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Abstract
commodity depth cameras has many applications in
computer graphics, computer vision,
However, due to the presence of noise and erroneous
observations from data capturing devices and the
inherently ill-posed nature of non-rigid registration

Reconstructing dynamic scenes with

and robotics.

with insufficient information, traditional approaches
often produce low-quality geometry with holes, bumps,
and misalignments. We propose a novel 3D dynamic
system, named HDR-Net-Fusion,
which learns to simultaneously reconstruct and refine
the geometry on the fly with a sparse embedded
deformation graph of surfels, using a hierarchical deep

reconstruction

reinforcement (HDR) network. The latter comprises
two parts: a global HDR-Net which rapidly detects
local regions with large geometric errors, and a local
HDR-Net serving as a local patch refinement operator
to promptly complete and enhance such regions.
Training the global HDR-Net is formulated as a novel
reinforcement learning problem to implicitly learn the
region selection strategy with the goal of improving
the overall reconstruction quality. The applicability
and efficiency of our approach are demonstrated using
Our
method can reconstruct geometry with higher quality

a large-scale dynamic reconstruction dataset.

than traditional methods.
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1 Introduction

3D reconstruction is a key technique in computer
graphics with various applications in virtual and
augmented reality and animation. In recent years,
many advances have been made in both reconstruction
quality and speed. Since the early success of
KinectFusion [1], scanning with a commodity RGB-D
camera and reconstructing the captured geometry in an
online fashion have become commonplace. Subsequent
work has either improved system scalability to support
larger scenes and finer details by introducing new
persistent data structures [2-4], or focused on enhancing
reconstruction quality through accurate frame-to-
model registration [5-7].

While research on reconstructing and modeling
static indoor scenes [8] has matured in the past few
years, reconstructing dynamic objects (e.g., humans,
animals, and other freely moving objects) still remains
an open problem in both the graphics and robotics
communities (referred to as dynamic SLAM [9-13]).
Given an input sequence recording a non-rigid
deforming object, the goal of dynamic reconstruction
is to recover the moving object’s underlying shape in a
canonical pose as well as the deformation field for each
frame so that the geometry at each instant of time can
be recovered. The seminal work of DynamicFusion
[14] described a general pipeline adopted by many
other algorithms: by parameterizing the per-frame
deformation as a warp field defined on a sparse set of
transformation nodes skinned from the full geometry,
the underlying shape can be registered to the depth
observations at a particular time by solving a non-
rigid iterative closest point (NR-ICP) problem [15],
yielding the transformation for every node. To further
improve robustness, many industrial and academic
solutions use dedicated hardware [16, 17], or exploit
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Fig. 1 HDR-Net-Fusion simultaneously reconstructs and performs patch-based geometric refinement in an online fashion. Unlike traditional
reconstruction methods, it can automatically complete missing regions and refine noisy patches, improving the overall reconstruction quality.

Yellow regions indicate refined patches.

a common deformable template [18, 19] as a prior to
regularize the final result. On the other hand, multi-
view reconstruction systems like Fusion4D [5] and
FusionMLS [20] leverage more complete observations
from a large number of cameras to reconstruct the
geometry with higher quality.

However, reconstructing dynamics is
inherently an ill-posed problem because the solution
space for occluded regions which are not observed
by any camera can be infinitely large [21]. Various

scene

regularization terms, such as as-rigid-as-possible
constraints, are used to tackle this problem to some
extent, but they are not always appropriate to real-
world scenarios. Another challenge is the low-quality
output provided by the capture device, which tends
to contain noise and erroneous depth observations,
resulting in artifacts in the final reconstructed model
To address the above
challenges, we pursue a data-driven framework based
on state-of-the-art deep learning techniques, which
can be easily integrated into an existing dynamic
reconstruction pipeline, to enhance the fusion quality.

Deep neural networks (DNN) have shown their
applicability to a wide range of graphics applications

such as holes and bumps.

such as shape completion [22, 23],
registration [24, 25],
estimation [26, 27]. Recently, 3D deep learning has
also gained ever more attention in reconstruction
applications [28]. However, there are few attempts
to embed deep models directly into reconstruction
systems, primarily due to efficiency and generalization

geometric
and flow/correspondence
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considerations.  Furthermore, in online systems
where succeeding frames rely directly on previous
fusion results, deep models directly operating over
the already fused geometry [23, 29] cannot utilize
intermediate fusion results, and it is impossible to
recover from any catastrophic tracking failure in the
reconstruction system.

