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Abstract Denoising diffusion models have demonstrated
tremendous success in modeling data distributions and
synthesizing high-quality samples. In the 2D image
domain, they have become the state-of-the-art and are
capable of generating photo-realistic images with high
controllability. More recently, researchers have begun
to explore how to utilize diffusion models to generate
3D data, as doing so has more potential in real-world
applications. This requires careful design choices in two
key ways: identifying a suitable 3D representation and
determining how to apply the diffusion process. In this
survey, we provide the first comprehensive review of
diffusion models for manipulating 3D content, including
3D generation, reconstruction, and 3D-aware image
synthesis. We classify existing methods into three major
categories: 2D space diffusion with pretrained models,
2D space diffusion without pretrained models, and 3D
space diffusion. We also summarize popular datasets
used for 3D generation with diffusion models. Along
with this survey, we maintain a repository https://
github.com/cwchenwang/awesome-3d-diffusion to
track the latest relevant papers and codebases. Finally,
we pose current challenges for diffusion models for 3D
generation, and suggest future research directions.
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1 Introduction

Human beings live in a 3D physical world. 3D data
provide both the geometry and texture details of
real-world objects and scenes, and contain much
richer information than 2D images. The role of
3D digital assets is pivotal across a wide range of
applications, from entertainment and gaming to the
domains of virtual reality, robotics, architecture,
and manufacturing. Although the development of
3D modeling technologies has made collecting and
transmitting 3D assets much easier, their creation
ab initio remains time-consuming and expensive. It
also poses a great challenge for amateurs, since this
process mandates extensive manual effort and prior
experience. Consequently, techniques to generate
3D models with straightforward commands will
undoubtedly benefit many people.

Generative models have greatly improved with
deep learning and novel types of model, including
variational auto-encoders [1], generative adversarial
networks [2], and normalizing flows [3]. Recently,
denoising diffusion probabilistic models [4, 5] have
recently become state-of-the-art generative models
and have been widely applied to generate data of
different forms, such as images, video, text, and voice.
Notably, text-to-image diffusion models, including
Stable Diffusion [5] and Imagen [6], can generate
high-quality 2D images indistinguishable from real
ones given prompts in natural language. However,
2D generation is still insufficient for real-world
applications and researchers have made extensive
efforts to develop 3D generative models with diffusion
models.

Generating 3D data is inherently more challenging
than generating 2D data. While 2D images are
matrices of pixels that can be conveniently processed
by modern neural networks, 3D representations
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have various forms, including explicit and implicit
representations such as meshes, voxel grids, point
clouds, and implicit functions [7]. Each representation
has its own strengths and weaknesses, with no single
representation being optimal. For example, implicit
representations are easy to optimize but unsuitable
for modern graphics pipelines. Critically, acquiring
comprehensive real-world 3D datasets, essential for
3D prior learning, is far more difficult than capturing
realistic images, posing a major challenge.

Given the popularity of 3D generation via diffusion
models, this survey aims to provide a systematic
review of recent progress in this field. The use of
diffusion models by existing works can be classified
from two aspects: what data the diffusion process (2D
or 3D) operates on, and whether a pretrained diffusion
model is used. This results in three categories of
recent works: 2D space diffusion with pretrained
models, 2D space diffusion without pretrained models,
and 3D space diffusion. It is important to note that
they also have different requirements for input data.
In methods performing 2D diffusion with pretrained
diffusion models, a 3D model is learned by ensuring
that its renderings lie in the distribution modeled by
the pretrained model. They treat the diffusion model
as a plug-in and do not perform any training of it, so
no additional data is needed. Other approaches learn
diffusion processes on 2D posed images and make
them 3D-aware in different ways, so the synthesized
novel views are still view-consistent. For diffusion
using 3D representations, 3D raw data is needed and
the most common approach is to directly convert
the data into an intermediate representation, e.g.,
triplanes, on which the diffusion process is performed.

As the choice of 3D representation is essential to
diffusion learning of 3D spaces, we review this line of
work according to the representation. A timeline of
representative works for each category can be found
in Fig. 1.

The contributions of this survey are:
• the first comprehensive review of diffusion models

for 3D generation, covering up-to-date research,
• a classification of related methods according to the

data the diffusion process operates on and whether
a pretrained diffusion model is used, and

• suggestions for future research directions for 3D
content generation by diffusion models.

Section 2 considers related surveys and clarifies
the scope of our survey. Section 3 introduces
the basic concepts of diffusion models and 3D
representations. We summarize existing methods
for 3D generation with 2D diffusion or 3D diffusion in
Sections 4–6. Popular datasets used for 3D generation
are summarized in Section 7. Section 8 presents
existing challenges and provides suggestions for future
research. Finally, Section 9 contains the conclusions
drawn from our study.

2 Related surveys

Recent surveys have provided comprehensive
overviews of general diffusion models as well as 3D
generation and reconstruction. In the former category,
Yang et al. [8] summarize the theory of diffusion
models and briefly introduce their applications to
different fields. Zhang et al. [9] review methods
that use text guided diffusion models for image
generation and editing. Although Li et al. [10]

Fig. 1 A timeline of diffusion methods for 3D generation.
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provide a survey of 3D generation with diffusion,
it only includes methods that optimize a scene-
specific 3D representation. Turning to surveys
related to 3D generation, Shi et al. [11] focuse on
approaches that use generative models to directly
model unconditional distributions and conditional
distributions (conditioned on, e.g., image, 3D, or text
inputs) of 3D data. Our survey includes methods that
use diffusion models to manipulate 3D content that
comes in both implicit and explicit representations.
These mainly include methods that use diffusion
models to assist the generation or editing of 3D data
in a per-scene optimization manner, methods that
infer 3D novel views with diffusion guidance, and
methods that use diffusion models to learn the 3D
data distribution from existing datasets.

3 Preliminaries

3.1 Diffusion models

Probabilistic diffusion models are a class of generative
models that convert simple known distributions (e.g.,
a Gaussian) into complex data distributions. They
gradually perturb the input in the forward diffusion
process with Gaussian noise and learn to estimate the
perturbations through variational inference during
the reverse process [4, 12]. Both the forward process
and reverse process are parametrized using Markov
Chains. In notation, given x0 ∼ q(x0), the forward
process q is a fixed Markov chain that adds Gaussian
noise to x0 and generates latent variables x1, · · · ,xT
with the same dimension with a predetermined
variance schedule β1, · · · , βT :

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (1)
Ideally, the final latent variable xT should be

from a standard Gaussian distribution. Therefore,
the reverse process starts denoising from p(xT ) =
N (xT ; 0, I) by learning the Gaussian transitions from
xt to xt−1:

pθ(x0:T ) := p(xT )
T∏
t=1

pθ(xt−1|xt) (2)

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (3)
The training procedure aims to maximize the negative
data log-likelihood. In DDPM [4], Σθ(xt, t) is set
to time-dependent constants and only the mean µ
in the reverse process is trainable. In practice, we
use a trainable network (U-Net) to approximate

the noise ε added in the forward process through
parametrization:

Et,x0,ε

[
‖ε− εφ(

√
ᾱtx0 +

√
1− ᾱtε, t)‖2

]
(4)

Please refer Ho et al. [4] for a complete explanation.
Diffusion probabilistic models are also called score-

based generative models, so can be viewed from a
stochastic differential equation (SDE) perspective [13].
The forward process is expressed as

dxt = −1
2β(t)xtdt+

√
β(t)dωt (5)

where ωt is a standard Wiener process, and dt is an
infinitesimal negative timestep. The reverse process
is also an SDE:

dxt=
(
−1

2β(t)xt−β(t)∇xt log qt(xt)
)

dt+
√
β(t)dω̄t

(6)
where ω̄t is a standard Wiener process in which time
flows backward from T to 0. ∇x log pt(x) is known as
the score function. We can estimate the score for all
t using a neural network, allowing the reverse process
to be determined. See Ref. [13] for more details.

Unless otherwise noted, in this paper, we use xt
to denote the sample with noise for diffusion models
at timestep t, ε for the added noise, and εφ for the
noise predictor. Thus, xt can be a rendered image,
latent variable, or 3D shape, depending on the actual
method.
3.2 3D data representations

The main traditional 3D data representations include
point clouds, meshes, and voxel grids. Point clouds
are a collection of 3D point coordinates and their
attributes (colors). Meshes represent 3D shapes by
storing vertex positions and edge connections. Voxel
grids can be seen as an extension of image pixels,
with each point regularly distributed in 3D space. To
save memory, sparsification techniques such as voxel
hashing are used to prune empty voxels.

