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Abstract

We present MultiBodySync, a novel, end-to-end train-

able multi-body motion segmentation and rigid registra-

tion framework for multiple input 3D point clouds. The

two non-trivial challenges posed by this multi-scan multi-

body setting that we investigate are: (i) guaranteeing cor-

respondence and segmentation consistency across multi-

ple input point clouds capturing different spatial arrange-

ments of bodies or body parts; and (ii) obtaining ro-

bust motion-based rigid body segmentation applicable to

novel object categories. We propose an approach to ad-

dress these issues that incorporates spectral synchroniza-

tion into an iterative deep declarative network, so as to si-

multaneously recover consistent correspondences as well

as motion segmentation. At the same time, by explicitly

disentangling the correspondence and motion segmenta-

tion estimation modules, we achieve strong generalizabil-

ity across different object categories. Our extensive evalu-

ations demonstrate that our method is effective on various

datasets ranging from rigid parts in articulated objects to

individually moving objects in a 3D scene, be it single-view

or full point clouds. Code at https://github.com/

huangjh-pub/multibody-sync.

1. Introduction

Motion analysis in dynamic point clouds is an emerg-

ing area, required by various applications such as surveil-

lance, autonomous driving, and robotic manipulation. Our

human-made environments are dominated by rigid body

movements, ranging from articulated objects to solids like

furniture or vehicles. These settings require us to address

rigid motions of objects or object parts – which is often

referred to as the multi-body motion estimation problem.

Despite its importance, previous work has mainly focused

on specific scenarios with known category semantics, like

category-level articulated object segmentation [41], indoor

scene instance relocalization [65], or car movement detec-

tion [72], leaving the literature of generic motion segmen-

tation relatively unexplored.

Multi-Body Segmentation 
& Motion Estimation

Input Point Clouds
(Multi-Scan)

Colored Scan
Visualization

Figure 1. MultiBodySync. Given an unordered set of point clouds,

we simultaneously segment individual moving rigid parts/objects

and register them. The transformed point clouds according to the

first scan are aggregated and shown in the middle column. Note

that the algorithm does not use color information and the right

column is shown just for visualization.

Different from traditional single scan analysis algorithms

like semantic segmentation [39], the most challenging part

in multi-body motion analysis is to disambiguate and dis-

tinguish rigid bodies. There, we are naturally required to

jointly process and relate multiple inputs, to effectively find

consistent motion-based part/object segmentations as well

as point correspondences to enable a multi-way registra-

tion. It is even more challenging when the capture is not

temporally dense, i.e., an intermittent acquisition that does

not follow a stream such as a video, and might contain large

pose variations, hampering naive temporal tracking.

In this paper, we introduce a multi-scan multi-body seg-

mentation and motion estimation problem, where the goal

is to simultaneously discover and register rigid bodies from

multiple scans, represented either as full or partial point

clouds, where objects come from unseen categories. As

an effective solution, we present MultiBodySync, a fully

end-to-end trainable deep declarative architecture [23] able

to process an arbitrary number of unordered point sets. As

shown in Fig. 1, given a set of scans, MultiBodySync begins

relating pairs of scans via 3D scene flow [78, 64] and con-
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fidence estimation. Then, the following two differentiable

(permutation and segmentation) synchronization modules,

which are central to our approach, respectively enforce the

consistency of pairwise point correspondences and motion

segmentation labelings across different scans. Our design

explicitly decouples geometry and motion, making Multi-

BodySync generalizable to unseen categories without sac-

rificing robustness.

We evaluate MultiBodySync on various datasets com-

posed of full synthetic point clouds and partial real scans

with articulated and solid objects. We also contribute a new

dataset DynLab with 8 scenes and 64 scan fragments of dis-

tinctly moving objects. Our extensive evaluations demon-

strate that our algorithm outperforms the state-of-the-art by

a large margin on both multi-body motion segmentation and

motion estimation. In brief, our contributions are:

1. We introduce a novel end-to-end trainable architecture

for solving the multi-scan multi-body motion estimation

and segmentation problem.

2. We theoretically analyze the spectral characteristics of

the proposed weighted permutation synchronization.

3. To the best of our knowledge, we showcase the first

cross-category generalization for the task at hand on both

synthetic and real datasets, for both articulated part-level

and object-level regimes.