In order to maintain system efficiency while exploiting
the power of deep learning models, we present HDR-Net-
Fusion, a highly-efficient dynamic 3D reconstruction
system based on surfel representation [30], which can
reconstruct and refine dynamic scenes simultaneously
with a hierarchical deep reinforcement network, called
HDR-Net. The core of HDR-Net consists of two parts:
a Global-HDR-Net and a Local-HDR-Net. The global
net first considers the overall geometric structure of
the current model, and determines those local patches
which may have poor quality, potentially leading
to bad registration results for future frames. Then,
the local net fixes such detected regions, performing
patch-based geometric refinement using a data-driven
neural network. We formulate the training of the
global HDR-Net as a reinforcement learning problem:
the optimal region selection strategy is implicitly
learned to minimize the overall reconstruction error,
considering both short-term and long-term loss during
the fusion process. Our system is empirically shown
to be accurate, robust, and efficient. As far as we
know, this is the first work to integrate deep neural
networks into reconstruction using a reinforcement
learning approach.
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In brief, this paper makes the following con-
tributions:

e the first efficient hierarchical deep reinforcement
network integrated with real-time dynamic multi-
view 3D reconstruction,

e a reinforcement learning model for efficient and
progressive selection of region to be fixed, and

e a deep neural network for high quality local
reconstruction refinement.

2 Related work

2.1 Dynamic reconstruction

Inferring dynamic scene geometry remains an open
research topic. Some work [18, 31-34] adopts strong
semantic scene priors (e.g., a human body or hand
template) to facilitate accurate correspondence and
Other methods [14, 35-37] instead
choose to aggregate and denoise geometry in a
canonical static space, and only track the per-frame
deformation field over time, without knowledge of

registration.

the reconstructed scene beforehand. To tackle the
inherent ambiguity of the deformation field, and
achieve better reconstruction fidelity, Refs. [5, 6, 36]
introduce sparse image feature tracking, silhouette
constraints, and albedo inference into the non-linear
optimization to make tracking more robust, while
Refs. [38, 39] bypass the correspondence estimation
stage by imposing divergence constraints over the
entire deformation vector field, and Refs. [17, 40]
give dedicated hardware designs for obtaining cleaner
and more complete depth and texture information.
Readers are referred to Ref. [41] for a comprehensive
literature review. Our approach introduces deep
neural models to efficiently learn geometric priors
from data for higher fusion quality.

2.2 Point set deep networks

For our surfel-based representation of the reconstructed
geometry, we apply deep networks which directly
consume point clouds. PointNet [43] and its variants
[44-46] are a standard choice for encoding point set
features while providing a good description of multi-
scale details. The work in Ref. [47] is the first point set
decoder combining fully-connected and deconvolution
layers. In order to enforce a uniform structure onto
the generated point set, FoldingNet [48] and AtlasNet
[49] use one or more uniform grids to condition the
shape descriptor for shape generation. The designs of

various deep point set networks support a variety of
applications in both graphics and vision, such as point
upsampling [29, 50] and shape completion [23, 51].

2.3 Deep reinforcement learning

Traditional reinforcement learning aims to learn
from past experience and make better decisions in
a principled way. The successful combination of
deep neural networks and reinforcement learning
algorithms is capable of dealing with higher-
dimensional state and action spaces which were
previously intractable [52]. Deep reinforcement
learning has various applications in video games [42],
generating animation [53], and indoor navigation
[54]. A prominent approach is provided by the Deep
Q-Network (DQN) [42] and its variants [55, 56],
which approximate value functions with off-policy
learning. Another line of approaches is based on
policy gradients or actor-critics, where the model
directly learns a stochastic policy [57, 58]. Our work
formulates dynamic reconstruction as a Markov
decision process and applies DQN to learn how to
achieve minimum reconstruction error. We believe
this is the first application of deep reinforcement
learning in dynamic reconstruction pipelines.

3 Overview

Our HDR-Net-Fusion takes sequential depth maps
captured using several commodity RGBD cameras
as input and progressively reconstructs the geometry
of the dynamic scene for every frame. As shown in
Fig. 2, during the testing phase of our algorithm,
for each incoming frame, the warping field which
best aligns the current depth observations and the
reference geometry is first found, and then a traditional
fusion process is applied by our basic reconstruction
system (Section 5). After that, the Global-HDR-Net
is applied to the embedded deformation nodes
to compute an expected reward for each node
(Section 6.3). The node with the highest expected
reward is selected and the local surfel patch
surrounding that deformation node is fed into the
Local-HDR-Net, which locally refines the patch
geometry and completes missing areas (Section 6.2).
The refined patch is then integrated into the reference
geometry maintained by the reconstruction system
to improve the quality of reconstruction and assist
future tracking and registration.
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Fig. 2 Overview of our reconstruction system. During testing, the deformation nodes G; of the live geometry S; are fed into the Global-
HDR-Net; the local patch St’" with the highest expected reward is fed into the Local-HDR-Net for refinement. The refined patch S'tm replaces
the original geometry and is fused into the whole model, which is used for registering the next incoming frame. To train the global and local
hierarchical networks, we first supervise Local-HDR-Net with groundtruth full patches, and then we fix its weight and train the Global-HDR-Net

represented as a point-set-based DQN [42].

