
Computational Visual Media
https://doi.org/10.1007/s41095-020-0195-3 Vol. 7, No. 1, March 2021, 87–101

Research Article

ClusterSLAM: A SLAM backend for simultaneous rigid body
clustering and motion estimation

Jiahui Huang1, Sheng Yang2, Zishuo Zhao1, Yu-Kun Lai3, and Shi-Min Hu1 (�)

c© The Author(s) 2020.

Abstract We present a practical backend for stereo
visual SLAM which can simultaneously discover
individual rigid bodies and compute their motions in
dynamic environments. While recent factor graph based
state optimization algorithms have shown their ability
to robustly solve SLAM problems by treating dynamic
objects as outliers, their dynamic motions are rarely
considered. In this paper, we exploit the consensus of 3D
motions for landmarks extracted from the same rigid body
for clustering, and to identify static and dynamic objects
in a unified manner. Specifically, our algorithm builds a
noise-aware motion affinity matrix from landmarks, and
uses agglomerative clustering to distinguish rigid bodies.
Using decoupled factor graph optimization to revise their
shapes and trajectories, we obtain an iterative scheme to
update both cluster assignments and motion estimation
reciprocally. Evaluations on both synthetic scenes and
KITTI demonstrate the capability of our approach, and
further experiments considering online efficiency also
show the effectiveness of our method for simultaneously
tracking ego-motion and multiple objects.

Keywords dynamic SLAM; motion segmentation;
scene perception

1 Introduction
Perceiving and modeling surrounding environments

1 BNRist, Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China.
E-mail: J. Huang, huang-jh18@mails.tsinghua.edu.cn;
Z. Zhao, wingedkuriboh@126.com; S.-M. Hu,
shimin@tsinghua.edu.cn (�).

2 Alibaba A.I. Labs, Hangzhou 311121, China. E-mail:
shengyang93fs@gmail.com.

3 School of Computer Science and Informatics,
Cardiff University, Cardiff, CF24 3AA, UK. E-mail:
LaiY4@cardiff.ac.uk.

Manuscript received: 2020-04-09; accepted: 2020-09-04

are the foundation of navigating modern autonomous
things (AuT), which is achieved by simultaneous
localization and mapping (SLAM) using onboard
sensors. With booming demand for service robots and
self-driving cars, SLAM now faces more challenging
scenarios, e.g., low-cost sensors which introduce
considerable noise when used in complicated dynamic
scenes.

Recent advanced visual SLAM approaches applicable
to dynamic scenes can be divided into two categories
according to their treatment of dynamic components:
exclusion [1–4] or segmentation [5–8]. While the first
category chooses to exclude these components to ensure
robust camera ego-motion tracking, the latter category
segments these components into multiple instances
(i.e., rigid bodies). Although it is acceptable to
discard minor moving components in an almost static
environment, most scenarios including autonomous
driving and multi-robot collaboration [9] require
explicit motion information about the surroundings
to help with decision making and scene understanding.
In such cases, segmentation approaches are preferred
over exclusion solutions.

Existing segmentation-based dynamic SLAM
systems detect and model dynamics through either
semantics from deep learning [6, 7, 10] or motion
consistency [5, 11]. Deep neural networks have
shown their effectiveness for object detection and
semantic segmentation [12, 13] in the past few years.
However, when applying them to SLAM systems,
the problems are two-fold. Firstly, they can only
detect movable a-priori dynamic categories (e.g., cars
or people) but cannot recognize arbitrary moving
objects. Secondly, the performance of such models
heavily depends on the available computing resources,
leading to deployment issues on restricted platforms
(e.g., embedded computing devices).

87

88 J. Huang, S. Yang, Z. Zhao, et al.

However, methods which exploit motion con-
sistency for segmentation [5, 8, 11, 14] achieve
acceptable performance without such problems.
These solutions aim to find inconsistencies in
landmark observations between adjacent frames.
Current methods discover these inconsistencies
by identifying outliers which appear to violate
predefined motion models, and have a high error
residual. However, such work does not sufficiently
utilize the information calculated during the SLAM
process, especially tracked long-term 3D motions,
which can be effectively used to obtain better
segmentation by considering motion consistency.