2. Related Works

Dynamic scene understanding. The modeling of 3D dy-

namic scenes in deep learning literature is often formulated

as a 4D data analysis, as done in seminal works like [43, 19].

Ability to infer spatiotemporal geometric properties has re-

cently motivated research in 3D scene flow as a form of low-

level dynamic scene representation [42, 60, 69, 51, 47, 54,

44]. Domain-specific knowledge can be employed to give

better predictions as done in autonomous driving [29, 5, 72]

or articulated object analysis [77, 68]. The most recent dy-

namic SLAM works [31, 7, 81, 75] also rely heavily on se-

mantic cues. While some works [47, 54] advocates con-

tinuous temporal-dynamics modeling, we instead assume

discrete non-sequential input and enforce consistency us-

ing synchronization. Similarly, [26, 65] propose to perform

instance-level re-localization in a changed scene. Neverthe-

less, we do not assume a pre-segmentation of the scene, but

instead perform joint motion segmentation.

Multi-body motion. Provided point correspondences be-

tween two point clouds/images, rigid-body motion segmen-

tation becomes a multi-model fitting problem, amenable for

factorization techniques [20, 40, 76], clustering [32], graph

optimization [45, 35, 11] or deep learning [38]. Among oth-

ers, [78] handles raw scans and segments the rigidly mov-

ing parts using a Recurrent Neural Network (RNN). [28]

fits non-parametric part models to sequential 3D data with-

out needing explicit correspondences. However, to our best

knowledge, no prior work can handle multiple scans while

enforcing multi-way consistency like we do.

Synchronization. The art of consistently recovering ab-

solute quantities from a collection of ratios is now a ba-

sic component of the classical multi-view/shape analysis

pipelines [56, 14, 15]. Various aspects of the problem have

been vastly studied: different group structures [25, 24, 12,

2, 1, 33, 27, 1, 66, 18, 59, 62, 4, 6], closed-form solu-

tions [4, 2, 1], robustness [17], certifiability [55], global

optimality [13], learning-to-synchronize [34, 50, 22] and

uncertainty quantification [61, 10, 9, 12]. In this work,

we are concerned with synchronizing correspondence sets,

otherwise known as permutation synchronization (PS) [48]

and motion segmentations [3]. PS is rich in the variety of

algorithms: low-rank formulations [80, 67], convex pro-

gramming [30], distributed optimization [30], multi-graph

matching[57] or Riemannian optimization [12]. Out of all

those, we are interested in the spectral methods of [2, 46]

as they provide efficient, closed-form solutions deployable

within a deep declarative network [23] like ours.

To the best of our knowledge, synchronization of corre-

spondences [46] or motion segmentation [3] have not been

explored in the context of deep learning. This is what we

do in this paper to tackle the consistent multi-body motion

estimation and segmentation.

3. Method

Problem setting and notation. Suppose we observe a

set of K point clouds X = {Xk ∈ R
3×N , k ∈ [1,K]}

where each point cloud X
k =

[

xk
1 , ...,x

k
i , ...,x

k
N

]

con-

tains N points in R
3 and sampled from the same object

with S independently moving rigid parts indexed by s. Each

point is assumed to belong to one of the S rigid parts and

we denote the binary point-part association matrices as

G = {Gk ∈ [0, 1]N×S} where Gk
is = 1 if xk

i belongs

to the sth rigid part and Gk
is = 0 otherwise1. The rigid

motions for each part s in each point cloud k is defined as

T = {Tk
s ∈ SE(3), k ∈ [1,K], s ∈ [1, S]}, with the ro-

tational part being R
k
s ∈ SO(3) and the translational part

being t
k
s ∈ R

3. Our final goal is to infer G and T given X .

Summary. The core of our approach is a fully differen-

tiable deep network fusing rigid dynamic information from

multiple 3D scans as outlined in Fig. 2. We begin by

explicitly predicting pairwise soft correspondences across

all pairs of point clouds while enforcing consistency via a

weighted permutation synchronization (§ 3.1). Next, the

point clouds are segmented using a novel motion-based

segmentation network and also further synchronized by a

subsequent motion segmentation synchronization module

(§ 3.2). Finally, the correspondences and segmentations are

1Throughout our paper we use superscript k, l to index point-clouds,

subscript i, j to index points and subscript s to index rigid parts.
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Figure 2. Our pipeline. ① Given multiple input point clouds, we first estimate pairwise scene flows. ② The point correspondences (permu-

tations) computed from the flows are then synchronized in a weighted fashion to enforce consistencies. ③ Pairwise relative segmentations

are subsequently estimated from the flows, and ④ further synchronized to get absolute motion segmentation. The pose of each part can be

recovered by a weighted Kabsch algorithm. Our pipeline is fully differentiable and can be iterated (⑤) to get improved results.