4 Notation and scene representation

The dynamically reconstructed scene is represented
by a set of deformation nodes G = {g™ € R?} and
a set of surfels with neighborhoods S = {s’, N'}. S
is a dense reconstruction of the entire scene, while
the nodes in G are scattered sparsely over the surface
represented by the surfels. Each surfel s' = (p?, n’,r?)
is represented by its center p’ € R?, normal n' € R3,
and radius r* € R. A neighbourhood set NV i CGis
attached to each surfel, initialized as the nearest K
neighbours of s* among all deformation nodes g™ in
G. Similarly, a neighbourhood set N C G can be
built for all the deformation nodes to establish their
spatial relationships.

For each frame ¢ we compute a warp field W; =
{¢;* € SE(3)} defined at each node in G, where ¢;"
is the transformation applied to g in frame t; it is
represented using dual quaternions [59]. Let G' =
{g™ € R3} be the transformed version of G where
g;" = q;"-g"™. The surfels skin the deformation nodes

2 ’E‘N$vlsllssﬁvlz|¥é‘§ @ Springer

and the transformation for each surfel is found by
interpolating nearby node transformations as ¢! =
5 e, Wimdi"s where wim = exp(—[p' — g™ 3/0%),
o representing the node sampling distance [37]. We
denote the transformed version of the surfels at frame
t after applying §; by S; = {s{, N'}, s = (p},nj, 1),
where p} = ¢;-p*, and n} is the normal n* transformed
by the rotation part of ¢} only.

5 Basic reconstruction system

5.1 Design

The design of our basic reconstruction system is
inspired by Ref. [37] and illustrated in Fig. 3. The
initial surfels S are called the reference geometry
and the up-to-date surfels S; are called the live
geometry. For each frame, W, is determined and
the new surfels introduced in the current frame are
appended to the live geometry; matched surfels are
updated according to the running mean integration
protocol [30]. The live geometry is then warped back
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Fig. 3 Pipeline of the basic reconstruction system. For each incoming
frame, we first forward warp the reference geometry into live geometry
according to the current warp field, and then a new deformation
field is found to align the reference geometry and depth observation.
After that, the depth observation is fused with the new live geometry.
Finally, we warp the live geometry back to the reference geometry.

to the reference geometry which provides a canonical
shape representation.

5.2 Energy function

A key step in dynamic reconstruction is to find the per-
frame warp field W;, which is solved by minimizing
the following energy, consisting of a data term, a
correspondence term and a regularization term:

E(Wt) = Edata(wt)+>\cEcor(Wt)+>\rEreg(Wt) (1)

where A\. and A, are balancing weights. The data
term:
Edata Wt Z Z ”ndl v pdi“’) |2 (2)

v=1ieVy

is a depth-to-plane ICP error summed across all V/
input views per frame, where V} is the visible surfel
index set for the current W, from the v-th view, and
di’” is the corresponding depth observation of the
i-th surfel found by re-projecting s! into the v-th
camera view, transformed by the camera extrinsic.
The correspondence term is

Eeor(Wy) = Z >

v=1 (st,ut)EC”

Py — P> (3)

which is a distance between two sparsely related
points found by global patch collider [60] and C} is
the correspondence set containing tuples of matched

surfels s¢ and pixels u! for the v-th view. D, is the
t

3D point re-projected from pixel u! in view v. The

Z Z lgi" —qi" -

gmegneN™
is an as-rigid-as-possible constraint encouraging

regularization term:

reg Wt m ”g (4)

nearby nodes to share the same transformation.

5.3 Challenges

Generally, our basic reconstruction system works well
on simple datasets; special cases like topology changes
and tracking failure can be fixed by re-initialization
[37]. However, without any prior knowledge about the
dynamic scene structure, it is still very challenging
to track fast motions and much information is lost
during re-initialization. The situation becomes worse
when there are erroneous depth observations or when
parts of the dynamic structure are occluded in any
views.

6 HDR-Net: Hierarchical deep reinforce-
ment network for dynamic reconstruction

6.1 Concept

To address the challenges faced by the traditional
reconstruction system discussed in Section 5, repair of
the erroneous and occluded parts is necessary, while
the efficiency of the reconstruction system should
also be guaranteed. We thus propose a hierarchical
reinforcement network (HDR-Net) that first finds
the to-be-fixed regions (Global-HDR-Net) efficiently
using reinforcement learning algorithms and then

fixes these regions by exploiting the power of deep
neural network (Local-HDR-Net).

6.2 Local-HDR-Net
6.2.1 Network architecture

For each frame, given a selected deformation node
g/* from Global-HDR-Net, we gather all surfels
influenced by that node as S/ == {si|g™ € N’} and
feed that local patch into the Local-HDR-Net. Its job
is to generate 5’;“, a completed and de-noised version
of §

(i) as the network is applied to the reconstructed

. Two design requirements exist for our model:

geometry on a per-frame basis, the model should be
lightweight, requiring minor additional computation,
and (ii) in order to resolve the inherent ambiguity of
point set completion, knowledge of the entire scene
geometry should be taken into consideration.

