Mean voxel IoU on ShapeNet-Sketch dataset. We apply domain adaptation (DA) on 7 of the classes, which have considerable

amount of sketches in the Sketchy database [30] and Tu-Berlin dataset [7]. Our method with domain adaptation achieves the highest IoU

score, and shows significant improvement on airplane, car and sofa.

4.4. Comparisons and Evaluations

We compare our method with the traditional encoder-

decoder architecture in Fig. 2(a) and a retrieval-based ap-

proach. For the former, we adopt SoftRas [22] as the differ-

entiable rendering module, and denote it as “SoftRas” for

simplicity. We also train a separate model for each category

for fair comparison. Retrieval is a widely-adopted appo-

rach to get 3D shape from a single sketch input. Instead

of using traditional image features, we use features from a

pre-trained sketch classification network, which is demon-

strated to be more powerful than hand-crafted features in

many sketch-related works [30, 41]. For each input sketch,

we find its nearest neighbor in training edge maps and take

the corresponding 3D shape as the retrieval result. For quan-

titative comparisons, we use voxel IoU score, as in [20,22].

4.4.1 Comparisons on ShapeNet-Synthetic Dataset

Comparison results on ShapeNet-Synthetic test set is shown

in Table.1. We evaluate our method using both the predicted

viewpoint (pred) and the ground truth viewpoint (gt), which

serves as the lower and upper bound for our view-aware de-

sign. Our method outperforms the two baselines on most

of the categories, especially when the ground truth view is

given. This implies that view information plays an essen-

tial role in reconstruction, and generation quality should be

improved by specifying correct views. We perform abla-

tion studies on several designs of our approach in Table.2.

RVR, SD, MS denotes for random view reinforced training,

shape discriminator and multi-scale progressive training re-

spectively. Without using any of the three techniques, the

method performs well on predicted viewpoints, but fails on

given ground truth views, since it is not trained to fit arbi-

trary viewpoints. Adopting random view reinforced train-

ing without shape discriminator will lead to poor results on

predicted views, because the shapes may get distorted given

inaccurate view predictions. By applying multi-scale pro-

gressive training, the performance can be further improved.

4.4.2 Comparisons on ShapeNet-Sketch Dataset

We show voxel IoU score on our collected ShapeNet-Sketch

dataset in Table.3, and further demonstrate the effectiveness

of our domain discriminator. We observe significant per-

formance improvement after applying domain adaptation in

some of the classes (airplane, car, sofa), indicating that large

domain gaps exist. For comparison, we also tried to create

fake sketches by utilizing CycleGAN and use them as train-

ing data, but no significant improvement is observed. Some

reconstruction results using predicted views on ShapeNet-

Sketch dataset is shown in Fig.5. Fig.7 visualizes the effects

of domain adaptation. Shapes without domain adaptation

can be too smooth and lack distinctive features, like the tail
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Category airplane bench cabinet car chair display lamp loudspeaker rifle sofa table telephone watercraft mean

SoftRas 0.584 0.687 0.835 0.793 0.728 0.765 0.599 0.762 0.568 0.773 0.720 0.802 0.690 0.716

Ours (pred) 0.647 0.620 0.857 0.864 0.724 0.777 0.652 0.807 0.654 0.808 0.703 0.848 0.726 0.745

Ours (gt) 0.644 0.673 0.868 0.866 0.737 0.807 0.631 0.822 0.614 0.817 0.735 0.855 0.735 0.754

Table 4. Comparison of 2D silhouette IoU score on ShapeNet-Sketch dataset. The generated shapes are projected to the ground truth view

and we calculate the IoU score between the projected silhouette and the ground truth silhouette. Our method achieves significantly higher

results than baseline methods. It demonstrates that our method can generate shapes better match the input sketches.

Input Retrieval SoftRas Ours (pred) Input Retrieval SoftRas Ours (pred)

Figure 6. Qualitative comparisons with two baseline methods on sketches from the Sketchy database [30] and Tu-Berlin dataset [7]. The

reconstructed mesh is projected on our predict viewpoint, to compare with the given sketch. Our method generates meshes that align better

with the given sketch, and performs well on rare shapes (bottom right) and poorly-drawn sketches (bottom left).

Input

w/o DA

w/ DA

Figure 7. Ablation study for domain adaptation. Without domain

adaptation, some distinctive features might be lost, like the tail of

the airplane (left). Shapes generated after domain adaptation tend

to have sharper boundaries (middle, right).

of the airplane (left).

We also compare projected silhouettes of generated

meshes with ground truth silhouettes, and show the results

in Table.4. It shows our model is more powerful at match-

ing input sketches, which provides evidence for the effec-

tiveness of our view-aware design.