used to recover the 6-DoF transformation for each of the in-

dividual rigid parts. The whole procedure can be iterated to

refine the results. The pipeline can be readily trained end-

to-end and we describe our training procedure in § 3.3.

3.1. Flow Estimation and Synchronization

Our approach starts with point correspondence estima-

tion between all
(

K
2

)

pairs of point clouds. We tackle

this problem by predicting a 3D scene flow F
kl =

[

fkl
1 , ...,fkl

i , ...,fkl
N

]

∈ R
3×N for each point cloud pair in-

dexed by (k, l) using a deep neural network ϕflow(·), i.e.

F
kl = ϕflow(X

k,Xl), so that Xk + F
kl P

= X
l holds up to

a permutation. The architecture of ϕflow inspired by Point

PWC-Net [73] is detailed in the supplementary material.

Flow signals, estimated in a pairwise fashion, are not

informed about the multiview configuration at our dis-

posal. To ensure multi-way consistent flows, we employ

the weighted variant of permutation synchronization [46]

inspired by [22, 34] where a closed-form solution is given

under spectral relaxation. We begin by the observation

that any flow F
kl would induce a soft assignment matrix

P
kl ∈ MN×N based on the nearest-neighbor distances:

P kl
ij =

exp (δklij /τ)
∑N

j=1 exp (δ
kl
ij /τ)

, δklij = ‖xk
i + fkl

i − xl
j‖

2 (1)

where τ is the temperature of the softmax. The multinomial

manifold M of row-stochastic matrices is a continuous re-

laxation of the (partial) permutation group P .

Outlier filtering. To take into account the noise, missing

points, or errors in the network, we further associate a con-

fidence value ckli ∈ R to each point xk
i and its correspond-

ing flow vector fkl
i through another network ϕconf(·) :

R
7×N 7→ R

N inspired from OANet [82]. The input to

this network are the tuples {(xk
i ,x

k
i + fkl

i , argminj δ
kl
ij ) ∈

R
7}Ni=1 and we provide the architectural details in the sup-

plementary. The last dimension of this tuple measures the

quality of the flow vector via the distance between the trans-

formed points and their nearest neighbors, thereby detect-

ing spurious flow predictions. The final wkl in Eq (3) re-

flects the overall quality of the corresponding P
kl. Here

we choose wkl as the average confidence of all points, i.e.,

wkl =
∑N

i=1 c
kl
i /N .

Consistent correspondences. We now use the predic-

tions {Pkl, wkl}(k,l) to achieve multiview consistent as-

signments. To this end, we deploy a differentiable syn-

chronization algorithm inspired by [46]. We first intro-

duce absolute permutation matrices P
k which map each

point in X
k to a universe space and stack them as p =

[. . . , (Pk)⊤, . . . ]⊤. We solve for the best p minimizing:

E(p) =

K
∑

k=1

K
∑

l=1

wkl‖Pk −P
kl
P

l‖2F . (2)

Theorem 1 (Weighted synchronization). The spectral so-

lution to the weighted synchronization problem in Eq (2)

p is given by the N eigenvectors of L corresponding to

the smallest N eigenvalues, where L ∈ R
KN×KN is the

weighted Graph Connection Laplacian (GCL) constructed

by tiling all Pkl matrices weighted by the related wkl:

L =











w1
IN −w12

P
12 . . . −w1K

P
1K

−w21
P

21 w2
IN . . . −w2K

P
2K

...
...

. . .
...

−wK1
P

K1 −wK2
P

K2 . . . wK
IN ,











, (3)

with wk =
∑K

l=1,l 6=k w
kl and IN ∈ R

N×N is the identity.

Proof. Please refer to the supplementary material.