With the advance of deep learning, neural fields [14]
have gained in popularity as a way of representing
scene geometry and appearance. Fields refer
to spatial-varying quantities and a neural field
parameterizes a field in part or fully with a neural
network. Chen et al. [15] propose a unified framework
to represent existing neural fields:

s(x) = P
(
N∏
i=1
fi(γi(x))

)
(7)

where γi : RD → RFi is a coordinate transformation,
fi : RFi → RK are the factor fields (features for
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a coordinate), and P : RK → RQ is a projection
function.

∏
denotes the element-wise product of a

sequence of factors. To derive the final observations,
the projection function P may also perform post-
processing steps. For example, in NeRF [7], the
output signal provides per-point color and density
(D = 5, Q = 4), which requires the volumetric
rendering step to produce an image at given
viewpoints. Commonly used neural field components
in Eq. (7) are shown in Fig. 2. For 3D tasks, widely
utilized neural fields and their formulations are listed
in Table 1.

3D Gaussians [19] have appeared as a popular type
of 3D representation since they can provide high-
quality, high-speed rendering. 3D Gaussians represent
3D scenes as a set of Gaussians that contain attributes
of position, color, scale, and opacity, which can be
rasterized into images and optimized with rendering
loss.

Fig. 2 Common neural field components, following Ref. [15].

Table 1 Common neural field 3D representations

Name N γi(x) fi(x) P(x)

NeRF [7] 1 Sinusoidal(x) x MLP(x)
iNGP [16] 1 Hashing(x) Vectors(x) MLP(x)
Triplane [17] 1 Orthogonal-2D(x) 2D-Maps(x) MLP(x)
Plenoxels [18] 1 x 3D-Grids(x) x or SH(x)

4 Diffusion in 2D space with pre-trained
models

Pretrained text-to-image diffusion models are
powerful enough to generate photorealistic 2D images
from text input. Researchers have leveraged this
capability for various 3D generation tasks with
score distillation techniques. We show results from
representative works in Fig. 4 later.

4.1 Preliminary: Score distillation sampling

Dreamfusion [20] learns a 3D scene from 2D pre-
trained text-to-image diffusion models. Given a
datapoint x = g(θ) generated by a differentiable
generator g with parameters θ, Dreamfusion [20]
adds Gaussian noise of level t and turns it into
xt. It then uses a pre-trained diffusion model with
denoising function εφ(xt; y, t) to predict the noise
with text embedding y to update θ. The proposed
score distillation sampling (SDS) is written as

∇θLSDS(φ, g(θ)) = Et,ε
[
w(t)(ε̂φ(xt; y, t)− ε)

∂x

∂θ

]
(8)

ε̂φ(xt; y, t) = (1 + wg)εφ(xt, y, t)− wgεφ(xt, t) (9)

where w(t) is a weighting function, and wg is the
guidance scale between unconditional and conditional
generation. For 3D tasks, θ is the neural field,
mostly represented by a multi-layer perceptron, x
is a rendered image (or latent image) given a random
camera viewpoint, and g represents the volume
rendering process. SDS loss can also be written as

LSDS = Et,ε
[
||x− x̂0||2

]
(10)

where x and x0 are the rendered image and denoised
image respectively. Therefore, optimizing SDS
encourages the renderings of the neural field to be
similar to the generated 2D images of diffusion models
given a text condition t. SJC [21] arrives at the same
training objective from the perspective of estimating
the scores of 3D data with 2D scores. As the pseudo-
ground-truth of SDS is stochastic, LucidDreamer
[22] uses interval score matching that applies DDIM
inversion and DDIM sampling to the 3D renderings,
for more accurate supervision.

VSD [23] further models the 3D representations to
be learned as a distribution and aligns its samples
with the pretrained diffusion model by solving a
variational inference problem. The final loss function
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used by VSD is
∇θLVSD(φ, g(θ)) =

Et,ε,c
[
w(t)(ε̂φ(xt; y, t)− ετ (xt; y, t, c))

∂x

∂θ

]
(11)

where ετ estimates the score of noisy rendered images,
trained with a standard diffusion objective, and c

denotes the camera parameters used for rendering.
Note that both SDS and VSD are typically applied to
2D images since 2D pretrained diffusion models are
well-established and accurate in estimating 2D scores.
However, they are general distillation methods and
can be directly applied to 3D representations given
3D pretrained models, in which case x would be some
3D data.
4.2 Text-to-3D generation

4.2.1 Object level
Dreamfusion [20] and SJC [21] were first to achieve
text-guided 3D generation by using SDS to optimize
MipNeRF [24] and a voxel grid respectively. Most
following works employ a similar framework to that
shown in Fig. 3, which updates a 3D representation
using pretrained diffusion models and improves

the generation quality in various ways, including
the choice of 3D representation, the sampling of
diffusion models, and the choice of diffusion model.
DreamGaussian [25] speeds up SDS optimization into
minutes by using 3D Gaussians.

Magic3D [26] generates high resolution 3D content
in a coarse-to-fine manner with a latent diffusion
model. It first optimizes an Instant-NGP [16] model
with SDS in low-resolution image space. Then it
extracts a textured mesh from it and further fine-
tunes the mesh with a high-resolution latent diffusion
model using SDS again.

TextMesh [27] aims to generate high-quality 3D
content in mesh representation. It directly optimizes
an SDF neural field with SDS to allow easy extraction
of meshes. Further, it uses another diffusion model
conditioned on the renderings from the mesh to re-
texture the mesh with another SDS optimization
stage.

Latent-NeRF [28] also performs SDS in the latent
space. Then it fine-tunes a shallow MLP encoder with
SDS to turn latent information into an image. Latent-
NeRF also allows guiding the generation process with

Fig. 3 (Above) Distilling 3D models from 2D pretrained diffusion models. In each iteration, random Gaussian noise is added to the image
rendering of the 3D scene and a conditional pretrained diffusion model denoises the noisy image. The difference between the added noise and
estimated noise is used to calculate the SDS loss for gradient backpropagation. (Below) Recent works have fine-tuned pretrained diffusion
models to generate multi-view images which can then be directly reconstructed into 3D representations.
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Fig. 4 A gallery of 3D generation results from different categories, obtained with threestudio [86]. Please refer to the Github Repo for
up-to-date results.

coarse shape initialization or colorizing a given mesh
by optimizing its u–v map with SDS.

Fantasia-3D [29] generates disentangled geometry
and appearance of 3D objects. It first represents the
geometry with DMTet and optimizes its parameters
with SDS by using the rendered normal map as the
input to the pre-trained diffusion model. Then, it
optimizes the appearance of the object by predicting

the material parameters of the bidirectional reflectance
distribution function (BRDF) using another round of
image-based SDS.

DITTO-NeRF [30] firstly generates a point cloud
for the input image by depth estimation methods.
It divides viewing angles into inside-boundary (IB)
and outside-boundary (OB) according to whether the
point cloud can be projected to the view. It enforces
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image rendering loss in the IB regions and uses SDS
based on a pre-trained inpainting diffusion model to
generate the OB regions. Finally, a refinement step
is performed to ensure consistency of IB and OB
regions.

3DFuse [31] makes the SDS process 3D-aware
by injecting depth information into the pre-trained
diffusion model. Given a text prompt, it first
generates a 2D image and optimizes the text
embedding e. Then the depth map of the image,
predicted by an off-the-shelf estimator, is injected
into the diffusion U-Net through feature addition. It
also fine-tunes the diffusion model with additional
LoRA layers to adapt it to the embedding e and
maintain semantic consistency.

As SDS approaches based on latent diffusion models
operate at a limited 64×64 resolution, Liao et al. [32]
present a generic approach to achieve more detailed
guidance: besides the SDS loss, it aligns the features
of the input latent information and the predicted
latent information by inputting them into the UNet
decoder of Stable Diffusion [5] and computing the
difference between the multi-level features. It also
uses KL loss to keep the optimized latent information
close to the prior distribution during training.

Perp-Neg [33] aims to overcome the multi-face
Janus problem of text-to-3D generation: the Janus
problem refers to the phenomenon that the generated
3D content may show the canonical view from
multiple viewpoints, i.e., resulting in more than one
face. Perp-Neg resolves this problem by making the
2D diffusion model generate images more conforming
to the view angles. It generates each view with
different positive and negative prompts by making
Eq. (9) view-dependent:

ε̂φ(xt; y, v, t) = εφ(xt, t) + wg

(
ε
posv

φ −
∑
i

wivε
neg(i)⊥

v

φ

)
(12)

ε
posv

φ = εφ(xt, t, ypos,v)− εφ(xt, t) (13)

ε
neg(i)

v

φ = εφ(xt, t, yneg(i)
v ,v

)− εφ(xt, t) (14)
where yv refers to the positive/negative text
embedding for view direction v, ε

neg(i)⊥
v

φ is the

perpendicular component of εneg(i)
v

φ on ε
posv

φ . The
perpendicular gradient prevents the negative prompt
from influencing the semantics of the positive prompt
and makes the generation better conditioned on the
prompts.

