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Abstract

Supervoxels are perceptually meaningful atomic regions

in videos, obtained by grouping voxels that exhibit co-

herence in both appearance and motion. In this paper,

we propose content-sensitive supervoxels (CSS), which are

regularly-shaped 3D primitive volumes that possess the fol-

lowing characteristic: they are typically larger and longer

in content-sparse regions (i.e., with homogeneous appear-

ance and motion), and smaller and shorter in content-dense

regions (i.e., with high variation of appearance and/or

motion). To compute CSS, we map a video Ξ to a 3-

dimensional manifold M embedded in R
6, whose volume

elements give a good measure of the content density in Ξ.

We propose an efficient Lloyd-like method with a splitting-

merging scheme to compute a uniform tessellation on M,

which induces the CSS in Ξ. Theoretically our method has

a good competitive ratio O(1). We also present a simple

extension of CSS to stream CSS for processing long videos

that cannot be loaded into main memory at once. We eval-

uate CSS, stream CSS and seven representative supervoxel

methods on four video datasets. The results show that our

method outperforms existing supervoxel methods.

1. Introduction

Supervoxels are perceptually meaningful atomic regions

obtained by grouping similar voxels (i.e., exhibiting coher-

ence in both appearance and motion) in the spatiotemporal

domain, which over-segment a video while well preserv-

ing its structural content. Supervoxels can greatly reduce

the computational complexity and have been widely used

as a preprocessing step in many vision applications, such as

video segmentation [12, 17, 34], foreground object segmen-

tation [13], action segmentation and recognition [14, 21],

spatiotemporal object detection [23], spatiotemporal clo-

sure in videos [15], and many others.

Depending on the size of video data, methods to com-

pute supervoxels can be classified into off-line and stream-
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ing methods. Off-line methods require the video to be short

enough such that all voxels can be loaded into the mem-

ory. On the other hand, streaming methods do not have

such a limitation on the video length, i.e., video data is ac-

cessed sequentially in blocks and the memory available to

streaming methods only needs to fit a block. Many method-

ologies, such as clustering, hierarchical, generative, statis-

tical and graph partitioning methods, have been applied to

compute supervoxels; see an excellent survey in [31]. Xu

and Corso [31] further select seven representative methods,

including five off-line [8, 9, 24, 6, 12] and two stream-

ing [32, 4] methods, to represent the state of the art.

To measure the quality of supervoxels, the following

principles are taken into consideration: (1) Feature preser-

vation: supervoxels align well with object boundaries in

a video; (2) Spatiotemporal uniformity: in non-feature re-

gions, supervoxels are uniform and regular in the spatiotem-

poral domain; (3) Performance: computing supervoxels is

time-and-space efficient and scales well with large video

data; (4) Easy to use: users simply specify the desired

number of supervoxels and should not be bothered by tun-

ing other parameters; (5) Parsimony: the above principles

should be maintained with as few supervoxels as possible.

So far, none of existing methods satisfy all these prin-

ciples. In this paper, we propose a content-sensitive ap-

proach to address the parsimony principle, and therefore,

achieve a good balance among all principles. Our method

is motivated by an important observation: the scene lay-

outs and motions of different objects in a video usually ex-

hibit large diversity, and thus the density of video content

often varies significantly in different parts of the video. Ap-

plying spatiotemporally uniform distribution of supervoxels

indiscriminately to the whole video often leads to under-

segmentation in content-dense regions (i.e., with high vari-

ation of appearance and/or motion), and over-segmentation

in content-sparse regions (i.e., with homogeneous appear-

ance and motion). Therefore, computing supervoxels adap-

tively with respect to the density of video content can

achieve the best performance (see Figure 1).

To compute content-sensitive supervoxels (CSS), we ex-

tend the image manifold concept [19, 20] to a video man-
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Figure 1. Superpixels (induced by clipping supervoxels on frames #61, #81 and #101) obtained by GB [8], GBH [12], streamGBH [32],

SWA [25, 26, 6], MeanShift [24], TSP [4] and our CSS method. All methods generate approximately 500 supervoxels. MeanShift, TSP

and our CSS method produce regular supervoxels (and accordingly regular clipped superpixels), while other methods produce highly

irregular supervoxels. As shown in Section 5, TSP and CSS methods outperform other methods in terms of commonly used quality metrics

pertaining to supervoxels, including UE3D, SA3D, BRD and EV, while CSS method runs 5× to 10× faster than TSP and the peak memory

required by CSS is 22× smaller than TSP. Compared to TSP, CSS generates more supervoxels in content-rich areas (e.g., auditorium) and

fewer supervoxels in content-sparse areas (e.g., concrete fences and meadow).

ifold, which represents a video Ξ as a 3-manifold M em-

bedded in the combined color and spatiotemporal space R6.