We therefore propose a hybrid encoder—decoder
structure using the order-agnostic PointNet [43] as
the backbone, as shown in Fig. 4. To integrate global
geometric knowledge, we use G; as a summary of the
current coarse shape: it gives a good global shape
approximation which can effectively summarize the
overall scene structure to the network.

@ ’ENSIVIEIISSI(';,YI-gRlégAS @ Springer



424

H.-X. Song, J. Huang, Y.-P. Cao, et al.

by M
— MLp
— MLP >
sm — MLP > 3 ¢
=
o I e @
<>
T we L :
g v D < ./m
6 [ }— ww »:rg =1
. DeCony sm

Fig. 4 Local-HDR-Net model. The network takes the local surfel
patch and all deformation nodes as input. The concatenated latent
feature vector is decoded using fully-connected and deconvolution
layers.

In the encoder part of our model, G, and S are first
encoded separately, extracting features with respective
point-shared MLPs. As the encoded feature of each
point in G;, we take its globally aggregated feature
vector as well as the point feature vector for g;*.
These two feature vectors are then concatenated with
the aggregated per-point feature of S,Z“. The overall
aggregated latent representation of the local region now
contains information summarizing the patch geometry
in its global context.

In the decoder, we find that using a classic fully
connected and deconvolution combination [47] generates
the best results while still allowing real-time processing.
Deformation-based decoders [48] easily lead to
over-smoothed surfaces lacking detail, while implicit-
function-based decoders [22] involve heavy sampling
computations during inferencing. The direct output
of our model is simply the 3D surfel center position’s
offset to the selected node &%, which is easier to learn
than the surfel normal, given its spatial continuity.

6.2.2  Loss function

We use the earth-mover distance (EMD) as the loss
function to train the network:

Z ||pt

zeSt"L

5
= SEIE )

where pi = o + g™ is the center position of each
output surfel in world coordinates. ¢ is a bijection; the
best linear assignment expressed by the min operator
can be computed efficiently using the approach in

Ref. [47]. p is the groundtruth surfel center.
6.3 Global-HDR-Net

6.3.1 Problem formulation

For each frame ¢, Global-HDR-Net aims to select the
node g;"* for the subsequent local patch refinement
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Fig. 5 Reinforcement learning for training Global-HDR-Net.
The reconstruction system as well as Local-HDR-Net serve as the
environment while Global-HDR-Net is the agent whose task is to select
a deformation node in G; to be refined by the Local-HDR-Net for each
frame.

operation described in Section 6.2. One could choose
to refine more than one node, or in the extreme case,
all nodes in one single frame. However, too many
passes of network inferencing will drastically affect
the system’s real-time performance. In fact, as the
output reward is not expected to vary much given
subtle changes in the input node positions, all nodes
with high reward will be eventually picked up in time
based on the high capturing frame rate. By instead
performing inferencing on one node at a time, we
distribute the computation across the entire session
so that speed is guaranteed while still not preventing
any nodes from being chosen.

One simple strategy for this module could be to
always select S} with the worst geometric quality.
However, a greedy algorithm will not necessarily
lead to a globally optimal result as it does not
consider possible future registration error and the
empirical performance of Local-HDR-Net. We
instead pursue an algorithm that is aware of both
short-term and long-term reconstruction quality
and takes the properties of both the underlying
dynamic reconstruction system and Local-HDR-Net
into account.

We this problem using
reinforcement learning (RL) which implicitly model

solve ideas from
the environment using existing experience gained
through trial and error. A natural analogy can be
made between Global-HDR-Net and a reinforcement
learning agent. The dynamic reconstruction system
and the local net serve as the environment, which
receives an action (a deformation node g;") from
the network, performs internal fusion and local
patch refinement, and emits the reconstructed

result as the new observation. The rewards for
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the action performed can be modeled by the score
of reconstruction quality. By choosing different
actions at each timestamp, the Global-HDR-Net
agent influences internal state of the system and all
succeeding reconstruction steps.

The target of RL is to learn an optimal policy which
can be later executed during inferencing. The optimal
policy maximizes the expected return along the
state transition path, which, in our case, effectively
minimizes reconstruction error over all time steps.

From a theoretical point of view,
propositions have to be met for the above formulation

two key

to be meaningful. Firstly, the reconstruction system
should obey the Markov property, where the state
of the current step is solely dependent on the
previous step’s state. Secondly, an appropriate
choice of the deformation node can be made solely
from the configuration of G;. The first proposition
is naturally satisfied because for each frame, the
depth observation is integrated only with the fused
geometry from the previous frame. Also, we have
found that regions with poor reconstruction quality
often have highly complicated or mostly occluded
parts, which to a certain degree justifies us in
assuming the second proposition to be true.