HiFA [34] rewrites Eq. (8) to

∇θLSDS(φ, g(θ)) = w(t)
√
ᾱt

2
√

1− ᾱt
(x− x̂1step)∂z

∂θ
(15)

x̂1step = 1√
ᾱt

(xt −
√

1− ᾱtεφ(xt; y, t))

(16)
where x is the latent image. Standard SDS directly
compares the rendered latent image to the latent
image predicted by the diffusion model with one-step
inference. HiFA replaces x̂1step by more accurate step-
by-step estimation. Furthermore, it supervises the
rendered depth using a pre-trained depth estimation
model and regularizes the distribution of NeRF
weights for each ray to generate a crisp surface.
HiFA and DreamTime [35] also study the choice of t
during optimization, opting for a large t during the
initial training iterations and gradually reducing it
to capture fine details.

Building upon previous works, ATT3D [36] was
the first to achieve 3D generation with pre-trained
diffusion without per-scene optimization. It trains a
mapping network to map prompts to NeRFs, allowing
the training of a set of prompts collectively. Latte3D
[37] further scales up ATT3D and achieves much
better quality.
4.2.2 Scene level
To generate 3D scenes with pre-trained diffusion
models, one line of work generates a proportion
of the scene, and then iteratively extends it by
inpainting using novel viewpoints with the help of
depth information. The popular underlying 3D
representations include meshes and neural fields.

SceneScape [38] generates zoom-out trajectories
for a 3D scene from text prompts. It represents
the scene using a unified mesh and outpaints the
mesh iteratively. At each step, a new frame with
depth is projected from the mesh and completed
using a pre-trained text-to-image diffusion model. It
leverages a pre-trained model to predict the depth of
the generated image and further fine-tunes the depth
model for consistent geometry by encouraging the
predictions to be consistent in the projected regions.
Finally, the mesh is updated using the predicted
depth map.

Text2Room [39] generates a mesh-based 360◦ 3D
scene based on pre-trained text-to-image diffusion
models. It has a similar spirit to SceneScape [38],
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because it also maintains a global mesh and
samples at predefined poses to generate the whole
scene by completing RGBD renderings step-by-step.
The difference is that Text2Room performs depth
alignment and mesh filtering to obtain an optimal
next mesh patch for each pose. It also samples
additional poses to fill in the remaining unobserved
regions.

Given a text prompt, Text2NeRF [40] synthesizes
an initial view and estimates its depth with a pre-
trained diffusion model and depth estimation model.
Then it warps the initial view to other viewpoints to
initialize a NeRF scene. Then it renders from novel
viewpoints and adopts diffusion models to complete
the missing regions. Using a depth alignment
step, the newly completed image is added to NeRF
training.

For panoramas, PanoGen [41] generates 360◦ indoor
scenes with recursive outpainting over a single image
generated from the text caption. MVDiffusion [42]
fine-tunes Stable Diffusion by adding attention layers
to generate consistent images across views and stitch
them to panoramas.

Another line of work creates 3D scenes in a
compositional manner, i.e., generating each object
separately and then blending them into a scene.
Given user-specified 3D bounding boxes each denoting
the location and size of an object, Po and Wetzstein
[43] render both images and segmentation maps. The
optimization is still using SDS loss, but the denoising
steps of each semantic region in an image are based
on the text prompt of the corresponding object. Set-
the-Scene [44] and CompoNeRF [45] also generate
3D scenes from 3D bounding boxes, but they have
both object-level and scene-level neural fields. During
the optimization, they either optimize each object
individually or optimize the whole scene with SDS.

4.3 Image-to-3D generation

Pre-trained diffusion models contain 3D knowledge
inherently since they can generate images from
various viewpoints. By exploiting the 3D priors in
them, existing works can reconstruct an object from
only one view or a few views.

Neural-Lift360 [46] and NeRDi [47] lift a single
in-the-wild image to 360◦ views with diffusion
guidance. They use a pre-trained Stable Diffusion
[5] to denoise the NeRF renderings to ensure the

generation is aligned with the input image. They also
incorporate relative depth ranking information from
pre-trained monocular depth estimation to regularize
the geometry of radiance fields. Similarly, RealFusion
[48] achieves 360◦ mesh reconstruction from a single
image using a pre-trained diffusion model. It adapts
the diffusion prior to the input image by using textual
inversion [49] on the augmented images of the input.
Given the customized diffusion model, a coarse-to-
fine NeRF is optimized with SDS and smooth normal
objectives.

To make the synthesized novel views more faithful
to the given view, Make-it-3D [50] proposes a two-
stage optimization pipeline. The first stage extends
NeRDi [47] with an additional CLIP loss to force
the rendered image to look more like the input. The
second stage builds a point cloud and textures visible
points using reference images, and invisible points
from the first stage NeRF, with a learnable deferred
renderer.

DreamSparse [51] achieves view synthesis from
sparse views with a pre-trained diffusion model. It
extracts geometry features from input views with a 3D
geometry module and learns a spatial guidance model
to condition the pre-trained diffusion model with
the extracted features. In this way, the synthesized
images from the pre-trained models are view-
consistent with the input object. Dreambooth3D
[52] lifts a set of casually captured images of
an object to 3D without camera poses. Since
DreamBooth tends to overfit input views, naively
combining it with SDS leads to inconsistent 3D
models. Therefore, DreamBooth3D first partially
fine-tunes a DreamBooth and uses SDS to optimize
a 3D-consistent but not subject-specific NeRF. Then
the renderings of the NeRF are translated to detailed
multi-view subject images using a fully-trained
DreamBooth model. Those images are used to further
fine-tune the partial DreamBooth into a multi-view
DreamBooth for final SDS optimization.

Instead of using frozen models, Zero123 [53]
constructs a synthetic dataset containing paired
images and their relative camera parameters to fine-
tune a pre-trained Stable Diffusion. The training
objective is to synthesize one image using the
other image and relative poses as the denoising
condition. Once trained, the model can generate
new images of the same object under a given camera
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transformation. Once trained, Zero123 can be used as
a pre-trained model for image-to-3D generation with
SDS. Magic123 [54] utilizes Zero123 (precise geometry
but oversimplified texture) as the 3D prior and Stable
Diffusion (detailed texture but imprecise geometry)
as the 2D prior for 3D reconstruction from a single
image. Zero123 can also generate multi-view images
of an object to assist the training of a generalized
single image reconstruction model [55].

Since Zero123 [53] generates images in different
poses separately, results for the same object are
inconsistent in 3D. Following work [56–61] fine tunes
Stable Diffusion to synthesize multi-view images at
the same time and model their connections with
attention mechanisms. The synthesized multi-view
images can be fused into 3D representations such
as 3D Gaussians and meshes using reconstruction
models [62–64]. In a recent development, GECO [65]
distills the multi-view diffusion model into one-step
using VSD [23] and trains a feedforward 3D generative
model that can naturally handles the back-view of
the input image. CAT3D [66] generates a large set
of synthetic views from a multi-view latent diffusion
model conditioned on the input views, and directly
trains a NeRF on those views. Benefiting from large-
scale training, the model also works well on images
with backgrounds.

4.4 3D human and animal generation

For human and animal generation, shape priors such
as parametric human models can be incorporated
into the optimization process to ensure reasonable
geometry.

DreamFace [67] generates personalized 3D faces
using text guidance. It first selects a coarse geometry
from the shape space of a parametric model called
ICT-FaceKit [68]. To achieve detailed geometry, it
renders the coarse mesh with vertex displacements
and normal maps which are learned with SDS. In
the texture generation step, it again uses SDS on
both the latent space and image space similar to
Latent-NeRF [28].

To generate human avatars from text prompts,
parametric models such as SMPL provide an ideal
geometry initialization for the 3D representation.
AvatarCraft [69] optimizes a template avatar
initialized from the SMPL model using SDS, but
introduces a pixel-level silhouette loss to avoid
SDS changing the geometry greatly. DreamAvatar

[70] utilizes two SDSs to optimize a canonical
template avatar and an observation avatar jointly;
the former is obtained by deforming the latter. The
canonical pose minimizes self-occlusion and is easy
to generate. For 3D consistent SDS, DreamWaltz
[71] extracts a body skeleton from SMPL to
replace the pretrained diffusion model with a
skeleton-conditioned ControlNet. TADA [72] further
improves the text-to-human optimization pipeline by
optimizing geometry and texture simultaneously and
introduces animations throughout the optimization
process to make the generated avatar semantically
consistent with SMPL-X so that it can be easily
animated. As an alternative to SMPL, implicit
statistic models like imGRUM [73] are more
compatible with NeRF and are also utilized with
SDS for 3D human body generation and animation.