The volumetric elements in M give a good measure of con-

tent density in Ξ and thus a uniform tessellation on M effi-

ciently induces CSS in Ξ.

Two main contributions are made in this paper:

First, simply treating the time dimension in a video in

the same way as spatial dimensions leads to a regular 3D

lattice representation of voxels in R
3, which is not opti-

mal due to possibly many non-negligible motions and oc-

clusions/disocclusions. To overcome this drawback, exist-

ing methods (e.g., [12, 4]) use optical flow to re-establish

a connection graph of neighboring voxels between adjacent

frames. However, state-of-the-art optical flow estimation

methods [28] are still imperfect and may introduce extra er-

rors into supervoxel computation. In our work, we distort

the regular 3D lattice structure of videos in the spatiotem-

poral domain R
3 by mapping it to a curved 3-manifold M

embedded in a high-dimensional combined color and spa-

tiotemporal space R
6, in which the Euclidean distance is a

simple and efficient metric to generate CSS.

Second, to quickly compute a high-quality uniform tes-

sellation on the video manifold M ⊂ R
6, we propose a

splitting-merging scheme that can be efficiently incorpo-

rated into the well known K-means++ algorithm [2, 30].

Our scheme has a theoretical constant-factor bi-criteria ap-

proximation guarantee, and in practice makes our method

obtain good CSS in very few iterations. By applying the

streaming version of K-means++ (a.k.a. K-means# [1]),

our method can be easily extended to process long videos

that cannot be loaded into main memory at once.

2. Preliminaries

Our method uses restricted centroidal Voronoi tessella-

tion (RCVT) [19] to compute a uniform tessellation of a

3-manifold M ⊂ R
6. Theoretically our method is a bi-

criteria approximations to the K-means problem [2, 1, 30].

We briefly introduce them before presenting our method.

2.1. Restricted Voronoi tessellation and RCVT

In [19], RCVT is proposed to uniformly tessellate a 2-

manifold in R
5. With a simple extension of the proofs

therein, we have the following general results.

Let SK = {si}Ki=1 be a set of generating points and M
be an l(< d)-dimensional manifold in R

d (d > 2). The

Euclidean Voronoi cell of a generator si in R
d, denoted by

CRd , is

CRd(si) = {x ∈ R
d : ‖x− si‖2 ≤ ‖x− sj‖2,

∀j 6= i, sj ∈ SK}. (1)

The restricted Voronoi cell CM is defined to be the inter-

section of CRd and M

CM(si) , M∩ CRd(si), (2)

and the restricted Voronoi tessellation RV T (SK ,M) is the

collection of restricted Voronoi cells satisfying

RV T (SK ,M) = {CM(si) 6= ∅, ∀si ∈ SK}. (3)

RV T (SK ,M) is a finite closed covering of M, i.e., M =⋃
si∈SK

CM(si).
The mass centroid of the cell CM(si) is

mi =

∫
x∈CM(si)

xρ(x)dx
∫
x∈CM(si)

ρ(x)dx
(4)
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where ρ is a density function on CM. An RV T (SK ,M) is

a restricted centroidal Voronoi tessellation (RCVT) if and

only if each generator si ∈ SK is the mass centroid of

CM(si).

Theorem 1. [19] Let M be an l-manifold embedded in R
d,

d > l ≥ 2, and K ∈ Z+ be a positive integer. For an

arbitrary set SK of points {si}Ki=1 in R
d and an arbitrary

tessellation {Ci}Ki=1 on M,
⋃K

i=1 Ci = M, Ci

⋂
Cj = ∅,

∀i 6= j, define the tessellation energy functional as follows:

E({(si, Ci)}Ki=1) =
K∑

i=1

∫

x∈Ci

‖x− si‖22dx (5)

Then the necessary condition for E to be minimized is that

{(si, Ci)}Ki=1 is an RCVT of M.

Theorem 1 indicates that RCVT is a uniform tessellation

on M, which minimizes the energy E .

2.2. Bi­criteria approximation algorithms

The discretized counterpart of RCVT is the solution to

the K-means problem on the manifold domain M. Given

a fixed K, denote by Sopt
K = {sopti }Ki=1 and {Copt

i }Ki=1

the (unknown) optimal generator set and tessellation on M
respectively, which minimize the energy E . Let SK and

{Ci}Ki=1 be the generator set and tessellation output from

an algorithm A. The competitive ratio is defined to be the

worst-case ratio r =
E({(si,Ci)}K

i=1
)

E({(sopt
i

,C
opt

i
)}K

i=1
)

and A is said to

be a b-approximation algorithm if r ≤ b. An algorithm

is called (a, b)-approximation, if it outputs {(si, Ci)}aKi=1

with aK generators and tessellation cells, such that r =
E({(si,Ci)}aK

i=1
)

E({(sopt
i

,C
opt

i
)}K

i=1
)
≤ b, where a > 1 and b > 1.