This spectral solution requires only an eigen-

decomposition lending itself to easy differentiation [34, 22].

The synchronized soft correspondence P̂kl is then extracted

as the (k, l)-th N × N block of pp⊤. As a consequence

of the relaxation, we cannot ensure that each sub-matrix

of pp⊤ would be a valid permutation. To preserve

differentiability we avoid Hungarian-like projection opera-

tors [46] and propose to directly compute the induced flow
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Figure 3. Illustration of our motion segmentation network ϕmot.

F̂
kl =

[

..., f̂kl
i , ...

]

using a softmax normalization on the

synchronized soft correspondences:

f̂kl
i =

∑N

j=1 P̄
kl
ij (x

l
j − xk

i )
∑N

j=1 P̄
kl
ij

, P̄ kl
ij = exp (P̂ kl

ij /t). (4)

Intuitively, this amounts to using the normalized synchro-

nized result as a soft-assignment matrix, diminishing the

effect of non-corresponding matches (false positives).

3.2. Motion Segmentation

Based upon the multiview consistent flow output F̂kl,

we now predict the point-part associations G. Since we

are not provided with consistent labeling of the parts, in-

stead of predicting G
k directly, we estimate for all

(

K
2

)

point cloud pairs a relative motion segmentation matrix

ζkl ∈ [0, 1]N×N , where ζklij is 1 when xk
i and xl

j belong

to the same rigid body, and 0 otherwise.

Our motion segmentation network ϕmot(·) : R
12×N 7→

R
N×N illustrated in Fig. 3 takes the point cloud pair Xk, Xl

as well as flow F̂
kl, F̂lk estimated from the last step as input

and outputs the matrix ζkl. It begins with a PointNet++ [53]

predicting a transformation T̃
kl
i for each point in xk

i ∈ X
k2.

The predictions map the part in X
k containing xk

i to X
l.

We then compute a residual matrix βkl ∈ R
3×N×N based

on T̃
kl
i , whose element is:

βkl
ij = (T̃kl

i )−1 ◦ xl
j − (xl

j + f̂ lk
j ), (5)

where ◦ denotes the action of T̃. One can easily verify that

the smaller the norm of the (i, j)-th entry of βkl is, the more

likely that xk
i and xl

j are in the same rigid part. Therefore, it

contains valuable information for deducing the motion seg-

mentation ζkl. We apply N denoising mini-PointNet [52]

ϕmlp(·) to each horizontal 3×N slice of βkl, concatenated

with X
l to get a likelihood score for each pair of points

(xk
i ∈ X

k,xl
j ∈ X

l). The network output ζkl
net is subse-

quently computed by applying a sigmoid on the output:

(ζkl
net)i,: = sigmoid

(

ϕmlp([β
kl
i,:,X

l])
)

. (6)

2In practice, instead of predicting T̃
kl

i
directly, we estimate a residual

motion w.r.t. the already obtained flow vectors similar to the method in

[78]. This procedure is detailed in our supplementary material.

Motion segmentation consistency. Given all pairwise

motion information ζkl, we adopt the method of Arrigoni

and Pajdla [3] to compute an absolute motion segmentation

g ∈ R
KN×S as a stack of matrices in G. Once again, this is

an instance of a synchronization problem, with the stacked

relative and absolute motion segmentation matrices being:

Z =











0 ζ12 . . . ζ1K

ζ21
0 . . . ζ2K

...
...

. . .
...

ζK1 ζK2 . . . 0











, g =











G
1

G
2

...

G
K











, (7)

A spectral approach similar to the one in § 3.1 optimizes

for g so that Z = gg⊤ is best satisfied. Then, g is just the

S leading eigenvectors of Z, scaled by the square root of

its S largest eigenvalues. Here, the point-part association

matrices Gk are relaxed to fuzzy segmentations by allowing

its entries to take real values. As a subsequent step simi-

lar to § 3.1, we replace the projection step with a row-wise

softmax on g to maintain differentiability.

