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Abstract

We present ClusterVO, a stereo Visual Odometry which

simultaneously clusters and estimates the motion of both

ego and surrounding rigid clusters/objects. Unlike previous

solutions relying on batch input or imposing priors on scene

structure or dynamic object models, ClusterVO is online,

general and thus can be used in various scenarios including

indoor scene understanding and autonomous driving. At the

core of our system lies a multi-level probabilistic associa-

tion mechanism and a heterogeneous Conditional Random

Field (CRF) clustering approach combining semantic, spa-

tial and motion information to jointly infer cluster segmen-

tations online for every frame. The poses of camera and dy-

namic objects are instantly solved through a sliding-window

optimization. Our system is evaluated on Oxford Multimo-

tion and KITTI dataset both quantitatively and qualitatively,

reaching comparable results to state-of-the-art solutions on

both odometry and dynamic trajectory recovery.

1. Introduction

Understanding surrounding dynamic objects is an impor-

tant step beyond ego-motion estimation in the current visual

Simultaneous Localization and Mapping (SLAM) commu-

nity for the frontier requirements of advanced Augmented

Reality (AR) or autonomous things navigation: In typical

use cases of Dynamic AR, these dynamics need to be ex-

plicitly tracked to enable interactions of virtual object with

moving instances in the real world. In outdoor autonomous

driving scenes, a car should not only accurately localize it-

self but also reliably sense other moving cars to avoid pos-

sible collisions.

Despite the above need from emerging applications to

perceive scene motions, most classical SLAM systems [4,

19, 20, 28] merely regard dynamics as outliers during
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Cluster

VO
Dynamic ARIndoor Recording

Autonomous 

Driving

Stereo Input with 

Dynamic Objects

On-board Video 

Stream

Static Map + Moving Objects

Recovery
Applications

Figure 1. Our proposed system ClusterVO can simultaneously re-

cover the camera ego-motion as well as cluster trajectories.

pose estimation. Recently, advances in vision and robotics

have demonstrated us with new possibilities of developing

motion-aware Dynamic SLAM systems by coupling var-

ious different vision techniques like detection and track-

ing [5, 32, 36]. Nevertheless, currently these systems are

often tailored for special use cases: For indoor scenes where

dense RGB-D data are available, geometric features includ-

ing convexity or structure regularities are used to assist seg-

mentation [6, 34, 35, 38, 46]. For outdoor scenes, object

priors like car sizes or road planar structure are exploited to

constrain the solution spaces [2, 24, 26, 48]. These different

assumptions render existing algorithms hardly applicable to

general dynamic scenarios. Contrarily, ClusterSLAM [15]

incorporates no scene prior, but it acts as a backend instead

of a full system whose performance relies heavily on the

landmark tracking and association quality.

To bridge the above gap in current Dynamic SLAM so-

lutions in the literature, we propose ClusterVO, a stereo vi-

sual odometry system for dynamic scenes, which simulta-

neously optimizes the poses of camera and multiple moving

objects, regarded as clusters of point landmarks, in a unified

manner, achieving a competitive frame-rate with promis-

ing tracking and segmentation ability as listed in Table 1.

Because no geometric or shape priors on the scene or dy-
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Table 1. Comparison with other dynamic SLAM solutions. �:

Sensor(s) used. ↸: Applicable in indoor scene? ): Applicable

in outdoor driving scenarios? #: Recover poses of moving rigid

bodies? �: Is online? ‘NR’ represents single Non-Rigid body.

� ↸ ) # � FPS

ORB-SLAM2 [28] Multiple X X X 10

DynamicFusion [30] RGB-D X NR X -

MaskFusion [35] RGB-D X X X 30

Li et al. [24] Stereo X X 5.8

DynSLAM [2] Stereo X X X 2

ClusterSLAM [15] Stereo X X X 7

ClusterVO Stereo X X X X 8

namic objects are imposed, our proposed system is general

and adapts to many various applications ranging from au-

tonomous driving, indoor scene perception to augmented

reality development. Our novel strategy is solely based

on sparse landmarks and 2D detections [32]; to make use

of such a lightweight representation, we propose a robust

multi-level probabilistic association technique to efficiently

track both low-level features and high-level detections over

time in the 3D space. Then a highly-efficient heterogeneous

CRF jointly considering semantic bounding boxes, spatial

affinity and motion consistency is applied to discover new

clusters, cluster novel landmarks and refine existing cluster-

ings. Finally, Both static and dynamic parts of the scene are

solved in a sliding-window optimization fashion.