3. Overview

Our method relies on a video manifold representation.

Denote by Ξ an input video with N voxels. Each voxel is

represented by v(x, y, t), where (x, y) is the pixel location

and t the frame index. Inspired by the success of image

manifolds [19, 20], we represent the color in the CIELAB

color space. Let c(v) = (l(v), a(v), b(v)) be the color at the

voxel v. We define a video manifold M using a stretching

map Φ : Ξ → M ⊂ R
6 that maps all voxels in Ξ into a

3-manifold M embedded in the 6-dimensional space:

Φ(v) = (λ1x, λ1y, λ2t, λ3l(v), λ3a(v), λ3b(v)) , (6)

where we follow [20] to set global stretching factors λ1 =
λ2 = 0.435 and λ3 = 1.

For each voxel v(x, y, t), denote by ⊡v the unit cube

(i.e., of size 1 × 1 × 1) centered at v. Refer to Fig-

ure 2. Let a1, a2, · · · , a8 be eight corner points of ⊡v ,

each of which is determined by an average of its eight

a2 a3a1

V R3 

(v)

(a4)

(a2)
(a3)v = 

(x,y,t)

(x-1,y-1,t-1)

(x+1,y+1,t+1)

(x-1,y+1,t-1) (x+1,y+1,t-1)

(x+1,y-1,t-1)

(x+1,y-1,t+1)

(x-1,y+1,t+1)

v
a4

a5

a7

a8 (a5)
(a6) (a7)

(a8)

M  = (V) R6
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y
t
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a6

Figure 2. The stretching map Φ : Ξ → M ⊂ R
6 maps the

unit cube ⊡v (red box) centered at the voxel v(x, y, t) ∈ Ξ
into a 3-manifold M. Each corner ai of ⊡v , i = 1, 2, · · · , 8,

is the center of its eight neighboring voxels; e.g., a1 =
∑

0

i=−1

∑
1

j=0

∑
0

k=−1
v(x+i,y+j,t+k)

8
.

neighboring voxels. We decompose ⊡v into six non-

overlapped tetrahedrons teti, i = 1, 2, · · · , 6, denoted by

{(a5, a6, a3, a2), (a5, a6, a3, a7), (a5, a8, a3, a4), (a5, a8,
a3, a7), (a5, a1, a3, a2), (a5, a1, a3, a4)}. We approximate

the volume of the curved tetrahedron Φ(tet(a, b, c, d)) in

M as

V (Φ(tet(a, b, c, d))) ≈ 1

3
A(Φ(△abc)) ·dist(d,△abc) (7)

where dist(d,△abc) is the distance from d to the subspace

spanned by vectors a, b and c, and A(Φ(△abc))) is the area

of the curved triangle Φ(△abc), which is approximated by

A(Φ(△abc))) ≈
1

2
‖−−−−−−→Φ(a)Φ(b)‖2‖

−−−−−−→
Φ(a)Φ(c)‖2 sin θ (8)

θ is the angle between vectors
−−−−−−→
Φ(a)Φ(b) and

−−−−−−→
Φ(a)Φ(c), and

‖u‖2 is the Euclidean length of the vector u in R
6. Using

the least squares method, dist(d,△abc) can be efficiently

obtained as the length of the residual vector r:

r = d− L(LTL)−1LT d, (9)

where L is a 6 × 3 matrix L = (a b c), and a, b, c, d are

column 6-vectors. Then the volume of Φ(⊡v) ⊂ M is

approximated by

V (Φ(⊡v)) =
6∑

i=1

V (Φ(teti)) (10)

For any region Ω ⊂ Ξ, the volume of Φ(Ω) ⊂ M is simply

the sum Σvj∈ΩV (Φ(⊡vj )). We assume the density ρ ≡ 1
everywhere in M.