6.3.2  Learning algorithm and network architecture

We employ DQN [42], which uses an efficient off-policy
value-function based approach, as our reinforcement
learning algorithm. DQN aims to learn the Q-
function (expected reward given state and action)
through past experience, and approximates Q(st, )
using a deep neural network (i.e., the Q-Network) to
model the high-dimensional state and action space.
Here we use s; and a; to denote the state and action
for frame t. Specifically, s; represents the positions
of global nodes G; up to frame ¢t and a; is the
integer index m of the selected deformation node
in G;. By enforcing Bellman equality and minimizing
temporal difference error §;, the Markov process of
the environment can be precisely modeled by the Q-
function and our final policy can be greedily selected
as 7 (s;) = argmax, Q(s¢,a) so that in each frame
t we maximize Y p_,v" “try, where 4 > 0 is the
discount factor, r; is the reward for frame ¢t and T is
the number of total frames.

Following Ref. [42] we define the temporal difference
error as

04(0) = Q(s1, ar; ©) = (re +ymax Q(sp41, a5 P)) (6)

where O is the parameter of the policy deep network
and @ is the parameter of the target deep network.
During training, we execute the reconstruction
system with Local-HDR-Net several times and gather
(st,as,r¢,8¢41) tuples. Here, the actions a; are
chosen using an e-greedy policy which interpolates
between the currently best found policy #* and a
completely random policy with factor e. It can be
proved that this strategy converges to an optimal
policy, balancing exploration and exploitation in
state space. We store multiple state-action-reward
tuples across different episodes in a common replay
memory. Mini-batches are then sampled from the
replay memory to train the policy network parameter
O using back propagation, so that §2(©) is minimized.
@ is usually fixed and updated to © only every few
episodes to guarantee stable training.

We choose PointNet++ [44] as our Q-network. It
takes in point set G; at frame ¢t and the numbers of
local surfel patches ;™ (m € G;) as input and predicts
the Q-value, i.e., the expected reward for each point
(possible action).

The reward r; is taken as the negative chamfer
distance D, defined as

1 ) )
Di=— E min ||p* — p’
‘Sp‘p pJ'eSgH ||2
P

teS,
1 o

s > min [[p* - p’|l2 (7)
gl pies, P'EoP

where S, are the surfel positions of the current
geometry using the reconstruction system and S,
is the groundtruth reference geometry.

7 Results and discussions

In this section, we introduce the experimental
setup for implementing our system, give results and
comparisons, and validate the design of our method.

7.1 Experimental setup

7.1.1 Dataset

Our experiments used sequences from the Human10
dataset [4] to test our algorithm. This dataset
contains 10 long sequences of several human actors
performing various actions, of which 9 are publicly
usable. In Human10, each sequence was recorded
using 4 fixed-position 512 x 512 resolution RGB-D
cameras distributed uniformly around a 360° viewing
The frustum of each depth camera covers
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a partial view of the entire human body. The
limited sensor quality, leading to severe depth error
and loss, and many fast large motions as well as
topology changes, present very challenging data to
the reconstruction system, resulting in very frequent
tracking loss and re-initialization. To measure
reconstruction quality,
groundtruth 3D mesh reconstructed using a free-
viewpoint-video [61] capture system.

To wverify the generalization of the network,
we split the 9 sequences into training sequences
(human1/2/4/6/9) for HDR-Net and testing
sequences (human0/3/7/8).  Weights for both
Local-HDR-Net and Global-HDR-Net were learned
and cross-validated solely from the training frames.
In order to train Local-HDR-Net, patch-level surfel
and deformation node data were generated. We first
generated surfels and nodes from depth observations
every single frame without warping, to simulate

the dataset provides a

the artifacts caused by re-initialization and camera
quality. On the other side, we used Poisson disk
sampling to sample equally-spaced surfels over the
groundtruth mesh. We then gathered surfels from
both the reconstruction results and the groundtruth
surrounding each node to form a complete patch,
using a ball query, forming a local patch training
pair for the supervised learning of patch completion.
Additionally, we balanced the distribution of training
pairs by their completeness score, defined as the
portion of groundtruth surfels closer than a certain
threshold to its nearest neighbour in the partial
surfel patch (extracted from the input depth
map). Empirically we found better overall system
performance can be achieved with this balanced
dataset, most of whose training pairs would otherwise
be almost complete.

7.1.2  Training protocol

We use a common supervised training strategy
to optimize the Local-HDR-Net using the dataset
described above: an AdaGrad optimizer is used
with a learning rate of 1073. The training of
Global-HDR-Net is based on 200 randomly selected
consecutive frames from each episode.
frame, we randomly sample a state-action-reward
tuple batch from the replay memory and optimize ©
with the RMSprop optimizer. The network weight @

For each

is updated to © every 3 episodes. During execution of
the e-greedy policy, we start with 90% probability of

{@ IN$VL§S§Y'§|¥§AS @ Springer

selecting random nodes and decrease the probability
exponentially to 5% with a 200 frame decay rate. The
discount factor is set to v = 0.999. In total, we train
for around 160 episodes to get a fairly convergent
result. The loss curve is shown in Fig. 6.