2. Related Works

Dynamic SLAM / Visual Odometry. Traditional SLAM

or VO systems are based on static scene assumption and

dynamic contents need to be carefully handled which would

otherwise lead to severe pose drift. To this end, some sys-

tems explicitly detect motions and filter them either with

motion consistency [8, 19, 20] or object detection mod-

ules [4, 49, 50]. The idea of simultaneously estimating

ego motion and multiple moving rigid objects, same as our

formulation, originated from the seminal SLAMMOT [44]

project. Follow-ups like [6, 34, 35, 38, 46] use RGB-D

as input and reconstruct dense models for the indoor scene

along with moving objects. For better segmentation of ob-

ject identities, [35, 46] combine heavy instance segmenta-

tion module and geometric features. [22, 40, 43] can track

and reconstruct rigid object parts on a predefined articula-

tion template (e.g. human hands or kinematic structures).

[9, 31] couple existing visual-inertial system with moving

objects tracked using markers. Many other methods are spe-

cially designed for road scenes by exploiting modern vision

modules [3, 24, 26, 27, 29, 45]. Among them, [24] pro-

poses a batch optimization to accurately track the motions

of moving vehicles but a real-time solution is not presented.

Different from ClusterSLAM [15], which is based on

motion affinity matrices for hierarchical clustering and

SLAM, this work focuses on developing a relatively light-

weight visual odometry, and faces challenges from real-

time clustering and state estimation.

Object Detection and Pose Estimation. With the recent

advances in deep learning technologies, the performance of

2D object detection and tracking have been boosted [5, 12,

14, 25, 32, 36]. Detection and tracking in 3D space from

video sequences is a relatively unexplored area due to the

difficulty in the 6-DoF (six degrees of freedom) pose esti-

mation. In order to accurately estimate 3D positions and

poses, many methods [13, 23] leverages a predefined ob-

ject template or priors to jointly infer object depth and ro-

tations. In ClusterVO, the combination of low-level geo-

metric feature descriptors and semantic detections inferred

simultaneously in the localization and mapping process can

provide additional cues for efficient tracking and accurate

object pose estimation.

3. ClusterVO

ClusterVO takes synchronized and calibrated stereo im-

ages as input, and outputs camera and object pose for each

frame. For each incoming frame, semantic bounding boxes

are detected using YOLO object detection network [32],

and ORB features [33] are extracted and matched across

stereo images. We first associate detected bounding boxes

and extracted features to previously found clusters and land-

marks, respectively, through a multi-level probabilistic as-

sociation formulation (Sec. 3.1). Then, we perform hetero-

geneous conditional random field (CRF) over all features

with associated map landmarks to determine the cluster seg-

mentation for current frame (Sec. 3.2). Finally, the state es-

timation step optimizes all the states over a sliding window

with marginalization and a smooth motion prior (Sec. 3.3).

The pipeline is illustrated in Figure 2.

Notations. At frame t, ClusterVO outputs: the pose of the

camera Pc
t in the global reference frame, the state of all

clusters (rigid bodies) {xq
t }q, and the state of all landmarks

xL
t . The q-th cluster state x

q
t = (Pq

t ,v
q
t ) contains current

6-DoF pose P
q
t ∈ SE(3) and current linear speed in 3D

space v
q
t ∈ R

3. Specially we use q = 0 to denote the static

scene for convenience. Hence ∀t,P0
t ≡ I,v0

t ≡ 0. As

a short hand, we denote the transformation from coordinate

frame a to frame b as Tab
t := (Pa

t )
−1Pb

t . For the landmark

state xL
t = {(pi

t,q
i, wi)}i, each landmark i has the prop-

erty of its global position pi
t ∈ R

3, the cluster assignment qi

and its confidence wi ∈ N
+ defining the cluster assignment

confidence. For observations, we denote the location of the

k-th low-level ORB stereo feature extracted at frame t as

zk
t = (uL, vL, uR) ∈ R

3, and the m-th high-level seman-

tic bounding box detected at frame t as Bm
t . Assuming the

feature observation zk
t is subject to a Gaussian noise with

covariance zΣ, the noise of the triangulated points Zi
t in

camera space can be calculated as ZΣ
i
t = Jπ−1(zΣ)J

⊤
π−1 ,
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Figure 2. Pipeline of ClusterVO. ① For each incoming stereo frame ORB features and semantic bounding boxes are extracted. ② We apply

multi-level probabilistic association to associate features with landmarks and bounding boxes with existing clusters. ③ Then we cluster

the landmarks observed in the current frame into different rigid bodies using the Heterogeneous CRF module. ④ The state-estimation is

performed in a sliding window manner with specially designed keyframe mechanism. Optimized states are used to update the static maps

and clusters.

where π is the stereo projection function, π−1 is the cor-

responding back-projection function and Jf is the Jacobian

matrix of function f .