In this paper, we take a different approach
to discovering motion inconsistencies. Our key
observation is that motions of the dynamic com-
ponents in a scene are the basis of landmark drift, and
so we cluster their motions according to rigidity over
time. This allows us to determine underlying rigid
bodies simultaneously with maximum-a-posteriori
(MAP) estimation in the backend.

Compared to the frontend, using the SLAM
backend provides the convenience of globally
discovering and processing long-term scene
characteristics, facilitating the fusion of historical
information and hence having the potential to
provide more accurate motion segmentation results.

In summary, we revisit the potential of a SLAM
backend, and propose an approach which can
distinguish individual rigid bodies through their
locally consistent but globally inconsistent 3D
motions. The proposed backend for stereo cameras,
which we call ClusterSLAM (Algorithm 1), iterates
two sub-modules for cluster assignment and motion
property estimation. The main advantages of our
proposed algorithm are:
1. In contrast to recent SLAM backends, our

algorithm clusters rather than excludes dynamic
landmarks in the scene, and further estimates their
rigid motions.

2. Measurement uncertainties of keypoints are taken
into account in both clustering assignments and
motion property estimation, to improve the
accuracy of both.

3. We use chunks of input frames for consensus
clustering and a decoupled factor graph optimiza-
tion procedure to maintain overall system efficiency.

A conference version of this paper exists in Ref. [15].

This journal version extends it by providing additional
odometric evaluations on the KITTI [16] dataset, and
qualitative results not in the original paper. We also
have published our synthetic dataset to facilitate
research in the community.

2 Related work
2.1 Visual SLAM in dynamic environments
As noted earlier, exclusion and segmentation are the
two main techniques for visual SLAM in dynamic
environments. Many exclusion solutions [3, 17]
utilize externally computed information such as
optical flow to prune outlier observations so as to
achieve more accurate ego-motion estimation, while
others [1, 2, 18] instead choose to add a robust M-
estimator into the MAP optimization framework
to automatically down-weight noisy observations.
Alternatively, segmentation methods like Refs. [19–
21] use tracked sparse features to perform motion
consistency analysis and motion segmentation; dense
approaches taking RGBD input [5–8, 22] combine the
registration residual of dense model alignment and
geometric features for enhanced segmentation and
tracking. Further techniques for dynamic SLAM are
summarized in Ref. [23].

2.2 Multibody motion segmentation
Previous methods for motion segmentation are mainly
based on subspace factorization techniques [24, 25],
statistical modeling, and sampling [26–28], epipolar
or trilinear constraints [29, 30], object or scene flow
[14, 17, 31, 32], energy minimization [20, 33, 34],
and deep learning based instance-level detection
[7, 10, 12, 21, 35] (i.e., tracking-by-detection). Our
strategy for segmenting multiple instances differs
from previous approaches. Instead, we find that
after noise-aware refinement of the 3D trajectories
of landmarks, consistent motions can be extracted
and grouped in an unsupervised way to present
landmark-wise associations, thus deducing their
underlying rigid bodies. Furthermore, such detection
may reciprocally contribute to a finer estimation of
landmark trajectories. This strategy is not sufficiently
exploited in recent segmentation modules.

2.3 Clustering approaches
We refer readers to a recent review [36] which
categorizes clustering algorithms. Since it is difficult

ClusterSLAM: A SLAM backend for simultaneous rigid body clustering and motion estimation 89

to find an effective way to represent a single
dynamic landmark by a feature vector, most non-
hierarchical approaches are not directly applicable
to the motion clustering problem. Based on the
property of relative stationarity between landmarks,
our clustering approach calculates pairwise motion
inconsistency to form a motion distance matrix, and
utilizes a bottom–up hierarchical algorithm [37, 38]
to perform clustering in O(n2 log n) time. We show
in Section 4.4 that the chosen clustering method is
superior to alternative methods.

3 ClusterSLAM
3.1 Preliminaries
As a SLAM backend (illustrated in Fig. 1 and formally
defined in Algorithm 1), the goal of our approach is
to obtain the position and cluster assignment of each
landmark, as well as the motion of each cluster. We
use two major modules (clustering and SLAM) in an
iterative scheme to solve for and refine these variables
in turn.