In addition to generating avatars from text prompts,
other works create them from input images. Given a
single human image, ZeroAvatar [74] first estimates a
SMPL mesh and u-v map. The recovered mesh is used
in two ways: to initialize the density field of NeRF
and to render the depth at novel views. The final loss
terms include depth-guided SDS, RGB loss from the
u–v map, and depth correlation loss. AvatarBooth [75]
creates personalized avatars from casually captured
face or body images. It optimizes NeuS with SDS
with fine-tuned Stable Diffusion models on the input
images.

Pretrained diffusion models can also assist in
the single-view reconstruction of articulated objects.
Farm3D [76] learns an articulated category-level
model using only virtual data generated by Stable
Diffusion. It encodes an input image into an
articulated shape, appearance, viewpoint, and light
direction with a single-forward pass. The encoder is
learned using both SDS loss on sampled virtual views
and reconstruction loss on the input view. ARTIC3D
[77] aims to achieve the same goal with sparse web
images of an animal species instead. However, it
calculates pixel-level gradients with Stable Diffusion.
Specifically, the latent image of a rendered image I is
updated using multiple steps with score distillation
and then decoded to I ′. Pixel-level L2 loss between I
and I ′ is utilized to update the reconstruction module.

4.5 3D editing

Instruct-NeRF2NeRF [78] and Instruct-3D-to-3D [79]
edit a trained NeRF scene with an image-conditioned
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InstructPix2Pix [80] diffusion model. The former
edits the NeRF renderings with InstructPix2Pix given
a text instruction and then uses them as supervision
signals to optimize the NeRF (known as dataset
update). By repeating the procedure, the original
NeRF scene is gradually aligned with the prompt.
The latter contains a frozen NeRF model and a target
model. Both models render the same viewpoint and
the rendering from the frozen model is edited with
InstructPix2Pix. Finally, the edited image and the
rendering from the target model are used to update
the target NeRF with SDS. Edit-DiffNeRF [81] also
edits NeRFs with Instruct-Pix2Pix, but fine-tunes
the diffusion model in the target scene for more
accurate changes and better semantic consistency.
Control4D [82] applies dataset update for dynamic
scene editing and trains a discriminator to mitigate
the issue of inconsistent supervision arising from the
edited dataset.

Other works use the Stable Diffusion model for
editing tasks. RePaint-NeRF [83] first trains a CLIP
feature field in NeRF to select the target object and
then uses a text prompt to edit the selected region
with SDS. DreamEditor [84] automatically locates
the regions to be edited by using the fact that the
attention maps in the pre-trained diffusion model
reflect the relationship between each keyword and a
pixel in the generated image. SDS is only performed
in the editing region for precise editing. FocalDreamer
[85] allows adding independent and reusable 3D parts
to existing 3D models. It optimizes the added parts
in selected regions with SDS by feeding the renderings
of the whole object to pre-trained diffusion models.
Style and geometric consistency losses are applied
to ensure localized change and congruent overall
appearance.

5 Diffusion in 2D space for view synthesis

5.1 View synthesis of 3D objects

To synthesize novel views of 3D objects, current
works learn to make the diffusion process 3D-aware by
exploiting the cross-view relationships in multi-view
data, or using the inductive bias of 3D representations,
such as NeRF.

3DiM [87] learns to denoise a Gaussian-noised
target view by conditioning the 2D diffusion model
with an input view and relative camera pose. It

also uses stochastic conditioning at inference time
for better 3D consistency. Similarly, Chan et al. [88]
also condition a 2D diffusion model on the input
image and the relative camera pose. However, it
incorporates geometry priors by concatenating the
input with a pixel-aligned feature image that is
created by warping input image features to the target
view for 3D consistency.

NeRFDiff [89] jointly trains a triplane-based
PixelNeRF [90] with 3D-aware conditional diffusion to
model the uncertainly of single-image view synthesis.
The diffusion process learns to denoise at the target
viewpoint given PixelNeRF rendering as the condition.
It also uses NeRF-guided distillation to alternately
update the NeRF representation and guide the multi-
view diffusion process.

3DDesigner [91] also consists of a NeRF module
and diffusion module. It concatenates the noised
image with a coarse rendering from NeRF as the
conditional information. It jointly denoises two
images from different viewpoints to enhance multi-
view consistency and computes cross-view feature
interactions in attention blocks.

SparseFusion [92] first learns a diffusion model on
the features extracted from an epipolar transformer to
model the distribution of p(x|π, C), where x is the 2D
image, π is the target pose, and C denotes the input
views and poses. To sample from this distribution, it
distills a NeRF by encouraging the NeRF rendering
gθ(π) to be close to denoised images x̂T :

Ldistillation = Eπ,ε,t[wt‖gθ(π)− x̂T ‖]
RenderDiffusion [93] makes the denoiser 3D-aware

to introduce inductive bias for 3D generation with
only single-view 2D data. It replaces the popular
UNet [94] denoiser by a latent 3D structure, consisting
of a triplane encoder that transforms a single noisy
image into a triplane, and a triplane volume renderer
that renders it back to a denoised 2D image for
supervision. Similarly, Tewari et al. [95] also learn
to generate novel views by denoising one image,
but train on multi-view datasets and condition the
denoising process with renderings using PixelNeRF.
ViewsetDiffusion [96] further jointly denoises multiple
noisy images with multi-view aggregation given any
number of clean images for conditioning, allowing
for sampling of 3D reconstructions. The denoising
function targets reconstruction and rendering of
a 3D volume. DMV3D [97] further scales up
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RenderDiffusion [93] to highly diverse datasets with
the LRM [98] 3D denoiser architecture.

Xiang et al. [99] directly train a 2D diffusion model
on ImageNet [100]. They model the distribution of
3D scenes p(x3d) as the joint distribution of their
multiview renderings:
p(x3d) = p(xπ0 ,xπ1 , · · · ,xπN

)
= p(xπ0) · p(xπ1 |xπ0) · · · p(xπN

|xπ0 , · · · ,
xπN−1)

Then, they learn an unconditional diffusion model to
generate the first view and a conditional diffusion
model with previous views as the condition to
synthesize novel views. To train without multi-view
data, they replace the condition image by the forward–
backward depth-warped target view.

5.2 View synthesis of 3D scenes

Tseng et al. [101] train an image diffusion model to
synthesize a long-term video of novel views from a
single image. The model takes the source view image
and camera poses as the condition and denoises the
image from the target viewpoint. It adds an epipolar
attention layer after each self-attention layer in the
UNet denoiser. Therefore, the denoising process is
augmented by the epipolar features linking source and
target views. They also use stochastic conditioning
and fixed noise in the backward process to reduce
flicker.

Also dealing with view synthesis from a single
image, Yu et al. [102] propose a two-stream
architecture using two U-Nets with shared weights
to process the novel view and the conditioning view.
The two networks interact with each other through
cross-attention layers, which are inserted after every
spatial attention layer. They also incorporate camera
pose information into the queries and keys of the
attention layers.

DiffDreamer [103] uses diffusion models for view
synthesis of a long camera trajectory with only
internet-collected images of nature scenes. It creates
training pairs by projecting the ground truth RGBD
image (Igt, Dgt) to a previous camera pose and
then projecting back to get (Icorrupt, Dcorrupt). The
diffusion model learns to inpaint and refine the
corrupted image (Icorrupt, Dcorrupt) with ground truth
(Igt, Dgt). During inferencing, the sampling is
conditioned on the anchored frame and future frame
to preserve temporal consistency.

6 Diffusion in 3D space

Diffusion in 2D images requires no data or only
images. With available 3D datasets, another popular
line of research directly performs 3D generation with
diffusion models using 3D data, which has several
different representations, e.g., point clouds, meshes,
and neural fields. For these methods, the forward
and reverse diffusion processes are applied to certain
3D representations z. The whole network intends to
directly learn the prior distribution of 3D space and
aims to generate 3D shapes without further training
during inferencing. The main training objective for
the denoising process is similar to that in Section 3.1:

Et∼(0,T ),x0∼q(x0),ε∼N (0,I)
[
‖ε− εθ(xt, t, c)‖2

]
(17)

where c is the condition. Prompt-guided generation,
including text-guided and image-guided, can be
achieved by adding conditions c to the diffusion
training, i.e., the denoiser is conditioned on c. One
main approach utilizes the cross-attention mechanism
to add connections between conditions and denoised
3D representations. Another applies adaptive group
normalization (AdaGN) to combine the embedded
condition with the denoising layers.