4.4.3 Evaluations on Free-Hand Sketches

Finally, we qualitatively evaluate our method on hand-

drawn sketches from the Sketchy database [30] and Tu-

Berlin dataset [7]. Some representative results are shown

in Fig.6. It can be seen that our method can better align the

boundary of the generated mesh with the input sketch, ben-

efit from the view-aware design. Our method balance well

between sketch alignment and shape realism when handling

out-of-distribution shapes, like the airplane on the top left

and the table on the bottom left. Results here are all gen-

erated automatically using predicted viewpoints, and users

should be able to control the output shape by specifying

new viewpoints, like is illustrated in Sec.4.3. This makes

our method more flexible and practical than existing view-

agnostic methods.

5. Conclusion

We investigate the problem of generating 3D mesh from

a single free-hand sketch, aiming for fast content generation

for novice users. A view-aware architecture is proposed, to

condition the generation process explicitly on viewpoints,

which improves generation quality and brings controllabil-

ity to the output shape. Our method can generate promising

shapes on several free-hand sketch datasets, well balancing

user intentions and shape qualities, especially for poorly-

drawn sketches. We hope the view-aware paradigm can

inspire further researches in single view 3D reconstruction

and sketch-related areas.

Acknowledgements. We thank all reviewers for their

thoughtful comments. This work was supported by the

National Key Technology R&D Program (Project Number

2017YFB1002604), the National Natural Science Founda-

tion of China (Project Numbers 61772298, 61521002), Re-

search Grant of Beijing Higher Institution Engineering Re-

search Center, and Tsinghua–Tencent Joint Laboratory for

Internet Innovation Technology.

6019



References

[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015.

[2] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming

Ouhyoung. On visual similarity based 3d model retrieval. In

Computer graphics forum, volume 22, pages 223–232. Wi-

ley Online Library, 2003.

[3] Zhiqin Chen and Hao Zhang. Learning implicit fields for

generative shape modeling. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

5939–5948, 2019.

[4] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin

Chen, and Silvio Savarese. 3d-r2n2: A unified approach for

single and multi-view 3d object reconstruction. In European

conference on computer vision, pages 628–644. Springer,

2016.

[5] Johanna Delanoy, Mathieu Aubry, Phillip Isola, Alexei A

Efros, and Adrien Bousseau. 3d sketching using multi-view

deep volumetric prediction. Proceedings of the ACM on

Computer Graphics and Interactive Techniques, 1(1):1–22,

2018.

[6] Congyue Deng, Jiahui Huang, and Yong-Liang Yang. Inter-

active modeling of lofted shapes from a single image. Com-

putational Visual Media, pages 1–11, 2019.

[7] Mathias Eitz, James Hays, and Marc Alexa. How do hu-

mans sketch objects? ACM Transactions on graphics (TOG),

31(4):1–10, 2012.

[8] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set

generation network for 3d object reconstruction from a single

image. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 605–613, 2017.

[9] Thomas Funkhouser, Patrick Min, Michael Kazhdan, Joyce

Chen, Alex Halderman, David Dobkin, and David Jacobs. A

search engine for 3d models. ACM Transactions on Graphics

(TOG), 22(1):83–105, 2003.

[10] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Ab-

hinav Gupta. Learning a predictable and generative vector

representation for objects. In European Conference on Com-

puter Vision, pages 484–499. Springer, 2016.

[11] Xiaoguang Han, Chang Gao, and Yizhou Yu. Deeps-

ketch2face: a deep learning based sketching system for 3d

face and caricature modeling. ACM Transactions on graph-

ics (TOG), 36(4):1–12, 2017.

[12] Zhizhong Han, Baorui Ma, Yu-Shen Liu, and Matthias

Zwicker. Reconstructing 3d shapes from multiple sketches

using direct shape optimization. IEEE Transactions on Im-

age Processing, 29:8721–8734, 2020.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[14] Berthold KP Horn. Shape from shading: A method for ob-

taining the shape of a smooth opaque object from one view.

1970.

[15] Haibin Huang, Evangelos Kalogerakis, Ersin Yumer, and

Radomir Mech. Shape synthesis from sketches via procedu-

ral models and convolutional networks. IEEE transactions

on visualization and computer graphics, 23(8):2003–2013,

2016.

[16] Qixing Huang, Hai Wang, and Vladlen Koltun. Single-view

reconstruction via joint analysis of image and shape collec-

tions. ACM Transactions on Graphics (TOG), 34(4):1–10,

2015.

[17] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka.

Teddy: a sketching interface for 3d freeform design. In ACM

SIGGRAPH 2006 Courses, pages 11–es. 2006.
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