Our method is based on an important characteristic in

the video manifold M: the volume of a region Φ(Ω) ⊂ M
depends on both the volume of Ω ⊂ Ξ and the color vari-

ation in Ω. The higher variation of colors in Ω, the larger

the volume of Φ(Ω) and vice versa. We propose an algo-

rithm in Section 4, which is theoretically a constant-factor

bi-criteria approximation, to quickly and efficiently com-

pute a uniform tessellation {(si, Ci)}Ki=1 in M. Then the

inverse mapping Φ−1 will transform {Ci}Ki=1 into content-

sensitive supervoxels in Ξ. See Figure 3 for an illustration.
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Figure 3. Overview of CSS generation on a synthetic, degenerate

gray video Ξ, for easy illustration. In Ξ, the image frame at time

t is a degenerate (1D) gray line image It. Supervoxels in Ξ can

be regarded as a tessellation of Ξ. Clipping supervoxels in each

line image It results in a set of induced superpixels in It. (a) We

represent Ξ as a video manifold M = Φ(I, t) ⊂ R
3, whose area

elements give a good measure of content density in Ξ. (b) A uni-

form tessellation of 12 generating points on the domain of Ξ leads

to a non-uniform tessellation on M. The induced superpixels on

line images It1 , It2 , It3 and It4 are also uniform. (c) We generate

CSS by computing a uniform tessellation {(si, Ci)}
12
i=1 on M and

the induced superpixels on line images are also content-sensitive.

The real examples of induced superpixels on video frames are il-

lustrated in Figure 1.

4. (O(1), O(1))-Approximation Algorithm

To obtain a uniform tessellation {(si, Ci)}Ki=1 in M, our

algorithm consists of the following two steps:

• Initialization (Section 4.1). We apply a variant of the

K-means++ algorithm1 [2, 1, 30] to determine the ini-

tial positions of generating points SK = {si}Ki=1.

• Lloyd refinement (Section 4.2). Observing that the

classic Lloyd method converges only to a local min-

imum with a large number of iterations, we pro-

pose an efficient splitting-merging scheme to compute

RCV T (SK ,M), which helps move the solution out

of local minima and ensures a good competitive ratio.

Our algorithm is easy to implement and can obtain high-

quality CSS in very few iterations. Theoretically our algo-

rithm is (O(1), O(1))-approximation. To ease reading, all

proofs in this paper are presented in supplemental material.

4.1. Initialization

We apply a variant of K-means++ algorithm to obtain

a provable high-quality initialization of generating points

SK = {si}Ki=1. The pseudo-code is summarized in Al-

gorithm 1. In each step, a point in M is picked up with

1In literature, K-means++ algorithm includes a seeding step and a

Lloyd refinement step. In our method, we only use the seeding step.

Algorithm 1 Initialization

Input: A video Ξ of N voxels and the desired number of

supervoxels K.

Output: The initial positions of K generating points SK =
{si}Ki=1.

1: Compute V (Φ(⊡v)) for each voxel v ∈ Ξ (Eq.(10)).

2: Choose a point v1 from all voxels v ∈ Ξ with probabil-

ity proportional to V (Φ(⊡v)).
3: Set s1 = Φ(v1), S1 = {s1} and i = 1.

4: while i < K do

5: Choose a point vi+1 from all voxels v ∈ Ξ with prob-

ability proportional to the score pSi
(v) (Eq.(12)).

6: Set si+1 = Φ(vi+1), Si+1 = Si ∪ {si+1} and i =
i+ 1.

7: end while

probability proportional to its current score (defined as its

squared distance to the nearest generator picked so far), and

added as a new generator. To compute the required proba-

bility in the manifold domain M, we consider the positions

of mapped voxels Φ(v) ∈ M, ∀v ∈ Ξ. With respect to

an existing generator Φ(vi), the score of a mapped voxel

Φ(vj) ∈ M, j 6= i, is

pvi
(vj) =

∫
x∈Φ(⊡vj

)
‖x− Φ(vi)‖22dx

≈ V (Φ(⊡vj )) · ‖Φ(vj)− Φ(vi)‖22
(11)

Then the score of picking Φ(vj) with respect to an existing

generator set S is

pS(vj) = min
vi∈S

pvi
(vj) (12)

Algorithm 1 runs in O(NK) time. A simple adaption

of the proofs in [2, 30] shows that using RV T (SK ,M)
as the tessellation, Algorithm 1 is an expected Θ(logK)-
approximation algorithm, and furthermore, if we sample

βK (β > 1) generators, the expected approximation ratio

of Algorithm 1 is bounded by

E(r) < 8

(
1 +

1 +
√
5

2(β − 1)

)
. (13)

4.2. Lloyd refinement with splitting and merging

Given the initial generators SK = {si}Ki=1, si ∈ M,

the classic Lloyd method computes RCV T (SK ,M) itera-

tively by alternating the following two steps:

• Step 1: Fixing the generator set SK , compute

RV T (SK ,M);

• Step 2: For each cell CM in RV T (SK ,M), update its

generator to be the mass centroid of CM.
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Algorithm 2 CSS generation

Input: A video Ξ of N voxels, the desired number of su-

pervoxels K, numrandom the number of repeated ran-

dom sampling of generators in each iteration, and the

maximum number of iterations itermax.