For generality, we do not introduce a category-specific

canonical frame for each cluster. Instead, we initialize the

cluster pose P
q
t with the center and the three principal or-

thogonal directions of the landmark point clouds belonging

to the cluster as the translational and rotational part respec-

tively and track the relative pose ever since.

3.1. Multilevel Probabilistic Association

For the landmarks on static map (i.e. qi = 0), the fea-

tures can be robustly associated by nearest neighbour search

and descriptor matching [28]. However, tracking dynamic

landmarks which move fast on the image space is not a

trivial task. Moreover, we need to associate each detected

bounding box Bm
t to an existing map cluster if possible,

which is required in the succeeding Heterogeneous CRF

module.

To this end, we propose a multi-level probabilistic asso-

ciation scheme for dynamic landmarks (i.e. qi 6= 0), as-

signing low-level feature observation zk
t to its source land-

mark id k → i and high-level bounding box Bm
t to a clus-

ter m → q. The essence of the probabilistic approach is

to model the position of a landmark by a Gaussian distri-

bution with mean pi
t and covariance Σi

t and consider the

uncertainty throughout the matching.

Ideally, Σi
t should be extracted from the system infor-

mation matrix from the last state estimation step, but the

computation burden is heavy. We hence approximate Σi
t as

transformed
Z
Σi

t′<t with the smallest determinant, i.e.:

Σi
t := Rc

t′ ZΣ
i
t′R

c
t′
⊤, t′ := argmin

t′<t

|ZΣ
i
t′ |, (1)

which can be incrementally updated. Rc
t is the rotational

part of Pc
t .

For each new frame, we perform motion prediction for

each cluster using v
q
t . The predicted 3D landmark posi-

tions as well as its noise covariance matrix are re-projected

back into the current frame using ζi
t = π(pi

t + v
q
t ),Γ

i
t =

JπΣ
i
tJ

⊤
π . The probability score of assigning the k-th obser-

vation to landmark i becomes:

pi(k) ∝
[

‖ζi
t − zk

t ‖
2
Γi

t

< γ
]

· sik, (2)

where [·] is an indicator function, sik is the descriptor simi-

larity between landmark i and observation zk
t and γ = 4.0

in our experiments. For each observation k, we choose

its corresponding landmark i with the highest assignment

probability score: k → argmaxi pi(k) if possible. In prac-

tice, Eq. 2 is only evaluated on a small neighbourhood of

zk
t .

We further measure the uncertainty of the association

m → q := argmaxq′ pq′(m) by calculating the Shannon

cross-entropy Eq
t as:

Eq
t := −

∑

m

pq(m) log pq(m),

pq(m) ∝
∑

ζk

t
∈Bm

t

(1/|Γi
t|),

(3)

where pq(m) is the probability of assigning the m-th

bounding box to cluster q. If Eq
t is smaller than 1.0, we

consider this as a successful high-level association, in which

case we perform additional brute force low-level feature de-

scriptor matching within the bounding box to find more fea-

ture correspondences.
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3.2. Heterogeneous CRF for Cluster Assignment

In this step, we determine the cluster assignment qi of

each landmark i observed in the current frame. A condi-

tional random field model combining semantic, spatial and

motion information, which we call ‘heterogeneous CRF’, is

applied, minimizing the following energy:

E({qi}i) :=
∑

i

ψu(q
i) + α

∑

i<j

ψp(q
i,qj), (4)

which is a weighted sum (α > 0 being the balance factor)

of unary energy ψu and pairwise energy ψp on a complete

graph of all the observed landmarks. The total number of

classes for CRF is set toM = N1+N2+1, whereN1 is the

number of live clusters, N2 is the number of unassociated

bounding boxes in this frame and the trailing 1 allows for

an outlier class. A cluster is considered live if at least one

of its landmarks is observed during the past L frames.

Unary Energy. The unary energy decides the probability

of the observed landmark i belonging to a specific cluster

qi and contains three sources of information:

ψu(q
i) ∝ p2D(q

i) · p3D(q
i) · pmot(q

i). (5)

The first multiplier p2D incorporates information from

the detected semantic bounding boxes. The probability

should be large if the landmark lies within a bounding box.

