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Abstract

Although promising results have been achieved in the ar-

eas of traffic-sign detection and classification, few works

have provided simultaneous solutions to these two tasks for

realistic real world images. We make two contributions to

this problem. Firstly, we have created a large traffic-sign

benchmark from 100000 Tencent Street View panoramas,

going beyond previous benchmarks. It provides 100000 im-

ages containing 30000 traffic-sign instances. These images

cover large variations in illuminance and weather condi-

tions. Each traffic-sign in the benchmark is annotated with

a class label, its bounding box and pixel mask. We call this

benchmark Tsinghua-Tencent 100K. Secondly, we demon-

strate how a robust end-to-end convolutional neural net-

work (CNN) can simultaneously detect and classify traffic-

signs. Most previous CNN image processing solutions tar-

get objects that occupy a large proportion of an image, and

such networks do not work well for target objects occupy-

ing only a small fraction of an image like the traffic-signs

here. Experimental results show the robustness of our net-

work and its superiority to alternatives. The benchmark,

source code and the CNN model introduced in this paper is

publicly available1.

1. Introduction

Scene understanding is the ultimate goal of computer vi-

sion; detecting and classifying objects of various sizes in

the scene is an important sub-task. Recently, deep learn-

ing methods have shown superior performance for many

tasks such as image classification and speech recognition.

One particular variant of deep neural networks, convolu-

1http://cg.cs.tsinghua.edu.cn/traffic-sign/

tional neural networks (CNNs), have shown their strengths

for tasks including image classification, localization and de-

tection. Two benchmarks widely used to evaluate detection

performance are PASCAL VOC [7] and ImageNet ILSVR-

C [20]. In these datasets, target objects typically occupy a

large proportion of each image (the bounding box of each

object of interest fills on average about 20% of the image).

However, for some tasks, objects of interest may only oc-

cupy a small fraction of an image, such as traffic-signs in

images captured while driving. A typical traffic-sign might

be say 80 × 80 pixels, in a 2000 × 2000 pixel image, or

just 0.2% of the image. In fact, many tasks require detec-

tion and classification of small but significant objects, so it

is important to devise and evaluate methods which perform

well when the object of interest is not the main, or even a

major, scene item.

Traffic signs may be divided into different categories ac-

cording to function, and in each category they may be fur-

ther divided into subclasses with similar generic shape and

appearance but different details. This suggests traffic-sign

recognition should be carried out as a two-phase task: de-

tection followed by classification. The detection step us-

es shared information to suggest bounding boxes that may

contain traffic-signs in a specific category, while the clas-

sification step uses differences to determine which specific

kind of sign is present (if any). (We note that the words

‘detection’ and ‘classification’ have different meanings in

the general object recognition community where, as exem-

plified by the ImageNet competition, classification means

giving an image a label rather than an object, and detection

means finding the bounding box of an object in a specific

category.)

Since the launch of the German traffic-sign detection

and classification benchmark data[24, 25], various research

groups have made progress in both the detection bench-
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mark(GTSDB) [25] task and classification benchmark (GT-

SRB) [24] task. Current methods achieve perfect or near-

perfect results for both tasks, with 100% recall and preci-

sion for detection and 99.67% precision for classification.

While it may appear that these are thus solved problem-

s, unfortunately, this benchmark data is not representative

of that encountered in real tasks. In the GTSDB detection

benchmark task, the algorithms must only detect traffic-

signs in one of 4 major categories. In the GTSRB clas-

sification benchmark, the traffic-sign occupies most of the

image, and the algorithms must only decide which subclass

the sign belongs to; furthermore; there are no negative sam-

ples disrupting the classification. In real world tasks, the

main difficulty when detecting and classifying traffic-signs

in an ordinary image is their very small size, often less than

1% of the image. The potential candidate regions are orders

of magnitude smaller than in PASCAL VOC and ImageNet

ILSVRC. Furthermore, the algorithm must filter out many

potential negative cases while retaining true traffic-signs.

We have thus created a new, more realistic benchmark, and

have also used it to evaluate a combined CNN approach to

traffic sign detection and classification.

The contributions of this paper are as follows.

• We have created a new, more realistic traffic-sign

benchmark. Compared to the widely used detec-

tion benchmark GTSDB, our benchmark contains 111

times as many images, at 32 times the image resolu-

tion. The traffic-signs in our benchmark cover real-

world conditions, with large variations in such aspect-

s as illuminance and weather conditions, also includ-

ing examples with occlusion. Our benchmark is, un-

like previous ones, annotated with a pixel mask for

each traffic-sign, as well as giving its bounding box

and class. We call this benchmark Tsinghua-Tencent

100K.