Output: K content-sensitive supervoxels.

1: Initialize the generators SK = {si}Ki=1 (Algorithm 1).

2: Set iter = 0.

3: while iter < itermax do

4: Compute RV T (SK ,M).
5: Set n = 0.

6: while n < numrandom do

7: Randomly pick three generators sm, si, sj in Sk,

in which si and sj are neighbors (Algorithm 4).

8: Check the splitting-merging feasibility of

(sm, si, sj) (Algorithm 3) and put the return

values in (Flag, s′p, s
′
q, s

′
k).

9: if Flag == TRUE then

10: Update SK by splitting sm into (s′p, s
′
q) and

merging (si, sj) into s′k.

11: end if

12: n = n+ 1;

13: end while

14: Compute RV T (SK ,M).
15: for each cell CM(si) in RV T do

16: Update the generator si to be the mass centroid of

CM(si).
17: end for

18: iter = iter + 1;

19: end while

20: Compute Φ−1(RV T (SK ,M)) to obtain K CSS.

This method converges only to a local minimum with a large

number of iterations [7].

To compute a high quality RCV T (SK ,M) in very few

iterations, we propose a splitting-merging scheme in the

Lloyd iteration. The pseudo-code is summarized in Algo-

rithm 2, in which line 4 and lines 15-16 correspond to Steps

1 and 2 in the classic Lloyd method respectively, and lines

5-14 summarize our splitting-merging scheme.

The splitting operation S : sm → (s′p, s
′
q) splits a cell

CM(sm) into two new cells C(s′p) and C(s′q). Conversely,

the merging operation M : (si, sj) → s′k merges two

cells CM(si) and CM(sj) into a new cell C(s′k). Split-

ting reduces the tessellation energy E and merging increases

it. The number of generators does not change by apply-

ing a pair of splitting and merging operations (S,M) :
(sm, (si, sj)) → ((s′p, s

′
q), s

′
k). Our goal is to design a pair

(S,M) such that E does not increase.

Definition 1. The diameter di of a cell CM(si), si ∈ SK ,

is the maximum Euclidean distance between pairs of points

Algorithm 3 Check splitting-merging feasibility

Input: Three generators (sm, si, sj) in SK and an

RV T (SK ,M).
Output: A Boolean variable Flag indicating the feasibility

and three new generators (s′p, s
′
q, s

′
k).

1: Compute the mass centroids s′m, s′i and s′j of CM(sm),
CM(si) and CM(sj), respectively.

2: Compute the diameter dm of the cell CM(sm) and the

points p1(dm) and p2(dm) (see Definition 1).

3: Compute two new cells C ′(p1(dm)) and C ′(p2(dm)),
which are the Voronoi cells of p1(dm) and p2(dm) in

the domain CM(sm).
4: Compute the mass centroids s′k, s′p and s′q of CM(si)∪

CM(sj), C
′(p1(dm)) and C ′(p2(dm)), respectively.

5: Compute τm,i,j in Eq. (15).

6: if ‖s′p − s′m‖2 > τm,i,j and ‖s′q − s′m‖2 > τm,i,j then

7: return TRUE and (s′p, s
′
q, s

′
k).

8: else

9: return FALSE and (NULL,NULL,NULL).
10: end if

in the cell, i.e.,

di = max
∀x,y∈CM(si)

‖x− y‖2 (14)

Denote by p1(di) and p2(di) the two points in CM(si) sat-

isfying ‖p1(di)− p2(di)‖ = di.

Theorem 2. Let sm, si, sj be three generators in an

RV T (SK ,M). For the cells CM(sm), CM(si) and

CM(sj), let mm,mi,mj be their masses, s′m, s′i, s′j
be their mass centroids, respectively. For any parti-

tioning of CM(sm) into two new cells C ′(p1(dm)) and

C ′(p2(dm)), which satisfies p1(dm) ∈ C ′(p1(dm)),
p2(dm) ∈ C ′(p2(dm)), C ′(p1(dm)) ∩ C ′(p2(dm)) = ∅
and C ′(p1(dm)) ∪ C ′(p2(dm)) = CM(sm), let s′k, s′p and

s′q be the mass centroids of CM(si)∪CM(sj), C
′(p1(dm))

and C ′(p2(dm)), respectively. If ‖s′p − s′m‖2 > τm,i,j and

‖s′q − s′m‖2 > τm,i,j , where

τm,i,j =

√
mimj

mm(mi +mj)
‖s′i − s′j‖2 (15)

then the pair of operations (S,M) : (sm, (si, sj)) →
((s′p, s

′
q), s

′
k) does not increase the tessellation energy E .