Let Ci
t be the set of cluster indices corresponding to the

bounding boxes where the observation of landmark zi
t re-

sides and η be a constant for the detection confidence, then:

p2D(q
i) ∝

{

η/|Ci
t| qi ∈ Ci

t

(1− η)/(M − |Ci
t|) qi /∈ Ci

t

. (6)

The second multiplier p3D emphasizes the spatial affinity

by assigning a high probability to the landmarks near the

center of a cluster:

p3D(q
i) ∝ exp

(

−‖Zi
t − cqi‖2

Z
Σi

t

/l2qi

)

, (7)

where cqi and lqi are the cluster center and dimension, re-

spectively, determined by the center and the 30th/70th per-

centiles (found empirically) of the cluster landmark point

cloud.

The third multiplier defines how the trajectories of clus-

ter qi over a set of timesteps T can explain the observation:

pmot(q
i) ∝

∏

t′∈T

exp(−‖zi
t′ − π(Tcqi

t′ (Pqi

t )−1pi
t)‖

2
z
Σ)

√

|zΣ|
,

(8)

which is a simple reprojection error w.r.t. the observations.

In our implementation we set T = {t − 5, t}. For the first

5 frames this term is not included in Eq. 5.

The single 2D term only considers the 2D semantic de-

tection, which possibly contains many outliers around the

edge of the bounding box. By adding the 3D term, land-

marks belonging to faraway background get pruned. How-

ever, features close to the 3D boundary, e.g., on the ground

nearby a moving vehicle, still have a high probability be-

longing to the cluster, whose confidence is further refined

by the motion term. Please refer to Sec. 4.4 for evaluations

and visual comparisons on these three terms.

Pairwise Energy. The pairwise energy is defined as:

ψp(q
i,qj) := [qi 6= qj ] · exp(−‖pi

t − p
j
t‖

2), (9)

where the term inside the exponential operator is the dis-

tance between two landmarks pi
t,p

j
t in 3D space. The

pairwise energy can be viewed as a noise-aware Gaussian

smoothing kernel to encourage spatial labeling continuity.

We use an efficient dense CRF inference method [21]

to solve for the energy minimization problem. After suc-

cessful inference, we perform Kuhn-Munkres algorithm to

match current CRF clustering results with previous cluster

assignments. New clusters are created if no proper cluster

assignment is found for an inferred label. We then update

the weight wi for each landmark according to a strategy in-

troduced in [41] and change its cluster assignment if nec-

essary: When the newly assigned cluster is the same as the

landmark’s previous cluster, we increase the weight wi by

1, otherwise the weight is decreased by 1. When wi is de-

creased to 0, a change in cluster assignment is triggered to

accept the currently assigned cluster.

3.3. SlidingWindow State Estimation

Double-Track Frame Management. Keyframe-based

SLAM systems like ORB-SLAM2 [28] select keyframes

by the spatial distance between frames and the number of

commonly visible features among frames. For ClusterVO

where the trajectory of each cluster is incorporated into the

state estimation process, the aforementioned strategy for

keyframe selection is not enough to capture the relatively

fast-moving clusters.

Instead of the chunk strategy proposed in Cluster-

SLAM [15], we employ a sliding window optimization

scheme in accordance with a novel double-track frame man-

agement design (Figure 3). The frames maintained and op-

timized by the system are divided into two sequential tracks:

a temporal track Tt and a spatial track Ts. Tt contains the

most recent input frames. Whenever a new frame comes,

the oldest frame in Tt will be moved out. If this frame

is spatially far away enough from the first frame in Ts or

the number of commonly visible landmarks is sufficiently

small, this frame will be appended to the tail of Ts, other-

wise it will be discarded. This design has several advan-

tages. First, frames in the temporal track record all recent

observations and hence allow for enough observations to
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Figure 3. Frame Management in ClusterVO. Frames maintained

by the system consist of spatial track (red) and temporal track

(green). When a new frame comes, the oldest frame in the tem-

poral track (Temporal Tail) will either be discarded or promoted

into the spatial track. The last spatial frame is to be marginalized

if the total number of spatial frames exceeds a given threshold.

track a fast-moving cluster. Second, previous wrongly clus-

tered landmarks can be later corrected and re-optimization

based on new assignments is made possible. Third, features

detected in the spatial track help create enough parallax for

accurate landmark triangulation and state estimation.