Note that the output ζkl
net of ϕmot is unnormalized, mean-

ing that any submatrix in Z can be written as ζkl = σklζkl
net,

where σ acts as a normalizer. This is akin to encoding

a confidence in the norm of the matrix ζkl
net and requires

us to solve a weighted synchronization. However, as we

prove in the following theorem, such a solution would in-

volve an anisotropic scaling in the eigenvectors as a func-

tion of the number of points belonging to each part. As this

piece of information is not available in runtime, we take an

alternative approach and approximate the scaling factor as

qkl = mean(ζkl
net) and pre-factor it out of ζkl

net, by letting

ζkl = ζkl
net/q

kl. In this way, we ensure that the eigenvectors

yield the synchronized motion segmentation.

Theorem 2. Under mild assumptions, the solution to

the segmentation synchronization problem using a non-

uniformly weighted matrix will result in a proportionally

scaled version of the solution obtained by the eigenvectors

of the unweighted matrix Z.

Proof. Please refer to the supplementary material.

As we show in our supplement, entry k in the decom-

posed eigenvalues is related to the number of points belong-

ing to motion k. To compute the number of rigid bodies S,

i.e., determine how many eigenvectors to use in g, the spec-

trum of Z is analyzed during test time: We estimate S as

the number of eigenvalues that are larger than α-percent of

the sum of the first 10 eigenvalues. For training, we just fix

S = 6 as an over-parametrization.

Pose Computation and Iterative Refinement. We finally

estimate the motion for each part using a weighted Kab-

sch algorithm [37, 22] followed by a joint pose estimation.

During test time we also iterate our pipeline several times to
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gradually refine the correspondence and segmentation esti-

mation by transforming input point clouds according to the

estimated T and adding back the residual flow onto the flow

predicted at the previous iteration. The details are provided

in our supplementary.

3.3. Network Training

We propose to train each learnable component of our

pipeline separately in a pairwise manner and then fine-tune

their parameters using the full pipeline. Specifically, we

first train the flow estimation network ϕflow supervised with

ground-truth flow: Lkl
flow =

∥

∥F
kl − F

kl,gt
∥

∥

2

F
. Given the

trained ϕflow, the confidence estimation network ϕconf is

trained based on its output using a binary cross-entropy

(BCE) loss supervised by comparing whether the error of

the predicted flow is under a certain threshold:

Lkl
conf =

N
∑

i=1

BCE(ckl,gti , ckli ), (8)

with ckl,gti = 1 if we have ‖fkl
i − f

kl,gt
i ‖

2

2 < ǫf and

0 otherwise. The motion segmentation network ϕmot is

trained using joint supervision over the estimated transfor-

mation residual and the final motion segmentation matrix:

Lkl
seg = Lkl

trans + Lkl
group where each term is defined as:

Lkl
trans =

N
∑

i=1

∑N

j=1 I(ζ
kl
ij = 1)

∥

∥βkl
ij

∥

∥

2

2
∑N

j=1 I(ζ
kl
ij = 1)

, (9)

Lkl
group =

N
∑

i=1

N
∑

j=1

BCE(ζkl,gtij , ζklij ). (10)

After we train all the networks (i.e., ϕflow, ϕconf and

ϕmot), the entire pipeline is trained end-to-end with the su-

pervision on both the pariwise flow
∑K

k=1

∑K

l=1 L
kl
flow and

the IoU (Intersection-over-union) loss, defined as:

Liou = argmin
A

S×S
∑

s,s′=1

A(s, s′) · (ggt
:,s)

⊤g:,s′

‖ggt
:,s‖22 + ‖g:,s′‖22 − (ggt

:,s)⊤g:,s′
,

where A is an S × S binary assignment matrix which we

found using the Hungarian algorithm. The flow supervision

is added to both the output of flow network, and the final

pairwise rigid flow computed as fkl
i = T

l
s(T

k
s)

−1◦xi−xi.

4. Experiments

Datasets. Our algorithm is tested on two main datasets:

SAPIEN [74] and DynLab dataset contributed by this work:

SAPIEN consists of realistic simulated articulated models

with part mobility annotated. We ensure that the categories

used for training and validation do not overlap with the test

set, finally leading to 720 articulated objects with 20 dif-

Table 1. Rigid flow estimation on SAPIEN. Table reports mean and

std. dev. (+/-) of the EPE3D over all pairwise flows, with (S) or

w/o (NS) Synchronization and with (W) or w/o (NW) Weighting.