By Theorem 2, we check the splitting-merging feasibil-

ity condition at line 8 of Algorithm 2 and this condition

is summarized in Algorithm 3. Note that computing the

diameter of an arbitrary region (line 2 of Algorithm 3) is

time-consuming. In practice, we compute the axis-aligned

bounding box B of CM(sm). B is determined by two sup-

porting points p1 and p2 in CM(sm) and we use them as

fast approximations to p1(dm) and p2(dm).
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Algorithm 4 Randomly pick three generators

Input: An RV T (SK ,M) and an expected cell volume

E(V (CM)) (Eq.(18)).

Output: Three generators (sm, si, sj) in SK .

1: Set Sdense = ∅ and Ssparse = ∅.

2: for each cell CM(si) in RV T (SK ,M) do

3: Compute the volume V (CM(si)).
4: if V (CM(si)) > 4E(V (CM)) then

5: Sdense = Sdense ∪ {si}.

6: else if V (CM(si)) < E(V (CM))/4 then

7: Ssparse = Ssparse ∪ {si}.

8: end if

9: end for

10: if |Sdense| > 2 then

11: Randomly pick a generator sm in Sdense.

12: else

13: Randomly pick a generator sm in SK .

14: end if

15: Collect all neighboring pairs in Ssparse in the set N .

16: if |N | > 2 then

17: Randomly pick a pair (si, sj) in N .

18: else

19: Randomly pick two neighboring generators si and sj
in SK .

20: end if

21: return (sm, si, sj).

Corollary 1. Denote a voxel in the video Ξ as vi and let

mmin = min
vi∈Ξ

{V (Φ(⊡vi))}, (16)

dmax = max
vi∈Ξ

{d(Φ(⊡vi))}, (17)

where d(Φ(⊡vi)) is the diameter of Φ(⊡vi
) ⊂ M. Let

sm, si, sj be three generators in an RV T (SK ,M) and s′m
be the mass centroid of CM(sm). Let P be the hyperplane

which passes through s′m and is perpendicular to the line

connecting p1(dm) and p2(dm). P partitions CM(sm) into

C ′(p1(dm)) and C ′(p2(dm)). If dm ≥ w( mm

mmin

τm,i,j +

dmax), where mm = V (CM(sm)), w = max{1+λ, 1+λ
λ

},

λ =
‖p1(dm)−s′m‖2

‖p2(dm)−s′m‖2

and τm,i,j is defined in Eq.(15), then the

pair of operations (S,M) : (sm, (si, sj)) → ((s′p, s
′
q), s

′
k)

does not increase the tessellation energy E , where s′p, s′q
and s′k are the mass centroids of C ′(p1(dm)), C ′(p2(dm))
and CM(si) ∪ CM(sj), respectively.

Note that for a region Ω ⊂ Ξ with a fixed volume, the

higher variation of colors in Ω, the larger the volume of

Φ(Ω) ⊂ M and vice versa. In Algorithm 2, si and sj are

chosen to be neighboring generators. Then by Corollary 1,

Algorithm 2 has the following characteristics:

• the smaller the volumes of cells CM(si) and CM(sj),

Algorithm 5 Streaming CSS generation

Input: A video Ξ of N voxels and the desired number of

supervoxels K.

Output: K content-sensitive supervoxels.

1: Compute the discretized manifold representation M̃ =
{(xi, yi, ti, wi)}Ni=1.

2: Initialize S = M̃.

3: while S cannot be loaded into main memory do

4: Set S̃ = ∅.

5: Divide S into l disjoint pieces χ1, · · · , χl, such that

each piece can be loaded into main memory.

6: for each piece χi do

7: Apply Algorithm 2 to compute 1.2K generators

SK(χi).
8: Compute RV T (SK(χi), χi).
9: for each new generator gj in SK(χi) do

10: Compute the total weight of all points in the cell

corresponding to gj in RV T (SK(χi), χi) and

assign it to gj as the weight wj ;

11: end for

12: S̃ = S̃ ∪ (gj , wj), ∀gj ∈ SK(χi).
13: end for

14: S = S̃.

15: end while

16: Apply Algorithm 2 to S for obtaining K supervoxels.

the more likely they are merged, thus reducing the

number of generators in content-sparse regions;

• the larger the volume of a cell CM(sm), the more

likely it is split, thus producing more generators in

content-rich regions.