For static scene q = 0 and camera pose, the energy func-

tion for optimization is a standard Bundle Adjustment [42]

augmented with an additional marginalization term:

E({xc
t ,x

L
t }t∈Ta

) :=
∑

i∈I0,t∈Ta

ρ(‖zi
t − π((Pc

t)
−1pi

t)‖
2
z
Σ)

+
∑

t∈Ta

‖δxc
t −H−1β‖2H,

(10)

where Ta := Ts ∪ Tt, Iq = {i|qi = q} indicates all land-

marks belonging to cluster q and ρ(·) is robust Huber M-

estimator. As the static scene involves a large number of

variables and simply dropping these variables out of the

sliding window will cause information loss, leading to pos-

sible drifts, we marginalize some variables which would

otherwise be removed and summarize the influence to the

system with the marginalization term in Eq. 10. Marginal-

ization is only performed when a frame is discarded from

the spatial track Ts. To restrict dense fill-in of landmark

blocks in the information matrix, the observations from the

frame to be removed will be either deleted if the correspond-

ing landmark is observed by the newest frame or marginal-

ized otherwise. This marginalization strategy only adds

dense Hessian block onto the frames instead of landmarks,

making the system still solvable in real-time.

More specifically, in the marginalization term, δx is

the state change relative to the critical state x∗ captured

when marginalization happens. For the computation of

H and β, we employ the standard Schur Complement:

H = Λaa−ΛabΛ
−1
bb Λba,β = ba−ΛabΛ

−1
bb bb, where Λ(·)

and b(·) are components of the system information matrix

Λ and information vector b extracted by linearizing around

x∗:

Λ =

[

Λaa Λab

Λba Λbb

]

, b =

[

ba
bb

]

. (11)

For dynamic clusters q 6= 0, the motions are modeled us-

ing a white-noise-on-acceleration prior [1], which can be

written in the following form in continuous time t, t′ ∈ R:

ẗq(t) ∼ GP(0,Qδ(t− t′)), (12)

where tq is the translational part of the continuous cluster

pose Pq (hence ẗq is the cluster acceleration), GP stands

for the Gaussian Process, and Q denotes its power spec-

tral matrix. We define the energy function for optimizing

the q-th cluster trajectories and its corresponding landmark

positions as follows:

E({xq
t ,x

L
t }t∈Tt

) :=
∑

t,t+∈Tt

∥

∥

∥

∥

[

ti
t+

vi
t+

]

−A

[

tit
vi
t

]∥

∥

∥

∥

2

Q̂

+
∑

i∈Iq,t∈Tt

ρ(‖zi
t − π(Tcqi

t (Pc
t )

−1pi
t)‖

2
z
Σ),

(13)

in which

A :=

[

I ∆tI
0 I

]

, Q̂−1 :=

[

12/∆t3 −6/∆t2

−6/∆t2 4/∆t

]

⊗Q−1,

(14)

where ⊗ is the Kronecker product and ∆t = t+ − t, t+

being the next adjacent timestamp of frame t. Eq. 13 is

the sum of motion prior term and reprojection term. The

motion prior term is obtained by querying the random pro-

cess model of Eq. 12, which intuitively penalizes the change

in velocity over time and smooths cluster motion trajectory

which would otherwise be noisy due to fewer features on

clusters than static scenes. Note that different from the en-

ergy term for the static scene which optimizes over both Ts
and Tt, for dynamic clusters only Tt is considered.

During the optimization of cluster state, the camera state

xc
t stays unchanged. The optimization process for each

cluster can be easily paralleled because their states are mu-

tually independent (in practice the system speed is 8.5Hz &

7.8Hz for 2 & 6 clusters, resp.).

4. Experiments

4.1. Datasets and Parameter Setup

The effectiveness and general applicability of ClusterVO

system is mainly demonstrated in two scenarios: indoor

scenes with moving objects and autonomous driving with

moving vehicles.

For indoor scenes, we employ the stereo Oxford Mul-

timotion dataset (OMD) [17] for evaluation. This dataset

is specially designed for indoor simultaneous camera lo-

calization and rigid body motion estimation, with the

ground-truth trajectories recovered using a motion cap-

ture system. Evaluations and comparisons are performed

on two sequences: swinging 4 unconstrained (S4,
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500 frames, with four moving bodies: S4-C1, S4-C2, S4-

C3, S4-C4) and occlusion 2 unconstrained (O2,

300 frames, with two moving bodies: O2-Tower and O2-

Block), because these are the only sequences with baseline

results reported in sequential works from Judd et al. [18, 16]

named ‘MVO’.