Deep

Part [78]
NPP [28]

Ours

NS, NW S, NW S, W

Mean 5.95 21.22 6.20 6.08 5.03

+/- 3.57 6.29 4.06 3.47 2.00

ferent categories. We then perform K virtual 3D scans of

the models, with each scan capturing the same object with

a different camera (and hence object) pose and object ar-

ticulating state. Later, furthest point sampling is applied to

down-sample the number of points to N . DynLab (Dy-

namic Laboratory) contains 8 different scenes in a labora-

tory, each with 2-3 rigidly moving solid objects from vari-

ous categories. Each of the scenes is captured 8 times, re-

constructed using ElasticFusion [71] and between each cap-

ture, the object positions are randomly changed. The dataset

also contains manual annotations of the object segmentation

mask and rigid absolute transformations. For benchmark-

ing, in each scene we choose different combinations of the

8 captures, leading to a total of 8 ·
(

8
4

)

= 560 dataset items.

We believe the two different scenarios (articulated single

object and moving rigid bodies) reflected in the test sets are

sufficient to verify the robustness and the general applica-

bility of our algorithm.

The training data for articulated objects are generated us-

ing the dataset from [79], containing manually annotated

semantic segmentation of 16 categories. Similar to [78], we

generate K random motions for each connected semantic

part of the shapes. For the training data of solid objects, we

randomly sample independent motions for multiple objects

taken from ShapeNet [16] as if they are floating and rotat-

ing in the air. Please refer to supplementary material for

detailed data specifications and visualizations.

Metrics. Two main metrics are used: (1) EPE3D (End-

Point Error in 3D) of all
(

K
2

)

pairs of point clouds. The

mean and standard deviation (+/-) measures the rigid 3D

flow estimation quality: While the mean reflects an over-

all error in the transformation, the standard deviation shows

how consistent the estimate is among all pairs - a desir-

able property in the multi-scan setting. (2) Segmentation

accuracy assesses the motion segmentation quality. We use

mIoU (mean Intersection-over-Union) and RI (Rand Index)

to score the output based on ‘Multi-Scan’ and ‘Per-Scan’

segmentations. For ‘Multi-Scan’, we evaluate the points

from all K clouds altogether, revealing the consistency of

the labeling across multiple scans. For ‘Per-Scan’, we com-

pute the score for each of the clouds separately and evaluate

the mean and standard deviation across all scans.

Training. ϕflow, ϕmot and ϕconf are trained using Adam

optimizer with initial learning rate of 10−3 and a 0.5/0.7/0.7

decay every 400K iterations for the three networks. The
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PointNet++ MeteorNet DeepPart NPP OursInput Shape

Figure 4. Qualitative results on SAPIEN [74] dataset. On the left-most column, we show reference rendering of the objects we tackle. Each

method span two columns and the point colors show the motion segmentation. For our method, we additionally show the registration result

as the last column, where the darkness of the points shows the point cloud index it comes from.

Table 2. Segmentation Accuracy on SAPIEN Dataset.

Multi-Scan Per-Scan

mIoU RI mIoU RI

PointNet++ [53] 47.5 0.62 51.2±12.1 0.65±0.09

MeteorNet [43] 43.7 0.59 45.7±5.4 0.60±0.03

DeepPart [78] 49.2 0.64 53.0±8.9 0.67±0.06

NPP [28] 48.2 0.63 51.5±6.6 0.66±0.05

Ours (4 iters) 66.7 0.76 67.3±4.3 0.77±0.03

batch sizes are set to 32/8/32, respectively. The entire

pipeline is trained end-to-end using K = 4 point clouds,

with a learning rate of 10−6. The gradient computation for

eigen-decomposition will sometimes lead to numerical in-

stabilities [21], so we roll back that iteration when the gra-

dient norm is large. Our algorithm is implemented using

PyTorch [49] with N = 512, τ = 0.01, ǫf = 0.1. We set

α = 0.05 for articulated objects and α = 0.15 for solid

objects.

4.1. Results on Articulated Objects

Baselines. Given our new multi-scan multi-body setting,

we made adaptations to previous methods and compared to

the following 4 baselines: (1) PointNet++ [53]: We use

the segmentation backbone to directly predict G
k matri-

ces. We aggregate the bottleneck features by taking the

max before feeding it to the individual K feature propaga-

tion modules. (2) MeteorNet [43]: We use the MeteorNet-

seg model proposed to directly predict the segmentations.