Accordingly, to increase the feasibility of the splitting-

merging operation at line 8 of Algorithm 2, we estimate

content-dense and content-sparse regions in RV T (SK ,M)
and collect their corresponding generators into subsets

Sdense and Ssparse in Algorithm 4. If Sdense and Ssparse

contain sufficient generators, we randomly pick two neigh-

boring generators in Ssparse to be merged and pick one gen-

erator in Sdense to be split; otherwise, we randomly pick

three generators in SK . To estimate the content density of

cells, we compute the expected cell volume as the average

of K cells over the total volume of video manifold M:

E(V (CM)) =

∑
v∈Ξ V (Φ(⊡v))

K
(18)

For each cell CM in RV T (SK ,M), we compare its

volume V (CM) with E(V (CM)): (1) if V (CM) >
4E(V (CM)), we put the generator of this cell into Sdense,

and (2) if V (CM) < E(V (CM))/4, we put the genera-

tor of this cell into Ssparse. Algorithm 4 summarizes the

pseudo-code.
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(a) 3D under-segmentation error
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(b) 3D segmentation accuracy
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(c) Boundary recall distance
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(d) Explained variance
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(e) Runtime with respect to K
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(f) Peak memory with respect to K
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(g) Peak memory without NCut
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(h) Compactness

Figure 4. Evaluation of seven representative methods and our methods (CSS and streamCSS) on the BuffaloXiph dataset. Due to its high

computational cost, NCut is run at a fixed frame resolution of 240 × 160 downsampled from original videos. CSS, streamCSS and TSP

have the best performance in terms of UE3D, SA3D, BRD and EV. CSS and steamCSS is better than TSP in terms of compactness, time

and space efficiency. Similar performances are observed on the other three video datasets (SegTrack v2, BVDS and CamVid), which are

reported in supplemental material.

In all our experiments, we set itermax = 20 and

numrandom = 20 in Algorithm 2. We show in Section 5

that our algorithm can obtain high-quality CSS in 20 itera-

tions. We have the following theoretical results.

Theorem 3. By selecting (1 + ε)K generators, ε >

0, Algorithm 2 is a bi-criteria
(
1 + ε, 8

(
1 + 1+

√
5

2ε

))
-

approximation algorithm in expectation.

Theorem 4. By selecting (1 + ε)K generators, 0 < ε < 1,

the time and space complexities of Algorithm 2 are O(NK)
and O(N +K), respectively.

4.3. Streaming CSS algorithm for long videos

Thanks to the streaming K-means algorithm [1], Al-

gorithm 2 is readily extended to a streaming version for

handling long videos. The streaming CSS algorithm rep-

resents the video manifold M by an ordered, discretized

sequence of weighted points M̃ = {(xi, yi, ti, wi)}Ni=1,

where (xi, yi, ti) is the position of voxel vi in Ξ and wi =
V (Φ(⊡v)). Pseudo-code is summarized in Algorithm 5.

Theorem 5. If (1 + ε)K generators, 0 < ε < 1, are

selected by Algorithm 2, Algorithm 5 is (O(1), O(1))-
approximation.

5. Experiments

We implemented CSS (Algorithm 2) and streamCSS

(Algorithm 5) in C++ and tested them on a PC with Intel

Core E5-2683V3 and 256GB RAM running Linux. Source

code is available2. We compare CSS and streamCSS with

seven representative methods selected in [31], including

NCut [27, 10, 9], SWA [25, 26, 6], MeanShift [24], GB

[8], GBH [12], streamGBH [32] and TSP [4]. Since CSS

and streamCSS adopt a random initialization, we report the

average results of 20 initializations. The performances are

evaluated on four video datasets, i.e., BuffaloXiph [5], Seg-

Track v2 [18], BVDS [29, 11] and CamVid [3], which have

groundtruth labels drawn by human annotators.

In the original implementation of above seven methods

collected in the LIBSVX benchmark [31], the clustering of

supervoxels does not consider the connectivity of voxels.

Therefore, the voxels that have the same supervoxel label

(corresponding to a cluster) can have many disjoint com-

ponents. In video applications such as detecting spatiotem-

poral closure for foreground object segmentation [15], the

characteristic of multiple disjoint components in one label

makes supervoxels’ performance very bad. In our evalua-

tion, for fairness we extract all the connected components

in each supervoxel and relabel them. Therefore, more su-

pervoxels are produced and accordingly the supervoxels’s

range in Figure 4 are adjusted and different from the ones

in the LIBSVX benchmark.