It is important to design a proper representation
for diffusion models to learn the prior distribution.
Thus most 3D generation methods using 3D diffusion
contain two stages: they first train a network to
convert the input explicit 3D data (e.g., mesh, point
cloud) to a more usable form such as tri-planes or
latent shape. This step usually includes training an
autoencoder or a VAE architecture supervised by 3D
reconstruction loss or neural rendering loss. Then
diffusion models are utilized to learn the distribution
of the intermediate representation. This procedure
is visualized in Fig. 5. We categorize 3D generation
methods based on which representation the diffusion
process adopts. Representative results are presented
later in Fig. 6.

6.1 3D diffusion using tri-planes

The tri-plane representation is a hybrid explicit–
implicit representation, which is widely used for 3D
tasks. Thus, we first review diffusion models on
triplanes. A triplane consists of three axis-aligned
feature maps with the same resolution N ×N × C,
where N is the spatial resolution and C is the
number of channels. EG3D [17] introduces the
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Fig. 5 A common two-stage pipeline for 3D generation with diffusion models. First, an encoder-decoder network (e.g., VAE) is applied to
learn an intermediate representation (e.g., triplane) of 3D data. Then diffusion models are utilized to learn the prior distributions of this
representation; xt̂ denotes an intermediate timestep. One can thus generate 3D data by sampling from this learned distribution.

tri-plane representation to generate 3D human faces
in an efficient and expressive manner. To obtain
the features of any 3D point, we can project it onto
the three axis-aligned planes to get corresponding
2D features (Fxy, Fyz, Fxz) and then aggregate them
via summation or multiplication. Since the features
contain rich information, they can then be processed
and used in volume rendering or shape reconstruction
using shallow networks, with high efficiency.

Since the N × N × C tri-planes can be viewed
as C channel 2D images, NFD [104] suggests
that we can directly utilize existing 2D diffusion
backbones to generate normalized tri-planes. NFD
first learns a dataset of tri-planes and a shared
decoder that decodes tri-plane images into occupancy
representation on a class of objects. It then trains the
reverse process of the diffusion model on the generated
tri-plane dataset with DDPM. During inferencing, the
tri-plane distribution is sampled and decoded to a
3D shape by the shared decoder.

Rodin [105] also uses diffusion on tri-plane features
for volume rendering of human faces. It uses a
latent representation extracted from image, text,
or random noise to condition the base diffusion
model at a resolution of 64 × 64. Then it further
trains a diffusion upsampler to lift the low-resolution

tri-planes to 256× 256, which helps to generate 3D
structures with high fidelity. The low-resolution
tri-planes serve as the condition for the diffusion
process using 256× 256 tri-planes. Instead of directly
using a 2D convolution as in NFD [104], a 3D-aware
convolution of the three planes is used to reinforce
the cross-plane connections. Eq. (18) shows how this
convolution works in practice, where (.) indicates
mean pooling on an axis.

F
′

xz = Conv2d(concat(Fxz, F(.)z, Fx(.))) (18)
3DGen [106] adopts a VAE structure with tri-plane

features as the intermediate representation. However,
3DGen decodes the tri-plane into an SDF, and then
applies DmTet [107] and NvDiffRast [108] to render
the RGB and depth map from the reconstructed mesh
for rendering-based supervision. The whole pipeline
of 3DGen is pretrained on the Objaverse dataset
[109], which substantially improves the quality of the
generation results.

SSDNeRF [110] unifies the auto-encoding and
diffusion stages of previous methods [106] into a
single-stage diffusion model, thereby reducing the
noise and artifacts introduced by intermediate latent
codes in two-stage training. The training target of
SSDNeRF is to minimize the variational upper bound
on the negative data log-likelihood. The loss function
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consists of two items: a rendering loss to learn the tri-
plane decoder and a diffusion denoising loss to learn
the diffusion priors for tri-planes, as shown in Eq. (19).
x denotes the tri-planes, π is the rendering camera
pose, and y as the ground truth image. SSDNeRF
supports both unconditional generation and image-
based reconstruction with learned diffusion priors.
For reconstruction during inferencing, SSDNeRF fine
tunes the tri-plane with the training loss terms, but
with a lower weight for the diffusion loss.

L = E
[∑

j

1
2 ||y(π)− render(x, π)||2

]
︸ ︷︷ ︸

rendering loss

+

Et,ε
[1

2w
(t)||denoiser(xt; t)− x||2

]
︸ ︷︷ ︸

diffusion loss

(19)

Control3Diff [111] combines the strengths of
diffusion models and GANs for versatile controllable
3D-aware image synthesis using single-view datasets
for a class (e.g., FFHQ, AFHQ). It trains EG3D [17]
to synthesize an infinite number of pairs of the control
signal and tri-planes. Then it adopts a diffusion
model with optional image guidance to jointly learn
the prior distributions of tri-planes and camera poses
of input images. During the inference stage, it allows
additional rendering guidance for camera calibration
and prediction.
6.2 3D diffusion on latent space

Instead of tri-planes, some work encodes 3D objects
or scenes into latent spaces that represent geometry
or texture. The latent representations take various
forms, e.g., 1D vectors or 3D grids, which are
compressed and more suitable for transformer-based
backbones. The diffusion models are thus trained in
the latent space.

DiffusionSDF [112] applies a VAE-based
architecture as the backbone for generation.
It first trains the VAE to encode the input point
clouds into the latent SDF space. It then trains
a DDPM model on the latent representation. To
allow conditional generation from partial clouds
or images, it adds an additional cross-attention
layer in each block of the diffusion model. During
inferencing, it samples latent representations from
a Gaussian distribution and decodes them with the
SDF network. Diffusion-SDF [113] also adopts a
VAE autoencoder to learn latent SDF space, but
it instead encodes patch-level truncated signed

distance functions (TSDF) into voxelized latent
codes and introduces a voxelized diffusion model.
It uses a UniU-Net architecture to replace the
U-Net in DDPM; the former contains 1 × 1 × 1
convolution layers to learn independent patch-focused
information. Spatial transformer networks capture
inter-patch relationships.

3D-LDM [114] adopts a VAE architecture to encode
input SDF objects into compact latent codes for the
diffusion process. It achieves multi-modal conditions
through a cross-attention mechanism and classifer-
free guidance (CFG). SDFusion [115] also employs
conditioned diffusion networks on the latent codes
from SDF inputs, and further improves the quality
of the textures through SDS optimization [20] of
generated geometry.

LION [116] uses a hierarchical VAE with PVCNN
[117] backbones to encode both latent shape and
latent points. It trains diffusion models on both
latent spaces. The regularized latent points are more
effective and expressive compared to raw point clouds,
while the global latent shape is used to augment the
model.

3DShape2VecSet [118] directly optimizes a set
of latent codes to represent 3D objects. It first
maps point clouds to positional embeddings and
encodes them into a set of latent codes through a
cross-attention module. Then the latent space is
regularized with KL-divergence loss. 3Dshape2VecSet
generates final objects by querying the decoded latent
features fi with an attention mechanism, as given in
Eq. (20):

Ô(x) = FC

∑m
i v(fi) exp

(
q(x)Tk(fi)/

√
d
)

∑m
i exp

(
q(x)Tk(fi)/

√
d
)


(20)

EDM [119] is used as the denoising network on the
shape latent space.

Shap-E [120] adopts NeRF, and a signed distance
and texture field (STF) to represent 3D objects.
It learns an encoder to produce the parameters of
NeRF and STF. The encoder first produces a latent
representation of input 3D assets and then decodes
it to MLP parameters. A diffusion prior is learned
on the latent space.

3D VADER learns the denoising process on
normalized 3D latent voxel grids and adopts EDM
[119] in the inferencing step. It first trains the auto-
decoder to decode a robustly-normalized latent voxel
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grid from the input 1D object embeddings. The final
radiance volume representations are extracted from
the latent grid through rendering supervision.

For scene generation, GAUDI [121] utilizes
disentangled latent codes to represent scenes and
camera poses. It first jointly optimizes latent codes
and reconstruction networks with neural volume
rendering losses. In the second step, GAUDI employs
a DDPM model to learn the distribution of the latent
codes. NeuralField-LDM [122] generates real-world
3D scenes with a three-stage pipeline. It first learns
to encode scenes into a neural field with density and
feature voxel grids. Then, the voxel grids are further
compressed to a set of 3D coarse, 2D fine, and 1D
global latent representations. The diffusion model is
trained on the tri-latent representation for 3D scene
generation.