• We have trained two CNNs for detecting traffic sign-

s, and simultaneously detecting and classifying traffic-

signs. Evaluation on our benchmark shows the robust-

ness of the two networks.

The rest of the paper is organized as follows: in Section 2

we discuss related work. Details of our benchmark are giv-

en in Section 3, while the architecture of our network is

presented in Section 4. We give experimental results in Sec-

tion 5 and conclusions in Section 6.

2. Related work

2.1. Traffic Sign Classification

Before the widespread adoption of convolutional neural

networks, various object detection methods were adapted

for traffic-sign classification, e.g. based on SVMs [18] and

(a) 8192×2048 panorama from Tencent Street View before slicing

vertically into 4 images. Sky and ground at top and bottom have

been cropped.

pl20 wo w46

pa10

(b) Bounding box and class label (c) Pixel mask annotation

Figure 1. Our benchmark contains 100000 high resolution images

in which all traffic-signs are annotated with class label, bounding

box, and pixel mask. The images are cut from from Tencent Street

Views which contain realistic views traffic-signs in their environ-

ments.

sparse representations [17]. Recently, convolutional neural

network approaches have been shown to outperform such

simple classifiers when tested on the GTSRB benchmark.

These approaches include using a committee of CNNs [4],

multi-scale CNNs [22] and CNNs with a hinge loss func-

tion [14], the latter achieving a precision rate of 99.65%,

better than human performance [25]. However, as noted

earlier, these approaches perform classification on already

detected signs, which is impractical in real applications.

2.2. Object Detection by CNNs

After interest in CNNs was initially rekindled by their

use in [15] for image classification, they were quickly

adapted to object detection. In OverFeat [21], Sermanet

et al. observed that convolutional networks are inherent-

ly efficient when used in a sliding window fashion, as

many computations can be reused in overlapping regions.

They demonstrated a network that can determine an objec-

t’s bounding box together with its class label.

Another widely used strategy for object detection using

CNNs is to first calculate some generic object proposals and

perform classification only on these candidates. R-CNN [8]

was the first to use this strategy, but it is very slow for t-

wo reasons. Firstly, generating category-independent ob-

ject proposals is costly. Selective search [29] takes about 3

s to generate 1000 proposals for the Pascal VOC 2007 im-

ages; the more efficient EdgeBoxes approach [30] still takes

about 0.3 s. Secondly, it applies a deep convolutional net-

work to every candidate proposal, which is very inefficient.
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Figure 2. Chinese traffic-sign classes. Signs in yellow, red and blue boxes are warning, prohibitory and mandatory signs respectively. Each

traffic-sign has a unique label. Some signs shown are representative of a family (e.g. speed limit signs for different speeds). Such signs are

generically denoted above (e.g. ‘pl*’); the unique label is determined by replacing ‘*’ by a specific value (e.g. ‘pl40’ for a 40 kmh speed

limit sign).

To improve efficiency, the spatial pyramid pooling network

(SPP-Net) [10] calculates a convolutional feature map for

the entire image and extracts feature vectors from the shared

feature map for each proposal. This speeds up the R-CNN

approach about 100 times.

Girshick et al. later proposed Fast R-CNN [9], which us-

es a softmax layer above the network instead of the SVM

classifier used in R-CNN. Ignoring object proposal time, it

takes 0.3 s for Fast R-CNN to process each image. To over-

come the bottleneck in the object proposal step, in Faster

R-CNN [19], Ren et al. proposed region proposal networks

(RPNs) which use convolutional feature maps to generate

object proposals. This allows the object proposal generator

to share full-image convolutional features with the detection

network, allowing their detection system to achieve a frame

rate of 5 fps on a powerful GPU.

While these works determine object proposals by hand,

Szegedy et al. [27] improved upon a data-driven proposal

generation method [6], as well as improving the network

architecture, to achieve a frame rate of 50 fps in testing,

with competitive detection performance.

However, the performance of all of these object detection

networks was evaluated on PASCAL VOC and ILSVRC,

where target objects occupy a large proportion of the image.

3. Benchmark

We now explain our new benchmark: where we obtained

the data, how we annotated it, and what it finally contains.

3.1. Data Collection

While general image datasets such as ImageNet[5] and

Microsoft COCO[16] have been generated by downloading

Internet images retrieved by search engines using keywords,

relatively few Internet users upload real-world images con-

taining traffic-signs as might be seen in the street, and even

when they do, the traffic signs are incidental: such images

will not be tagged with the names of any signs they con-

tain. Such an approach cannot be used here. Furthermore,

to mimic a real world application scenario, images without

traffic-signs should be also included in the benchmark, to

evaluate if a detector can distinguish real traffic-signs from

other similar looking objects. We determined that an ideal

way to collect useful images would be to extract data from

Tencent Street Views.