Adherence to object boundaries. As perceptually

2http://cg.cs.tsinghua.edu.cn/people/˜Yongjin/

Yongjin.htm
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meaningful atomic regions in videos, supervoxels should

well preserve the object boundaries of ground-truth seg-

mentation. 3D under-segmentation error (UE3D), 3D seg-

mentation accuracy (SA3D) and boundary recall distance

(BRD) are standard metrics in this aspect [4, 16, 31].

UE3D and SA3D are complementary to each other and

both measure the tightness of supervoxels that overlap with

ground-truth segmentation. BRD measures how well the

groundtruth boundaries are successfully retrieved by the su-

pervoxel boundaries. As shown in Figures 4(a)-(c), CSS,

streamCSS and TSP have the highest SA3D, and the small-

est UE3D and BRD, demonstrating their ability to adhere to

object boundaries.

Explained variation (EV). EV is a standard metric that

measures the color variations in supervoxels [22, 31]. A

large EV means the color in each supervoxel is close to ho-

mogeneity. As shown in Figure 4(d), CSS, streamCSS and

TSP have the largest EV.

Computational cost. We record runtime and peak mem-

ory of all nine methods. All methods are implemented in C

or C++ except NCut (Matlab running with 8 threads) and

TSP (Matlab with MEX). As shown in Figure 4(e), GB,

CSS and MeanShift are three fastest methods. In particu-

lar, CSS is 5× to 10× faster than TSP. As shown in Fig-

ures 4(f)-(g), streamCSS and CSS are two methods that use

smallest peak memory. In particular, the peak memory of

streamCSS and CSS is 22× smaller than TSP.

Three more metrics – mean size variation (MSV), tem-

poral extent (TEX) and label consistency (LC) – are used

in [31]. MSV and TEX measure the size variation and av-

erage temporal extent of all supervoxels in a video. Since

our work advocates to adapt the size of supervoxels accord-

ing to video content density, these two metrics are no longer

suitable. Instead, we qualitatively compare the content sen-

sitivity and propose to use the compactness measure below.

LC is evaluated using groundtruth optical flow. However,

as aforementioned, optical flow is only an optional prepro-

cessing tool to video applications and may introduce extra

error into supervoxel evaluation.

Content sensitivity. Figure 1 (last column) shows a typ-

ical result of CSS. More qualitative results are illustrated in

supplemental material. By clipping supervoxels in image

frames, these results clearly show that CSS well captures

object boundaries in a video and the supervoxels are con-

tent sensitive, i.e., small in content-dense regions and large

in content-sparse regions. The content sensitive feature is

due to the characteristic that regions of high appearance and

motion variance have large volumes in M.

Compactness. In many real-world video applications,

the solution relies on minimizing an energy function de-

fined on a spatiotemporal supervoxel graph in a video clip.

The shape regularity of supervoxels has a direct influence

on the complexity of this spatiotemporal supervoxel graph,

and thus, affects the application performance. It was ob-

served that compact supervoxels usually have better seg-

mentation performance than non-compact ones [33]. Note

that for any connected region Ω ⊂ R
3, the isoperimetric

inequality holds:

A(Ω) ≥ 3V (Ω)
2

3V (B1)
1

3 (19)

where B1 is a unit sphere, A(Ω) and V (Ω) are bounding

surface area and volume of Ω respectively, and the equality

holds when Ω is a sphere. Therefore, for a given supervoxel

over-segmentation S̃ = {s̃1, s̃2, · · · , s̃K}, the compactness

metric C is defined as [33]

C(S̃) =
∑

s̃i∈S̃

Q(s̃i)
|s̃i|
N

,where Q(s̃i) =
6π

1

2V (s̃i)

A(s̃i)
3

2

, (20)

|s̃i| is the number of voxels in s̃i. The larger the compact-

ness value is, the more regular the shape of supervoxels

is. As shown in Figure 4(h), CSS and streamCSS have the

largest compactness values.

6. Conclusion

In this paper, we propose a simple yet efficient algo-

rithm which obtains content-sensitive supervoxels by com-

puting RCVT – a uniform tessellation – on a video mani-

fold M. M is constructed by mapping a video into a com-

bined color and spatiotemporal space R
6 and the volume

elements on M reflect the density of video content. We

propose a splitting-merging scheme and use it in the clas-

sic Lloyd method such that a high quality RCVT can be

computed in very few iterations. Our algorithm is easily ex-

tended to a stream version for handling long videos. In ad-

dition to its easy implementation, our algorithm is theoreti-

cally an (O(1), O(1))-approximation. Experimental results

show that our method and TSP outperform other six repre-

sentative methods (NCut, SWA, MeanShift, GB, GBH and

streamGBH) in terms of metrics UE3D, SA3D, BRD and

EV. Our method is better than TSP in terms of compactness

and time and space efficiency.
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