The diffusion process can also be performed in
the latent style space of StyleGAN [123] as in
StyleAvatar3D [124], which applies ControlNet [125]
to introduce view, attribute, and style conditions for
generating stylized images of humans. EG3D [17]
is trained on the data from which image and style
vector pairs can then be sampled. Finally, it applies
the denoising process in the latent space of StyleGAN
to allow 3D avatar generation from single-view image
conditions.

6.3 3D diffusion using implicit representation

Since the emergence of neural fields, implicit
representations have become a popular form of
encoding 3D assets. Existing works have also explored
3D generation using diffusion models on implicit
representations, such as SDF, NeRF, or even MLP
weights.

Yang et al. [130] follow a common two-stage
pipeline and suggest that ReLU-fields are suitable
for NeRF-based 3D generation. They first train the
voxelized ReLU-fields with rendering and density
losses. For the diffusion process, they utilize 3D
convolution to update the U-Net structure used in
DDPM [4], which suits the volume representation
better.

Nikolai et al. [131] utilize a diffusion process
to generate tetrahedral meshes. They adopt
the VAE architecture and use a subdivision-based
convolution and pooling operation for upsampling
and subsampling tetrahedral grids. The diffusion
process is carried out on the signed distance and

displacement stored at the tetrahedra vertices.
Similarly, MeshDiffusion [127] also represents meshes
using tetrahedral grids fitted from random RGBD
views. It applies DMTet [107] to extract meshes
from normalized tetrahedral grids for differentiable
rendering supervision. The diffusion model treats
normalized signed distance values as floats and adds
a refinement step for the deformation vectors to
improve quality.

Hui et al. [132] use neural wavelets to represent
3D objects. They sample grid TSDF and apply
multi-scale wavelet decomposition to generate both
coarse and detailed wavelet coefficients. The diffusion
model is applied to the coarse coefficient grids,
which are refined by a detail predictor module. An
explicit 3D representation can be obtained through an
inverse wavelet transform on the detailed coefficients.
Hu et al. [133] extend this framework for shape
inversion and shape manipulation processes by adding
a latent shape code as the condition in the denoising
stage.

Since a high-resolution SDF grid is both memory
and computationally expensive, LAS-Diffusion [134]
uses a two-stage diffusion network: the first
stage generates a low-resolution occupancy field to
approximate the rough shape and the second stage
generates detailed SDF values inside the occupied
region. To incorporate 2D sketches for conditional
generation, LAS-Diffusion introduces a view-aware
local attention mechanism that uses local patch
features of the input sketch to interact with the voxel
feature via cross-attention.

HyperDiffusion [135] first applies diffusion models
in MLP weight space and generates neural fields by
predicting their weights. It first overfits a set of MLPs
to faithfully represent individual dataset instances.
The parameters are later sent to train the denoising
network. The HyperDiffusion architecture supports
both 3D shape generation and 4D mesh animation
thanks to the flexibility of the weight space design.

DiffComplete [136] leverages diffusion models
with voxelized TSDF and TUDF for 3D shape
completion tasks. It formulates the completion
task as TSDF shape generation conditioned on
incomplete shapes. Instead of using the time-
consuming cross-attention mechanism, DiffComplete
uses an independent conditional branch to encode
the incomplete corrupted shape conditions into the
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Fig. 6 A gallery of 3D generation results from 4 categories of methods performing 3D diffusion. Images with captions indicate text-to-3D
results with specified prompts.

voxelized TSDF. As in ControlNet [125], the condition
branch is merged with the TUDF voxels in the main
branch by simple voxel addition.

For scene-level generation, DiffRoom [137] learns
the denoising process on the cropped sparse room

space with TSDF representation. It adopts a two-
stage curriculum learning strategy, which first uses
TSDF extracted by NeuralRecon [138] and then
Gaussian noise as condition signals to train the 3D
sparse denoising networks. For scene generation,
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DiffRoom splits the whole scene into overlapping
crops and utilizes stochastic fusion on the crops to
generate the final room geometries.
6.4 3D diffusion using explicit representation

Diffusion models applied to explicit representations
largely target point clouds. DPM [139] introduces a
diffusion model to directly generate point clouds with
a target shape code as the condition. It parameterizes
the prior distribution of shape codes p(z) using
a normalizing flow and learns it end-to-end. An
additional loss Lz is added to control the latent
distribution of generated point cloud x0 in the VAE
close to p(z):

Lz = DKL(qφ(z|x0)||p(z)) (21)
Kong et al. [140] extend DPM’s network

architecture for sketch-to-point cloud generation.
They replace the conditional shape codes with sketch
embedding and apply an adversarial loss to further
refine the diffusion process. Later, PVD [141] directly
trains a DDPM on point clouds by using the PVCNN
[117] architecture as the denoising backbone, which
voxelizes the point clouds for 3D convolution. With
the unified 3D structure, PVD can handle both 3D
point cloud generation and completion by varying
training objectives.

Beyond unconditional generation, Point-E [128]
provides the first framework for text-to-point cloud
generation. A 2D image given a text prompt is first
generated as the condition for the denoising process.
It employs a transformer network as the denoising
backbone with both noise inputs and image fed in
as tokens. The generation process is cascaded: a
1k point cloud with the LR diffusion model is first
generated and then a hierarchical upsampling network
conditioned on the base points produces the final 4k
point cloud.

STPD [142] combines sketch and text conditions
to gain better control over point cloud generation.
The sketch and text embeddings are fused through
cascaded attention networks to create geometry and
appearance conditions Cg, Ca. It generates point
clouds by disentangling geometry component g0
and texture component c0. The generation process
contains two stages, each of which is a conditioned
diffusion process: the geometry stage learns the
distribution of pθ1(g0|Cg) and the texture stage learns
pθ2(a0|g0, Ca).

Point clouds can also be used as an intermediate

representation for 3D generation. SLIDE [129]
generates diverse meshes by generating point clouds
first and then reconstructing surfaces from them.
It uses a point cloud autoencoder consisting of an
improved PointNet++ [143] to encode input point
clouds as sparse points and hierarchical point up-
sampling modules to recover point clouds of the
original size. Then it learns the distributions of
point positions and point features with two separate
DDPMs for controllable generation.

HOLODiffusion [144] learns a diffusion model over
the distribution of 3D voxel grids using 2D images
as supervision. Specifically, it generates intermediate
3D-aware features conditioned only on the posed
input images and applies 3D UNet to remove the
noise added to this intermediate representation.
The denoising loss is defined as the photometric
error between rendered and input images. Based
on HOLODiffusion, HOLOFusion [145] additionally
trains an upsampling diffusion model to increase the
quality of generated shapes.

DiffFacto [146] further studies part-based point
cloud generation and editing with diffusion models.
The whole pipeline consists of three parts: it first
learns the latent codes z from each part of shape S.
Then it fits the distribution of part transformation
P (T |z) conditioned on part latent information.
Finally, DiffFacto models the conditional distribution
P (S|z,T ) to sample part-level point clouds with a
cross diffusion network, in which the cross attention
layer pays attention to to m (number of parts) tokens
each being the concatenation of (xt, z, Ts, j, t). The
training objective of the diffusion model is:

Lrecon =
m∑
j=1

∑
x∈Sj

Eε,z,t[||ε− εφ(xt, z, Ts, j, t)||22]

(22)
Other than using point clouds, DiffRF [126] was the

first approach to apply diffusion models to directly
generate neural fields. It utilizes an explicit voxel grid
as a NeRF to represent 3D objects. It first fits the
explicit grid to input multi-view images using neural
volume rendering. When training diffusion models, it
combines the denoising loss in diffusion models and
weighted RGB rendering loss in each time step using
a time-conditioned 3D UNet.

GVGEN [147] and GaussianCube [148] train
diffusion models to generate 3D Gaussians. Both
found that directly generating all attributes of 3D
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Gaussians is challenging and proposed to anchor the
Gaussians’ positions first.

7 Open-source 3D datasets

3D datasets are essential for diffusion-based 3D–3D
generation: diffusion models need sufficient training
data to learn the prior distributions of 3D
representations. Here we list and categorize open-
source datasets widely used in 3D generation. Some
[105, 120, 128] rely on their own sizable collections
of 3D object data.