For autonomous driving cases, we employ the challeng-

ing KITTI dataset [10] for demonstration. As most of

the sequences in the odometry benchmark have low dy-

namics and comparisons on these data can hardly lead to

sensible improvements over other SLAM solutions (e.g.

ORB-SLAM), similar to Li et al. [24], we demonstrate

the strength of our method in selected sequences from the

raw dataset as well as the full 21 tracking training se-

quences with many moving cars. The ground-truth camera

ego-motion is obtained from the OxTS packets (combining

GNSS and inertial navigation) provided by the dataset.

The CRF weight is set to α = 5.0 and the 2D unary

energy constant η = 0.95. The power spectral matrix

Q = 0.01I for the motion prior. The maximum sizes of

the double-track are set to |Ts| = 5 and |Tt| = 15. The

threshold for determining whether the cluster is still live is

set to L = |Tt|. All of the experiments are conducted on an

Intel Core i7-8700K, 32GB RAM desktop computer with

an Nvidia GTX 1080 GPU.

4.2. Indoor Scene Evaluations

We follow the same evaluation protocol as in [18], by

computing the maximum drift (deviation from ground-truth

pose) across the whole sequence in translation and rotation

(represented in three Euler angles, namely roll, yaw and

pitch) for camera ego-motion as well as for all moving clus-

ter trajectories. As our method does not define a canonical

frame for detected clusters, we need to register the pose re-

covered by our method with the ground-truth trajectory. To

this end, we multiply our recovered pose with a rigid trans-

formation Tr which minimizes the sum of the difference

between P
q
t Tr and the ground-truth pose for all t. This is

based on the assumption that the local coordinates of the re-

covered landmarks can be registered with the positions of

ground-truth landmarks using this rigid transformation.

For the semantic bounding box extraction, the YOLOv3

network [32] is re-trained to detect an additional class

named ‘block’ representing the swinging or rotating blocks

in the dataset. The detections used for training are labeled

using a combined approach with human annotations and a

median flow tracker on the rest frames from S4 and O2.

Figure 4 shows the ratio of decrease in the drift com-

pared with the baseline MVO [18, 16]. More than half

of the trajectory estimation results improve by over 25%,

leading to accurate camera ego-motion and cluster motion

recoveries. Two main advantages of ClusterVO over MVO

have made the improvement possible: First, the pipeline in

S4-E
go

S4-C
1

S4-C
2

S4-C
3

S4-C
4

O2-
Ego

O2-
Tow

er

O2-
Bloc

k

Translation

Roll

Yaw

Pitch

0.33 0.34 0.3 0.46 0.21 0.23 0.61 0.66

0.27 0.79 0.082 -0.23 -1.6 0.71 0.27 0.48

0.19 0.07 -0.12 0.094 -3.1 0.93 0.63 0.74

-1.8 0.094 0.32 -0.36 -0.88 0.72 0.75 0.39 0.8

0.4

0.0

0.4

0.8

Figure 4. Performance comparison with MVO on S4 and O2 se-

quence in Oxford Multimotion [17] dataset. The numbers in the

heatmap show the ratio of decrease in error using ClusterVO for

different trajectories and measurements.

(a) Before Occlusion (b) During Occlusion (c) Completed Trajectory

Figure 5. Qualitative results in OMD Sequence O2. The three sub-

figures demonstrate an occlusion handling process by ClusterVO.

(a)

(b)

Figure 6. Other indoor qualitative results. (a) OMD Sequence S4;

(b) A laboratory scene where two bottles are reordered.

MVO requires a stable tracking of features in each input

batch of ∼50 frames and this keeps only a small subset of

landmarks where the influence of noise becomes more dom-

inating, while ClusterVO maintains consistent landmarks

for each individual cluster and associates both low-level and

high-level information to maximize the utility of historical

information. Second, if the motion in a local window is

small, the geometric-based method will tend to misclassify

dynamic landmarks and degrade the recovered pose results;

ClusterVO, however, leverages additional semantic and spa-

tial information to achieve more accurate and meaningful

classification and estimation.

Meanwhile, the robust association strategy and double-

track frame management design allow ClusterVO to contin-
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Table 2. Camera ego-motion comparison with state-of-the-art systems on KITTI raw dataset. The unit of ATE and T.RPE is meters and the

unit for R.RPE is radians.