Both PointNet++ and MeteorNet are supervised with the

IoU loss (Eq (11)) which counts in the ambiguity of rigid

body labeling. (3) DeepPart [78]: As this method only al-

lows pairwise input, we associate multiple point clouds us-

ing sequential label propagation. (4) NPP (Non-Parametric

Part) [28]: This algorithm does not need training and a grid

search is conveyed for its many tunable parameters.

Flow Accuracy. Tab. 1 shows that despite being based

on [78], our method gives the lowest flow error and variance

across different view pairs. This is thanks to the correspon-

dence consistency among the provided K scans enforced by

our synchronization module. The NPP method suffers from

a surprisingly high flow error mainly because the point-level

correspondence is not explicitly modeled. Note that Point-

Net++ and MeteorNet are excluded because they only out-

put point-wise segmentations.

Segmentation Accuracy. For the segmentation bench-

mark, we achieve a significantly better result than all the

baselines as shown in Tab. 2. Among the baselines, Me-
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Figure 5. Qualitative segmentation results on two articulated se-

quences from [63] (‘Donkey’ and ‘Pipe 3/4’, first two rows) and

[58] (‘Alex’ and ‘Duck’, last two rows).

teorNet fails because it assumes proximity of relevant data

in the given point clouds, which is not robust to SAPIEN

dataset because of change in both object pose and articu-

lated parts. Even though PointNet++ reaches a relatively

high mean score, the standard deviation and Multi-Scan

score show the segmentation is not consistent across dif-

ferent input scans. DeepPart is specially designed for

part-based motion segmentation, but only operates on two-

views, which can cause drastic performance degradation if

the input two-views have a large difference. Also the RNN

they proposed for part segmentation tends to generate short

sequences and most of the shapes are only divided into

two parts. Despite the large error in flow estimation, NPP

behaves reasonably in terms of segmentation. Qualitative

comparisons are visualized in Fig. 4.

One important aspect of our network is that it can gen-

eralize to different objects and motions without re-training.

To qualitatively showcase this, we use two additional dy-

namic RGB-D sequences from [63] and [58]. For each se-

quence, we use four views and back-project the depth map

into point clouds for inference. As shown in Fig. 5, our

model trained on full objects of synthetic SAPIEN dataset,

can generalize to real dynamic depth sequences produc-

ing consistent motion-based segmentation. This is possible

thanks to the property that our network anchors on the mo-

tion and not on the specific geometry.

4.2. Results on Full Objects

In DynLab, each rigid body (i.e. object) is now seman-

tically meaningful, so apart from the 4 baseline methods

from § 4.1, we additionally compare to the following two

alternatives: (5) InstSeg (Instance Segmentation): We take

the state-of-the-art indoor semantic instance module Point-

Group [36] trained on ScanNet dataset to segment for each

input cloud. (6) Geometric: We use the Ward-linkage [70]

to agglomeratively cluster the points in each scan. In order

to obtain consistent segmentation across multiple inputs, we

Table 3. Segmentation Accuracy on DynLab dataset.

Multi-Scan Per-Scan

mIoU RI mIoU RI

PointNet++ [53] 37.2 0.53 39.4±7.1 0.54±0.03

MeteorNet [43] 58.5 0.69 71.8±9.7 0.76±0.06

DeepPart [78] 60.7 0.70 66.3±17.2 0.75±0.13

NPP [28] 65.7 0.74 71.6±7.7 0.78±0.05

Geometric 83.1 0.87 88.6±5.8 0.91±0.04

InstSeg [36] 56.5 0.66 72.4±12.5 0.78±0.09

Ours 90.7 0.95 94.0±3.1 0.96±0.02

Ours Geometric Segm. Instance Segm.

NS

S

Figure 6. Example comparisons to baselines on DynLab. In the

leftmost column we compare the warped point clouds without

(‘NS’) and with (‘S’) synchronization. The right three sub-figures

show the segmentation in different colors. For clarity we exclude

the computed pose for the geometric & InstSeg approaches be-

cause the inaccuracy in segmentation leads to very noisy poses.

associate the segmentations between two different scans us-

ing a Hungarian search over the object assignment matrix,

whose element is the root mean squared error measuring

the fitting quality between any combinations of the object

associations.