To ensure fair evaluation of system performance,
all input frames are never seen by either network.
Specifically, among the only four sequences
(human0/3/8/9) which contain RGB information
and can achieve a good result in multi-view
sequences’ tracking, we choose human9 for training
Global-HDR-Net. Considering the dependency of
Global-HDR-Net’s training on Local-HDR-Net’s
performance, Global-HDR-Net would learn non-
generalizable policies if Local-HDR-Net is too
familiar with the sequence we train Global-HDR-Net
on. Therefore, we only take humanl/2/4/6 for
Local-HDR-Net training and evaluation, excluding
human9.

7.1.3 Implementation details

We implemented our multi-view reconstruction
system in C++/CUDA. The training code for both
Local-HDR-Net and Global-HDR-Net is written
using PyTorch. We interfaced the reconstruction
system and the deep network so that both training
and inferencing are tightly coupled and trained
effectively end-to-end. The algorithm was tested on a
workstation with an Nvidia Titan RTX graphics card,
running the reconstruction pipeline, Local-HDR-Net
and Global-HDR-Net simultaneously.

In practice, we find that Local-HDR-Net does
not guarantee perfectly smoothed output, which
may degrade overall system performance. Hence we
separately adopt a post-processing step to directly
reject bad local net output Sf,. This post-rejection
step finds all nearest neighbour pairs in S‘ﬁl and
computes the dot product of normal vectors of the
pair. This generated surfel patch is rejected if the

—0.0130

—0.0135

—0.0140

Reward (m)

—0.0145

~0.0150 |
) 20 40 60 80 100 120 140 160
Epoch

Fig. 6 Variation of the average reward per epoch during the training
process of Global-HDR-Net.
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mean value of all dot products is less than ¢, which
can guarantee the smoothness of the surfels we add.

In addition, the number of fixed nodes in each
frame can be adjusted in practice to achieve better
quality. Since the Global-HDR-Net can output the
expected reward of all nodes, we can select several
nodes within an acceptable range instead of the best
one and fix them one by one so that we can refine
a necessary number of nodes every frame while still
enabling real-time performance.

In the presence of fast motion, the tracking module
may fail. We detect this abnormality by checking
the residuals of the registration solver and perform
re-initialization [5, 37].

7.1.4 Parameter selection
Parameter choice for the reconstruction system is
application dependent. To effectively track and

recover human geometry, we empirically set the
reconstruction parameters in Section 5 to A, = 2.3

and A. = 1.3 while the node sampling distance [37]
o = 0.04 cm. The post-processing rejection threshold
€ is set to 0.9.

In terms of network structure, our Local-HDR-
Net encodes surfels in 3[” using a shared MLP
with sequentially 32, 64, and 256 channels, encodes
each point in G, with 32, 64, 256 channels, and
transforms the concatenated latent feature into two
patches of 256 3D points with FC and DeConv
layers separately. The Global-HDR-Net downsamples
input deformation nodes into 256, 64, and 16 points
sequentially with set abstraction layers and the local
feature is interpolated using a feature propagation
layer. The input nodes G; are padded to a minimum
size of 400.

7.2 Overall performance

We present some qualitative results for our entire
HDR-Net-Fusion framework in Fig. 7. Compared to
results without HDR-Net, combining our hierarchical

Fig. 7 Selected frames demonstrating the overall reconstruction quality of HDR-Net-Fusion. Top to bottom: human0, human3, human8 from
Humanl0. Each pair shows the reconstructed result without (blue) and with (red) HDR-Net. Our algorithm successfully identifies missing or

noisy regions and refines them reasonably.
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network can effectively complete and refine missing
or inaccurate regions of the fused model. Leveraging
the geometric prior of the underlying scenes using
our carefully-designed deep network, a plausible
completion can be generated, filling in holes in
occluded regions (e.g., body parts partially hidden
by moving arms) or wrongly-observed regions (e.g.,
regions with dark hair whose depth cannot be
accurately measured by the sensor).
initialization caused by large registration errors, most
of the fused model is deleted, which can be quickly
fixed by our model and subsequent registration
artifacts can be minimized. Table 1 compares the

During re-

number of re-initializations required by systems with
and without HDR-Net. When there are frequent re-
initializations caused by large motions, our repair
can prevent further subsequent registration artifacts,
leading to a significant reduction in the number of
re-initializations.

A close-up of the reconstructed geometry is shown in
Fig. 8. The regions of the actor’s head and shoulders
contain holes as a result of the erroneous observation
depth, while the region behind his left arm is empty
Both of the
artifacts can be effectively fixed by our method.

The behaviour of our algorithm can be further
analyzed by visualizing the expected reward computed

because of a recent re-initialization.