Presently, Tencent Street Views cover about 300 Chi-

nese cities and the road networks linking them. The orig-

inal panoramas were captured by 6 SLR cameras and then

stitched together. Image processing techniques such as ex-

posure adjustment were also used. Images were captured

both from vehicles and shoulder-mounted equipment, at in-

tervals of about 10 m. The nature of the images provide

two benefits for our benchmark. Firstly, traffic-signs in suc-

cessive shots are related by a homography. Unlike in GT-

SRB [25], whose traffic-signs were extracted from a video

sequence, leading to many very similar images, the ap-

pearances of an instance of a traffic-sign in our benchmark

vary significantly. Secondly, an instance of a traffic-sign

in successive images helps the participants constructing the

benchmark to correctly determine its classes: partially oc-

cluded or blurred traffic-signs can be recognized from their
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(a) (b) (c)
Figure 3. Signs like traffic-signs, but with other meanings.

occurrences in previous or subsequent shots.

To create the benchmark images, the top 25% and bottom

25% of each panorama image was cropped off (as unlikely

to contain any signs), and the remainder sliced vertically

into 4 sub-images. See Figure 1.

We chose 10 regions from 5 different cities in China (in-

cluding both downtown regions and suburbs for each city)

and downloaded 100000 panoramas from the Tencent Data

Center.

3.2. Data Annotation

The images collected were next annotated by hand. Traf-

fic signs in China follow international patterns, and can be

classified into three categories: warnings (mostly yellow tri-

angles with a black boundary and information), prohibitions

(mostly white surrounded by a red circle and also possibly

having a diagonal bar), and mandatory (mostly blue circles

with white information). Other signs exist that resemble

traffic-signs but are in fact not; some are illustrated in Fig-

ure 3. Such signs are placed in an ‘other’ class of a partic-

ular category. During traffic-sign annotation, we recorded

the bounding box, boundary vertices and class label for the

sign. To determine the pixel mask for the sign, we use two

modes: polygon mode and ellipse mode. In polygon mode,

we mark the vertices of the polygon while in ellipse mode

we mark arbitrary ‘vertices’ along the boundary of the el-

lipse, and we fit the shape automatically using the marked

vertices. For a triangle sign we only mark three vertices;

for distorted signs we may mark additional vertices for ac-

curate segmentation. Circle signs appear as ellipses, unless

occluded, so we mark 5 vertices to which we can fit a el-

lipse during post-processing. The most complicated cases

concern occluded signs. In this case, we mark the bound-

ing box, the polygon boundary and ellipse boundary (if ap-

propriate), and intersect them to find the final mask. We

illustrate our annotation pipeline in Figure 4, and show a

complicated annotation case in Figure 5.

3.3. Dataset Statistics

Our new benchmark has 100000 cropped images after

discarding some of the images only containing background.

Of these, 10000 contain 30000 traffic-signs in total. Al-

though our source images cover much of China, an imbal-

ance still exists between different classes of traffic-sign in

our benchmark. This is unavoidable: classes such as signs

Figure 4. Annotation pipeline. Firstly we locate the traffic-sign

and draw its bounding box. Then boundary vertices are marked on

the sign’s contour to determine the pixel mask. Finally the class

label is attached.

(a) (b) (c) (d)
Figure 5. Sign annotation for a complicated case. We mark the

bounding box, polygon boundary and circle boundary, and com-

pute their intersection to give the final segmentation mask.

Table 3. Simultaneous detection and classification results for dif-

ferent sizes of traffic signs using Fast R-CNN and our approach.

FR: Fast R-CNN recall, FA: Fast R-CNN accuracy, OR: Our

method’s recall, OA: Our method’s accuracy.

Object size (0,32] (32,96] (96,400]

FR 0.24 0.74 0.86

FA 0.45 0.51 0.55

OR 0.87 0.94 0.88

OA 0.82 0.91 0.91

to warn the driver to be cautious on mountain roads appear

rarely. Instances per class are given in Figure 6; most in-

stances appear in relatively few classes. The image sizes

(in pixels) of the traffic-signs is given in Figure 7; note that

small traffic-signs are most common.

In summary, our newly created benchmark provides de-

tailed annotation for each sign: its bounding box, its pixel

mask, and its class. The signs fall into many classes, and

there are many instances in many of those classes. The im-

ages in this benchmark have resolution 2048 × 2048. and

cover large variations in illuminance and weather condition-

s. It will hopefully provide a suitable basis for research into

both detecting and classifying small objects. We have used

it to train our own CNN for this purpose.

4. Neural Network

We trained two networks in total, one for detection alone,

and one for simultaneous detection and classification. They

share most of the same structure except for the branches in

the last layer.
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