7.1 Datasets of objects

ShapeNet [149] (including ShapeNetSem and
ShapeNetCore) is the most widely used dataset
in diffusion-based 3D–3D generation applications.
It contains nearly 3M textured objects in 3135
categories. Its subsets, such as cars, chairs, and
planes, are frequently used in per-class generation
tasks. Acronym [151] provides watertight meshes
across 262 categories, produced from the original
ShapeNet dataset, making it easy to convert them to
other representations, e.g., SDF.

ModelNet [150] also provides a large number of
models for 3D deep learning. It contains 151,128
objects belonging to 660 unique categories and is
thus widely used in various 3D tasks, e.g., 3D object
classification.

Objaverse [109] is a recent large 3D dataset with
nearly 800k textured objects and corresponding
captions. It has been widely utilized in pretraining
neural networks for various 3D tasks, such as 3D
generation [106] and 3D segmentation [170].

BuildingNet [152] provides nearly 2k building
objects with more than 513k annotated mesh
primitives.

RedWood [153] contains more than 10k objects
along with 23M images scanned from the real world.

YCB [154] reconstructs meshes from 600 scanned
RGBD images and contains 75 high-quality objects
in total.

PhotoShape Chairs [155] provides more than 29,000
synthetic relightable chair objects with photorealistic
materials.

Amazon Berkeley Objects (ABO) [156] contains
more than 140k models of 63 kinds of products on
Amazon shopping websites. Like ShapeNet, diffusion
models are usually trained with a single category such

as tables from the ABO dataset for 3D–3D generation
tasks.

Datasets with shape–text pairs can be used
in training diffusion models conditioned on text
prompts.

Text2Shape [157] provides captions for chair and
table subsets in ShapeNet and contains nearly 75k
shape–text pairs. A hybrid sampling strategy is
applied to voxelized 3D mesh objects.

ShapeGlot [158] also provides more than 70k
utterances for the ShapeNet chair subset. Each
prompt is accompanied by additional distractors.

Some methods utilize 2D–3D reconstruction
datasets for image-conditioned 3D–3D generation.

Pix3D [159] provides well-aligned real-world image–
shape pairs containing 10,697 images and 395 shapes.
Each 3D shape is associated with a diverse set of
images and has a precise 3D pose annotation.

FFHQ [123] and AFHQ [171] provide a large
number of various high-resolution human and animal
faces respectively. They are widely used in GAN-
based generation tasks and can be used as sources
of image-conditioning for diffusion models. FFHQ
contains 70,000 images varying of age, ethnicity,
etc. AFHQ comprises AFHQ-Cat, AFHQ-Dog, and
AFHQ-Wild, each containing 15,000 images.

Co3D [160] focuses on providing a tremendous
range of real-world objects. It contains almost
19,000 videos in 50 categories, with accurate camera
parameters checked manually.

MVImgNet [161] provides multi-view images of
219,188 real-world objects in 238 classes. Each
object also contains annotations, including masks
and scanned point clouds.

Among the above, Objaverse [109] is currently
the most used dataset for object generation. Co3D
[160] and MVImgNet [161] are also becoming popular
because they contain backgrounds.

7.2 Datasets of scenes

For scene generation, popular 3D scene datasets
include the following.

Matterport3D [162] provides 10,800 panoramic
views of 90 large real world indoor scenes. It contains
comprehensive annotations of view camera poses,
surface reconstructions, and 2D & 3D semantic
segmentation results.

Realestate10K [163] provides timestamps and
camera trajectories for more than 10 million images
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Table 2 Datasets for diffusion-based 3D object generation

Dataset Year Data type Categories Size Source of 3D data

ShapeNet [149] 2015 mesh with texture 3135 3,000,000 synthetic
ModelNet [150] 2015 mesh 660 151,728 synthetic
Acronym [151] 2021 watertight mesh 262 8872 synthetic
Objaverse [109] 2023 mesh with texture — 800,000 synthetic
BuildingNet [152] 2021 mesh 5 2,000 synthetic
RedWood [153] 2016 mesh — — scanned
YCB [154] 2015 mesh 5 75 scanned
PhotoShape Chairs [155] 2018 mesh 1 29,133 synthetic
ABO [156] 2022 mesh 63 147,702 reconstructed
Text2Shape [157] 2019 voxel-text pair 2 15,038 synthetic
ShapeGlot [158] 2019 mesh-text pair 1 7000 synthetic
Pix3D [159] 2018 image-mesh 9 395 synthetic
Co3D [160] 2021 videos 50 18,619 scanned
MVImgNet [161] 2023 image-point cloud 238 219,188 scanned

Table 3 Datasets for diffusion-based 3D scene generation

Dataset Year Data type Size Source of 3D data

Matterport3D [162] 2017 images with annotations 10,800 views with 194,400 images scanned
Realestate10K [163] 2018 images 10M images website
CLEVR [164] 2017 images with questions 100k images, 853k questions synthetic
LHQ [165] 2021 images 91,963 images nature
ARKitScenes [166] 2021 images 5047 captures scanned
VizDoom [167] 2016 synthesized scenes 1 configurable scene synthetic
Replica [168] 2019 mesh with texture 18 scenes scanned
Carla [169] 2017 synthesized scenes 2 scenes synthetic

from videos on YouTube based on SLAM algorithms.
It collects images in the real estate category, and
features both indoor and outdoor scenes.

CLEVR [164] is a diagnostic dataset aiming at
testing visual-question answering (VQA) systems in
visual reasoning tasks. It contains 100k rendered
images of annotated 3D objects and nearly 853k
unique questions.

LHQ (Landscapes High-Quality) [165] contains
91,693 high-resolution natural landscapes, each with
resolution higher than 10242. The raw images were
collected from Unsplash and Flickr websites and then
filtered by a blacklist of keywords and a Mask R-CNN
network in turn.

Vizdoom [167] is a Doom-based platform for
reinforcement learning and provides a simple scene
setting.

Replica [168] consists of 18 high-quality real-world
indoor scene reconstructions, each containing high-
resolution meshes, HDR texture and per-primitive
semantic class and instance information.

ARKitScenes [166] provides more than 5k indoor
scans with rendered images and depth maps along
given trajectories, captured by Apple’s LiDAR scanner.
Reconstructed surfaces and corresponding object
bounding boxes are also accessible in ARKitScenes.

CARLA [169] is an open-world simulator
specifically designed for studying autonomous driving.
CARLA is implemented based on the UE4 engine
and contains two scenes containing 40 buildings, 16
vehicles, and 50 pedestrian models.

8 Future directions

In this section, we highlight current challenges and
potential research directions for 3D generation by
diffusion models.

8.1 Generation quality

Unlike 2D generative models that can synthesize
realistic images almost indistinguishable from real
ones, the quality of generated 3D output still remains
unsatisfactory.
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Methods that extract 3D representations from
pretrained 2D diffusion models have results fully
determined by these 2D models. By harnessing the
capabilities of these 2D models, current methods can
synthesize detailed and fairly realistic 3D models of
diverse kinds of objects, pose variations and artistic
styles. They can even deal with intricate and abstract
textual prompts, such as “a robot and dinosaur
playing chess”. Nonetheless, these approaches are
susceptible to issues like the multi-face Janus problem,
which is known to be associated with the training
data distribution of the 2D diffusion models.

Methods trained on 3D data are often constrained
to generating relatively simple objects and exhibit
over-smooth textures due to their heavy reliance on
existing 3D datasets, which, unfortunately, comprise
mostly basic objects. Also, these methods are mostly
trained on a single class of objects and have not
demonstrated the ability to generate in-the-wild
objects. Recently, Objaverse-XL [172] was introduced
to include over 10 million diverse 3D objects. Future
works might explore how to utilize this large dataset
to push the limits of 3D generation. This requires
work on several issues, including architectural design,
data representation, and training strategy.

Only a few methods deal with scene-level
generation. Existing works have explored
compositional generation, iterative generation, and
synthesizing a long trajectory from a 2D image.
However, they often require dedicated design (depth
warping, inpainting, etc.) to create a valid scene. This
process is not always successful: the resulting geometry
may contain artifacts like holes or distortion, and
the texture may be over-smooth or view-inconsistent.
Moreover, it is more challenging to generate reasonable
geometry for outdoor scenes, as they are more complex
and have drastic depth continuities. Further, there is
no work to train on 3D scenes, to generate scene assets
directly, possibly because of insufficient scene-level
data and high computational load. Future work can
explore scene generation with flexible user control,
material decomposition from lighting, and better
generation quality.