Table 1 Number of re-initializations during reconstruction by our
framework without or with HDR-Net. Our method can reduce re-
initialization especially when re-initialization is frequent

Sequence Without HDR-Net With HDR-Net
HumanO 20 13
Human3 15 11
Human8 7 6

Original Ours

Fig. 8 Close-up comparison of geometry reconstructed by the basic
method and our method. HDR-Net can resolve both artifacts caused
by erroneous depth observations and incompleteness caused by re-
initialization.
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by the global net, answering the questions of what the
Global-HDR-Net has learned and why it is useful in
our setting. As shown in Fig. 9, Global-HDR-Net
can find places with holes and bumps efficiently and
accurately. In addition, it tends to repair regions of
the model’s boundaries such as the shoulders and feet.
This is valid in the sense that these parts are more
likely to move rapidly later and need to be refined
to make the tracking more reliable. Otherwise, it
will be harder to track a broken arm, as we can
see in Fig. 7, leading to frequent re-initialization
as shown in Table 1. Presumably, as the input to
our global net only contains the deformation nodes
for the current frame, the model implicitly learns
to predict the potential node motions given the
static pose and jointly considers both spatial and
temporal cues when making decisions. Again, the
policy is implicitly learned for lower reconstruction
error, which is hard for a hand-crafted heuristic to
imitate as demonstrated in Section 7.5.

7.3 Speed

Our reconstruction system takes about 25 ms per
frame for a single-view sequence of Human10, and
more time for the image pre-processing as it uses
multi-view sequences, which can be parallelized if
there are multiple processors. The average inferencing
time is about 2 and 4.5 ms for Local-HDR~Net and
Global-HDR-Net, respectively, adding little overhead
to the underlying reconstruction. This is due to the
lightweight design of our deep models and the scalable
surfel representation. In conclusion, our system can
reach 25 Hz with 5 nodes fixed per frame. Taking the
parallel running of Local-HDR-Net into consideration,
the process could be made even faster.

Expected reward

(b) ©

Fig. 9 Expected reward for the deformation nodes computed by
Global-HDR-Net (superimposed on the surfels). Since the Q-value’s
interval for each sequence is not uniform, we use relative coloring,
nodes in blue and yellow having relatively lower and higher values.



HDR-Net-Fusion: Real-time 3D dynamic scene reconstruction with a hierarchical deep reinforcement network 429

7.4 Comparison with the traditional method

To demonstrate the advance of our framework
over traditional reconstruction methods, we also
reconstructed the test data with SurfelWarp [37]
for each single perspective to make a comparison
with our method. Figure 10 presents several selected
frames from the sequences reconstructed by both
SurfelWarp and our system. The result shows
our method can refine holes and bumps effectively,
which is impossible for traditional methods without
correct input.

reconstruction result with higher quality than

iR

Fig. 10 Selected frames from the test set demonstrating the single-
view performance of our framework (red) compared with Ref. [37] (blue).
Our method provides results with richer features and fewer artifacts.

Therefore, our system can give a
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traditional methods when there are heavy noise and
erroneous depth observations. In addition, broken or
disconnected legs and arms are quickly completed,
confirming our conclusion in Section 7.2.

7.5 Global-HDR-Net comparison

To test the performance of Global-HDR-Net and

to show that our network actually learns effective

information during its training, we set up two

competing agents executing different polices.

e Random: nodes are uniformly sampled from G;.

e Heuristic: we first remove all candidate nodes not
satisfying the following criteria:

— the number of surfels related to the node
should be greater than 20;

— the mean Euclidean distance from each surfel
to the node should be smaller than 0.08;

— the surfel confidence maintained within the
reconstruction system, representing the point’s
stability and reliability, should be greater than 2.0.

The above criteria ensure Local-HDR-Net acquires
sufficient information for inferencing.

Then the eligible node with fewest surfels is selected
by this policy since patches with fewer surfels should
be given higher priority for refinement.

The performance of the policies are compared using
the quality of the reconstructed model computed
using two-way chamfer distance as defined in Eq. (7).
Figure 11 shows both qualitative and quantitative

Heuristic Ours

[’}

- o
o Error (cm)

Fig. 11 Comparisons of different policies of node selection on the human0/3 from Humanl0. The leftmost figures plot sorted errors across the
entire test sequence (i.e., the smaller the better). The error map based on the groundtruth model is placed on the front of each geometry

reconstructed by different policies.
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comparisons over two of the Humanl0 sequences.
Results show that the manually designed heuristic
policy leads to better reconstruction quality than the
random policy most of the time, but the effect is not
strong or particularly stable. Interestingly, we find
that the random policy can sometimes lead to worse
results than the simple reconstruction system without
Local-HDR-Net. This is because that some randomly
selected nodes may contain too much noise or have
a low completeness score, so their corresponding
complete geometry is too challenging for Local-HDR-
Net to recover, generating many noisy outliers. In the
contrast,our policy provides an effective refinement
to the geometry. Clearly, choosing the correct node
is as important as the geometry refinement process,
which needs careful handling.

Compared to our policy, which outperforms all
baselines and is learned with the direct goal of
minimizing reconstruction error, the heuristic policy
is the closest competitor but is unaware of the
behaviour of Local-HDR-Net and the underlying
reconstruction system. It is non-trivial to manually
build a spatiotemporally aware criterion as analyzed
in Section 7.2.