Interestingly, as listed in Tab. 3, all the previous deep

methods lead to unsatisfactory results on this dataset. Point-

Net++ and MeteorNet are found to be inaccurate because

by design they associate labels in the level of semantics

(not motion) and no explicit consistencies across scans are

considered. Even though the InstSeg method is trained on

large-scale scene dataset, it is impossible for it to cover all

real-world categories so wrong detections are observed in

some scenes. The geometric approach is less robust in clut-

tered scenes where no obvious geometric cues can be used.

Our method is motion-induced and is hence robust to geo-

metric variations and out-of-distribution semantics, outper-

forming all baselines. A typical failure scenario for these

approaches is visualized in Fig. 6. We show additional qual-

itative results in Fig. 7, demonstrating our ability to accu-

rately segment, associate, and compute correct object trans-

formations even if there are large pose changes.

Tab. 4 shows the rigid flow estimation result against the

baselines. Apart from the influence of wrong per-scan seg-

mentation and cross-scan associations, the iterative closest

point (ICP) [8] method used to register object scans can

also suffer from poor initializations. Our approach not only
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Figure 7. Results on DynLab dataset. Note that we detect and re-

move the ground for all baselines except InstSeg so only the points

on the moving furniture are input. Point colors indicate segmenta-

tion and the bounding boxes show relative transformations.

Table 4. Rigid flow estimation result on DynLab dataset. The num-

bers represent mean and standard deviation (+/-) of the EPE3D

from all pairwise flows. Note the value here does not reflect real-

world metrics because the scales are uniformly normalized.

DeepPart [78] NPP [28] Geometric InstSeg [36] Ours

Mean 16.89 51.14 21.61 46.40 11.01

+/- 11.39 18.38 9.76 20.73 6.65

reaches the lowest mean error, but also respects the motion

consistency across multiple scans.

4.3. Ablation Study and System Analysis

Effect of synchronization. For permutation synchroniza-

tion (§ 3.1), we can directly feed the network-predicted flow

vector F
kl to subsequent steps instead of using synchro-

nized F̂
kl (Ours: NS, NW), or use an unweighted version of

the synchronization by setting all wkl = 1 (Ours: S, NW).

However, as shown quantitatively in Tab. 1, both variants

result in higher flow error due to the failure to find consis-

tent correspondences. Similar results can be observed on

DynLab dataset as demonstrated in the two sub-figures of

Fig. 6, where direct flow prediction failed because the geo-

metric variation is too large between two scans.

Effect of K. Our method can be naturally applied to an

arbitrary number of views K even if we train using 4 views,

because by design the learnable parameters are unaware of

the input counts. As shown in Fig. 9, the segmentation

accuracy improves given more views. This is because the

introduction of additional scans helps build the connection

between existing scans and benefits the ‘co-segmentation’

process.

1    2
3    4

Figure 8. Iterative refinement on SAPIEN dataset. We show trans-

formed and segmented point clouds according to recovered mo-

tions over iterations (shown in the middle).
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Figure 9. Influence of number of iterations (left) and number of

views (right) on the final segmentation accuracy.

Number of iterations. As pointed out in § 3.2, our pipeline

can be run multiple iterations to refine the results and an

example is given in Fig. 8. Shown in Fig. 9, our method

works better with more iterations because we estimate more

accurate flows. Moreover, more iterations are demonstrated

to be unnecessary because previous iterations already lead

to converged results.

Timing. Our experiments are conducted using an Nvidia

GeForce GTX 1080 card. For the input of 4 scans, the run-

ning time of our full model is ∼870ms per iteration. The

entirety of a 4-iteration scheme hence takes ∼3.5s, while

[78] and [28] take 11.5s and 60s resp. in comparison.

5. Conclusion

We presented MultiBodySync, a pipeline for simultane-

ously segmenting and registering multiple dynamic scans

with multiple rigid bodies. We, for the first time, incor-

porated weighted permutation synchronization and motion

segmentation synchronization into a fully-differentiable

pipeline for generating consistent results across all input

point clouds. However, currently MultiBodySync is not

scalable to a large number (like hundreds) of scans or

rigid bodies. Future directions include improvement of the

pipeline’s scalability and robustness in more complicated

and dynamic settings.
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