Sequence
ORB-SLAM2 [28] DynSLAM [2] Li et al. [24] ClusterSLAM [15] ClusterVO

ATE R.RPE T.RPE ATE R.RPE T.RPE ATE ATE R.RPE T.RPE ATE R.RPE T.RPE

0926-0009 0.91 0.01 1.89 7.51 0.06 2.17 1.14 0.92 0.03 2.34 0.79 0.03 2.98

0926-0013 0.30 0.01 0.94 1.97 0.04 1.41 0.35 2.12 0.07 5.50 0.26 0.01 1.16

0926-0014 0.56 0.01 1.15 5.98 0.09 2.73 0.51 0.81 0.03 2.24 0.48 0.01 1.04

0926-0051 0.37 0.00 1.10 10.95 0.10 1.65 0.76 1.19 0.03 1.44 0.81 0.02 2.74

0926-0101 3.42 0.03 14.27 10.24 0.13 12.29 5.30 4.02 0.02 12.43 3.18 0.02 12.78

0929-0004 0.44 0.01 1.22 2.59 0.02 2.03 0.40 1.12 0.02 2.78 0.40 0.02 1.77

1003-0047 18.87 0.05 28.32 9.31 0.05 6.58 1.03 10.21 0.06 8.94 4.79 0.05 6.54

uously track cluster motion even it is temporarily occluded.

This feature is demonstrated in figure 5 on the O2 sequence

where the block is occluded by the tower for ∼10 frames.

The cluster’s motion is predicted during the occlusion and

finally the prediction is probabilistically associated with the

re-detected semantic bounding box of the block. The state

estimation module is then relaunched to recover the motion

using the information both before and after the occlusion.

Figure 6(a) shows qualitative results on the S4 sequence

and in Figure 6(b) another result from a practical indoor

laboratorial scene with two moving bottles recorded using a

Mynteye stereo camera is shown.

4.3. KITTI Driving Evaluations

Similar to Li et al. [24], we divide the quantitative evalu-

ation into ego-motion comparisons and 3D object detection

comparisons. Our results are compared to state-of-the-art

systems including ORB-SLAM2 [28], DynSLAM [2], Li et

al. [24] and ClusterSLAM [15] using the TUM metrics [39].

These metrics evaluate ATE, R.RPE and T.RPE, which are

short for the Root Mean Square Error (RMSE) of the Abso-

lute Trajectory Error, the Rotational and Translational Rel-

ative Pose Error, respectively.

As shown in Table 2, for most of the sequences we

achieve the best results in terms of ATE, meaning that our

method can maintain globally correct camera trajectories

in challenging scenes (e.g. 1003-0047) where even ORB-

SLAM2 fails due to its static scene assumption. Although

DynSLAM maintains a dense mapping of both the static

scenes and dynamic objects, the underlying sparse scene

flow estimation is based on a frame-to-frame visual odom-

etry libviso [11], which will inherently lead to remarkable

drift over long travel distances. The batch Multibody SfM

formulation of Li et al. results in a highly nonlinear fac-

tor graph optimization problem whose solution is not triv-

ial. ClusterSLAM [15] requires associated landmarks and

the inaccurate feature tracking frontend affects the localiza-

tion performance even if the states are solved via full op-

timization. In contrast, our ClusterVO achieves compara-

ble or even better results than all previous methods due to

the fusing of multiple sources of information and the robust

sliding-window optimization.

The cluster trajectories are evaluated in 3D object de-

Table 3. 3D object detection comparison on KITTI dataset.

APbv AP3D Time

(ms)Easy Moderate Hard Easy Moderate Hard

Chen et al. [7] 81.34 70.70 66.32 80.62 70.01 65.76 1200

DynSLAM [2] 71.83 47.16 40.30 64.51 43.70 37.66 500

ClusterVO 74.65 49.65 42.65 55.85 38.93 33.55 125

tection benchmark in KITTI tracking dataset. We compute

the Average Precision (AP) of the ‘car’ class in both bird

view (APbv) and 3D view (AP3D). Our detected 3D box

center is cq (in Eq. 7) and the dimension is taken as the

average car size. The box orientation is initialized to be

vertical to the camera and tracked over time later on. The

detection is counted as a true positive if the Intersection

over Union (IoU) score with an associated ground-truth de-

tection is larger than 0.25. All ground-truth 3D detections

are divided into three categories (Easy, Moderate and Hard)

based on the height of 2D reprojected bounding box and the

occlusion/truncation level.