7.6 Local-HDR-Net comparison

Local-HDR-Net mainly focuses on completing and
refining local patch geometries. We compare it with
three baselines:

e FoldingNet [48], whose decoder is designed by
concatenating sampled points on a uniform grid
with the global feature vector. The network learns
how to deform such a uniform grid to the desired
shape; surface smoothness is guaranteed.

e The Point Completion Network [23], employing
a coarse-to-fine completion strategy
aggregating multiple deformable grids to
assemble the final completed shape.

e A variant of Local-HDR-Net, lacking the branch
taking in the scene deformation nodes G;. This
variant is used to test the utility of the scene

and

structural guidance.

All baseline models and Local-HDR-Net were
trained for 200 epochs. Network hyper-parameters
including model architecture and learning strategies
were separately tuned for each model to give best
cross-validation performance.

For evaluation we use the earth mover distance
(Eq. (5)) between prediction and groundtruth surfel

" IN$VL§S§Y'1I¥%§AS @ Springer

positions as our metric. Distance error is plotted
for different ranges of patch completeness (from 0.0
to 1.0) in Fig. 12. As there will be much noise and
error in the actual reconstruction, we also tested the
performance of the networks when Gaussian noise
with a standard deviation of 5 mm is added in the
For
patches with low completeness (< 0.1), most methods
find it challenging to infer missing fine details due
to loss of information. In addition, patches with too
much noise will also lead to a bad result. This also
justifies our strategy of rejecting patches with too
few surfels and returning a negative reward: this
explicitly discourages the global net from choosing
overly challenging patches for the local net.
Compared to the baselines, our Local-HDR-Net
yields much smaller distance errors in most cases
and exhibits better stability in the case of noisy
input. Figure 13 renders results qualitatively in the
form of surfels. FoldingNet [48] can generate smooth

normal direction of each surfel of the input.

surfaces, but its uniform grid parameterization leads
to distorted boundaries and the deformation in
complex areas is unnatural. The Point Completion
Network [23] assembles the surface from many
smaller patch grids, resulting in overlaps and uneven
distribution of surfels. It is unsuitable for small-scale
geometry refinement. Our baseline without nodes
completely discards the scene structural guidance,
i.e., the global context, which is very important when
the patches’ information is very limited or contains
much noise.

0.06 B Point completion network
FoldingNet
NE 0.05 Local-HDR-Net w/o nodes
o mmm | ocal-HDR-Net
9]
2 0.04
8
0
©
« 0.03
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>
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- ‘ ‘ | I |
0.00

203, ok s
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Fig. 12 Comparison with different Local-HDR-Net baselines for
patches with different completeness scores. The last two columns show

the average EMD loss of all patches without and with artificial noise,
respectively.
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Fig. 13 Qualitative comparison to Local-HDR-Net baselines using
randomly selected patches from our dataset. Error maps on the last
two rows are overlaid on the predicted patch S;™.

7.7 Generalization

To demonstrate the ability of our system to generalize
on real world scenes, we also selected some sequences
from the DeepDeform dataset [7] and sequence
human?7 from the Humanl0 dataset [4] to test our
method. Results are shown in Fig. 14. Our method
can fix artifacts and achieve better results than a
traditional method [37]. Furthermore, in addition to
the human body, our system can fix the artifacts in
other objects as well.

7.8 Limitations

There are two typical limitations of our method:
Firstly, as shown in Fig. 15(a), although our Local-

Fig. 14 Reconstruction results of sequences from DeepDeform
dataset [7] and Human10 dataset [4] (bottom-left two). Compared to a
traditional method [37] (blue), our method (red) can complete objects
other than the human body and real scenes including interaction of
people and things like a bag or ball.

Fig. 15 Limitations of our method. In each pair we show the original
reconstructed model in blue and ours in yellow.

HDR-Net can provide good refinement for most
model parts, it still remains challenging to learn
features of complicated and subtle structures like
hands. A possible reason is that it is hard for the
network to represent all features of such a large batch.
Narrowing the range of a single patch when the
structure is complicated may provide a better result.
Furthermore, a more powerful deep neural network
with self-attention mechanisms [62] could be adopted
to learn more discriminative features for point cloud
completion.

Secondly, as shown in Fig. 15(b), selecting a
constant number of nodes per frame can lead
to problems since the model’s completeness is
continuously changing during reconstruction. For
some models already sufficiently complete, Global-
HDR-Net will still select some completed patches
to refine, resulting in computational inefficiency
and even leading to worse results. A more adaptive
node selection strategy could be applied by rejecting
previously chosen nodes or selecting nodes by
considering their predicted completeness.

8 Conclusions

This paper has presented HDR-Net-Fusion, a novel
dynamic reconstruction system using a hierarchical
deep reinforcement network to improve reconstruction
quality. Its applicability and effectiveness have
been experimentally demonstrated using a large-scale
dynamic fusion dataset. Our approach formulates
the global selection of a local geometric patch for
refinement in terms of reinforcement learning and
uses a point-based neural network to complete and
improve the local geometry. We hope this work
can inspire future work pursuing better dynamic
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reconstruction quality using powerful deep learning
and reinforcement learning algorithms.
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