8.2 Efficiency

Utilizing pretrained diffusion models for 3D scene
generation introduces certain challenges in terms of
both efficiency and resource requirements. These
methods necessitate per-scene optimization for many

iterations for every provided prompt, a procedure
that can potentially take hours to achieve satisfactory
geometry. Moreover, they often require more than
20 GB of GPU memory. Although ATT3D [36]
turns optimization into direct inference, generation
is limited to the training set and it cannot handle
arbitrary prompts. Multi-view generation followed
by a reconstruction pipeline has greatly speeded
up the generation process, with GECO [65] further
achieving feedforward generation by distilling multi-
view diffusion models into one-step. However, the
results are still limited by multi-view generation.
As for methods training on 3D representations, the
training process often takes several days to converge
since the diffusion process uses high-dimension data.
Also, many of them include various data processing
steps, e.g., training an auto-encoder for 3D shapes.
After training, 3D shapes can be obtained via direct
inference.

8.3 Evaluation protocol

Evaluation of 3D generation has always been
challenging since there is no ground truth data to
compare with. No direct metric can measure how
“good” a 3D model is. Methods trained on 3D datasets
often use Fréchet Inception Distance (FID) and
Inception Score (IS) to evaluate image quality, and
use Coverage Score (COV) and Minimum Matching
Distance (MMD) with Chamfer Distance (CD) to
evaluate geometric quality. However, these metrics
are limited to simple, single-class objects.

For zero-shot text-to-3D generation, existing
methods use CLIP R-Precision to measure the
consistency of rendered images and text prompts.
There are no suitable metrics to quantify view
consistency and geometry quality of 3D assets. It
is also essential to have a diverse and representative
test set covering different objects and scenes to fairly
evaluate the capabilities of the generative models.
Recently, T3-Bench [173] partly addresses this problem
by providing a benchmark of 100 prompts and
employing text-image scoring models (e.g., CLIP) to
detect the consistency of rendered 2D views.

8.4 Towards real-world applications

Generated 3D assets are not yet suitable for practical
real-world applications. Unlike 2D generation, where
output images can be easily edited using well-
established photo-editing tools, 3D generation
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involves the optimization of geometry and structure
through neural networks, making the editing of
generated assets more challenging. Moreover, these
assets may not fully encompass the logical and
operational nuances of 3D modeling as understood
by human experts. Additionally, current methods for
3D generation lack the necessary flexibility to allow
precise control and editing of the finer details of the
output. Consequently, modifying AI-generated 3D
models is still challenging, especially for amateurs.

9 Conclusions

3D generation has captured significant attention in
recent years and has made notable advances through
the evolution of diffusion models. In this survey,
we have systematically reviewed and summarized
recent works on 3D generation utilizing diffusion
models. We first outlined the foundational concepts
of diffusion models and 3D data representations.
Subsequently, we reviewed existing works according
to how they use diffusion and whether they exploit
pretrained diffusion models. We discussed the
advantages and disadvantages of different works,
indicating the architecture, and showed results for
representative methods. Additionally, we summarized
widely employed datasets for training 3D generative
models. We finished by outlining potential directions
for future research. As the first survey on 3D
generation with diffusion models, we hope this paper
offers researchers a concise overview of relevant works
and the path of development. We also hope our
survey will inspire more researchers to delve into this
domain and contribute more advanced techniques.
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Kontschieder, P.; Nießner, M. DiffRF: Rendering-
guided 3D radiance field diffusion. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 4328–4338, 2023.

[127] Liu, Z.; Feng, Y.; Black, M. J.; Nowrouzezahrai,
D.; Paull, L.; Liu, W. MeshDiffusion: Score-
based generative 3D mesh modeling. arXiv preprint
arXiv:2303.08133, 2023.

[128] Nichol, A.; Jun, H.; Dhariwal, P.; Mishkin, P.;
Chen, M. Point-E: A system for generating 3D
point clouds from complex prompts. arXiv preprint
arXiv:2212.08751, 2022.

[129] Lyu, Z.; Wang, J.; An, Y.; Zhang, Y.; Lin, D.;
Dai, B. Controllable mesh generation through sparse
latent point diffusion models. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 271–280, 2023.

[130] Yang, G.; Kundu, A.; Guibas, L. J.; Barron, J. T.;
Poole, B. Learning a diffusion prior for NeRFs. arXiv
preprint arXiv:2304.14473, 2023.

[131] Kalischek, N.; Peters, T.; Wegner, J. D.; Schindler, K.
TetraDiffusion: Tetrahedral diffusion models for 3D
shape generation. arXiv preprint arXiv:2211.13220,
2022.

[132] Hui, K. H.; Li, R.; Hu, J.; Fu, C. W. Neural
wavelet-domain diffusion for 3D shape generation.
In: Proceedings of the SIGGRAPH Asia Conference
Papers, Article No. 24, 2022.

[133] Hu, J.; Hui, K. H.; Liu, Z.; Li, R.; Fu, C. W. Neural
wavelet-domain diffusion for 3D shape generation,
inversion, and manipulation. ACM Transactions on
Graphics Vol. 43, No. 2, Article No. 16, 2024.

[134] Zheng, X. Y.; Pan, H.; Wang, P. S.; Tong, X.; Liu,
Y.; Shum, H. Y. Locally attentional SDF diffusion for
controllable 3D shape generation. ACM Transactions
on Graphics Vol. 42, No. 4, Article No. 91, 2023.
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J.; Jaśkowski, W. ViZDoom: A Doom-based AI



28 C. Wang, H.-Y. Peng, Y.-T. Liu, et al.

research platform for visual reinforcement learning.
In: Proceedings of the IEEE Conference on
Computational Intelligence and Games, 1–8, 2016.

[168] Straub, J.; Whelan, T.; Ma, L.; Chen, Y.; Wijmans,
E.; Green, S.; Engel, J. J.; Mur-Artal, R.; Ren, C.;
Verma, S.; et al. The replica dataset: A digital replica
of indoor spaces. arXiv preprint arXiv:1906.05797,
2019.

[169] Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.;
Koltun, V. CARLA: An open urban driving simulator.
In: Proceedings of the 1st Annual Conference on
Robot Learning, 1–16, 2017.

[170] Xue, L.; Yu, N.; Zhang, S.; Panagopoulou, A.; Li, J.;
Mart́ın-Mart́ın, R.; Wu, J.; Xiong, C.; Xu, R.; Niebles,
J. C.; et al. ULIP-2: Towards scalable multimodal
pre-training for 3D understanding. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 27081–27091, 2024.

[171] Choi, Y.; Uh, Y.; Yoo, J.; Ha, J. W. StarGAN
v2: Diverse image synthesis for multiple domains.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 8185–8194,
2020.

[172] Deitke, M.; Liu, R.; Wallingford, M.; Ngo, H.; Michel,
O.; Kusupati, A.; Fan, A.; Laforte, C.; Voleti, V.;
Gadre, S. Y.; et al. Objaverse-XL: A universe of 10M+
3D objects. arXiv preprint arXiv:2307.05663, 2023.

[173] He, Y.; Bai, Y.; Lin, M.; Zhao, W.; Hu, Y.; Sheng, J.;
Yi, R.; Li, J.; Liu, Y. J. T3Bench: Benchmarking
current progress in text-to-3D generation. arXiv
preprint arXiv:2310.02977, 2023.

Chen Wang is a Ph.D. student in
the University of Pennsylvania. He
received his bachelor and master degrees
in computer science from Tsinghua
University. His research interests include
3D/4D generation and reconstruction.

Hao-Yang Peng is currently a master
student in the Department of Computer
Science and Technology, Tsinghua
University. His research interests include
computer graphics, 3D understanding,
and 3D generation.

Ying-Tian Liu received his B.S. degree
in computer science and Technology
from Tsinghua University in 2020,
where he is currently pursuing a Ph.D.
degree in the Department of Computer
Science and Technology. His research
interests include font representation, 3D
generation, and diffusion modeling.

Jiatao Gu obtained his Ph.D. degree
from the Department of Electrical and
Electronic Engineering, University of
Hong Kong in 2018. He obtained his
bachelor degree from the Electronic
Engineering Department, Tsinghua
University in 2014. He is currently a
machine learning researcher at Apple

AI/ML (MLR). His research interests cover both representation
learning and generative models for multiple modalities,
including natural languages, images, 3D, and speech.

Shi-Min Hu received his Ph.D. degree
from Zhejiang University in 1996.
He is currently a professor in the
Department of Computer Science
and Technology, Tsinghua University.
His research interests include digital
geometry processing, video processing,
rendering, computer animation, and

computer-aided geometric design. He is the Editor-in-Chief
of Computational Visual Media, and is on the editorial
boards of several other journals, including Computer Aided
Design and Computer & Graphics. He is a senior member of
ACM, and a Fellow of IEEE, CCF, and SMA.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons license and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

To submit a manuscript, please go to https://jcvm.org.