We compare the performance of our method with the

state-of-the-art 3D object detection solution from Chen et

al. [7] and DynSLAM [2]. The evaluation is performed in

camera coordinate system so the inaccuracies in ego-motion

estimations are eliminated.

The methods of Chen et al. and DynSLAM are similar in

that they both perform a dense stereo matching (e.g. [47])

to precompute the 3D structure. While DynSLAM crops

the depth map using 2D detections to generate spatial de-

tections, Chen et al. generates and scores object propos-

als directly in 3D space incorporating many scene priors in

autonomous driving scenarios including the ground plane

and car dimension prior. These priors are justified to be

critical comparing the results in Table 3: DynSLAM wit-

nesses a sharp decrease in both Moderate and Hard cate-

gories which contain faraway cars and small 2D detection

bounding boxes.

In the case of ClusterVO, which is designed to be

general-purpose, the natural uncertainty of stereo triangu-

lation becomes larger when the landmark becomes distant

from the camera without object size priors. Also, we do not

detect the canonical direction (i.e., the front of the car) of

the cluster if its motion is small, so the orientation can be

imprecise as well. This explains the gap in detecting hard
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KITTI-0926-0015 KITTI-0926-0013

KITTI-1003-0047

KITTI-0929-0004 KITTI-0926-0009

KITTI-0926-0101

Figure 7. Qualitative results on KITTI raw dataset. The image

below each sequence shows the input image and detections of the

most recent frame.

examples between ours and a specialized system like [7].

Compared to DynSLAM, the average precision improves

because ClusterVO is able to track the moving object over

time consistently and predicts their motions even if the 2D

detection network misses some targets. Additionally, we

emphasize the high efficiency of ClusterVO system by com-

paring the time cost in Table 1 while the work of Chen et al.

requires 1.2 seconds for each stereo input pair.

Some qualitative results of KITTI raw dataset are shown

in Figure 7. We refer our readers to the supplementary video

for animated results.

4.4. Ablation study

We test the importance of each probabilistic term in our

Heterogeneous CRF formulation (Eq. 5) using synthesized

motion dataset rendered from SUNCG [37]. Following the

same stereo camera parameter as in [15], we generate 4 in-

door sequences with moving chairs and balls, and compare

the accuracies of ego motion and cluster motions in Table 4.

By gradually adding different terms of Eq. 5 into the

system, our performance on estimating cluster motions im-

proves especially in terms of absolute trajectory error (de-

creases by 45.8% compared to 2D only CRF) while the ac-

Table 4. Ablation comparisons on SUNCG dataset in terms of ego-

motion and cluster trajectories.
Ego Motion⋆ Cluster Motion

ATE R./T.RPE ATE R./T.RPE

ORB-SLAM2 [28] 0.35 0.14/0.59 - -

DynSLAM [2] 54.07 11.07/49.24 0.26 1.23/0.59

ClusterSLAM [15] 1.34 0.41/1.89 0.17 0.34/0.30

ClusterVO 2D 0.62 0.19/0.95 0.24 0.31/0.53

ClusterVO 2D+3D 0.52 0.11/0.87 0.15 0.50/0.53

ClusterVO Full 0.61 0.19/0.91 0.13 0.37/0.36
⋆ Values are multiplied by 100.

(a) (b) (c)

Figure 8. Unary term visualizations on one indoor sequence from

SUNCG dataset. (a) ClusterVO 2D; (b) ClusterVO 2D+3D; (c)

ClusterVO Full.

curacy of ego motion is not affected. This is due to the more

accurate moving object clustering combining both geomet-

ric and semantic cues. It should be noted that our results

are even comparable to the most recent ClusterSLAM [15],

a backend method with full batched Bundle Adjustment op-

timization: This shows that incorporating semantic infor-

mation into the motion detection problem helps effectively

regularize the solution and achieves more consistent trajec-

tory estimation. Figure 8 visualizes this effect further by

computing the classification result based only on the unary

term ψu. Some mis-classified landmarks are successfully

filtered out by incorporating more information.

5. Conclusion

In this paper we present ClusterVO, a general-purpose

fast stereo visual odometry for simultaneous moving rigid

body clustering and motion estimation. Comparable results

to state-of-the-art solutions on both camera ego-motion and

dynamic objects pose estimation demonstrate the effective-

ness of our system. In the future, one direction would be to

incorporate specific scene priors as pluggable components

to improve ClusterVO performance on specialized applica-

tions (e.g. autonomous driving); another direction is to fuse

information from multiple sensors to further improve local-

ization accuracy.
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