In the clustering module (Section 3.2), we establish
a motion distance matrix (Section 3.2.1) to describe
inconsistency of motions of pairs of landmarks, and
use a hierarchical agglomerative clustering approach
(Section 3.2.2) to merge them into clusters. Given the
computational effort of using such a matrix over long
sequences, we partition input frames into short-term
chunks and use consensus clustering (Section 3.2.3) to
determine the long-term assignment of a landmark.

In the SLAM module (Section 3.3), we aim to
find the positions of these landmarks simultaneously
with the movements of these clusters. We first use a
noise-aware point cloud registration and integration
approach to perform robust state initialization
(Section 3.3.1), and then refine the positions and
motions by a decoupled factor graph optimization

Fig. 1 ClusterSLAM pipeline (IVC means iterative voting consensus).

Algorithm 1 ClusterSLAM

Input: Observations of landmarks
⋃

i,t
xi

t in frames at
time t.
Output: Cluster assignments θ : i → q (q = 0 for the
static cluster), the MAP relative position of 3D landmarks
w.r.t. their cluster

⋃
i
X̂q,i, the ego-motion of stereo

camera
⋃

t
P c

t , and the trajectory of each cluster
⋃

t
P q

t .
k ← 1;
repeat

/* Clustering module (Section 3.2). */
for all partitioned chunks m do

Build motion distance matrix Dm (Section 3.2.1);
Cluster on Dm to get θm(i) (Section 3.2.2);

end for
Determine θ(i) from

⋃
m

θm(i) (Section 3.2.3);
/* SLAM module (Section 3.3). */
for all clusters q do

if q = 0 then b ← c else b ← q;
Initialize

⋃
i
X̂q,i and

⋃
t

P b
t (Section 3.3.1);

Optimize for
⋃

i
X̂q,i and

⋃
t

P b
t (Section 3.3.2);

end for
k ← k + 1;

until clustering converges or k exceeds a limit.

method (Section 3.3.2), so that the previous motion
distance matrix can be updated to continue the
iteration.

Stereo keypoints form the basis of our algorithm.
The stereo keypoint corresponding to the i-th
landmark at frame t (i, t ∈ N

∗) is denoted xi
t =

(uL, vL, uR) where (uL, vL) are the coordinates in
the left image and uR is the horizontal coordinate
in the right image. X∗,i

t ∈ R
3 and Σ∗,i

t ∈ R
3×3

respectively represent the local 3D coordinates and
uncertainty of the i-th landmark in some coordinate
system ∗ at frame t. The back-projection function
f : xi

t → Xc,i
t w.r.t. the stereo camera model projects

the observation into the camera local coordinate
system c. In order to allow for the pixel errors of the
keypoint extraction methods [18, 39], we introduce
the stereo noise model [40], where the influence of
the extraction error of xi

t on Xc,i
t can be calculated

as Σc,i
t = Jf Σi

tJ
T
f , Jf is the Jacobian matrix of the

back-projection function f , and Σi
t is the covariance

of xi
t assigned w.r.t. the keypoint extraction error

in its image coordinates. For transformations and
poses, we define P q

t ∈ SE(3) for the pose of cluster q

(q ∈ N
∗) at frame t and P c

t for the pose of the stereo
camera. We assign all static landmarks to a single
static cluster with q = 0, hence ∀t, P 0

t ≡ I. For
simplicity of subsequent equations, we denote relative

90 J. Huang, S. Yang, Z. Zhao, et al.

transformations as T ab
t = (P a

t)′ · P b
t (P ′ being the

inverse of P) for coordinate transformations, with
R ∈ SO(3) being the rotation part of T . For details of
how the frontend generates correspondences between
landmarks (i.e., tracklets of feature points, the input
of Algorithm 1) on the input frames, we refer readers
to Section 4.1 for our implementation details w.r.t.
the evaluation datasets.

3.2 Clustering landmarks
3.2.1 Motion distance matrix
Distance calculation. Our clustering approach for
the extracted landmarks is based on the fact that the
relationship between any pair of landmarks located on
the same rigid body, even with noisy measurements,
should durably stay constant. Hence, we examine the
relationships between landmarks by building a motion
inconsistency matrix D, whose elements dij give the
inconsistency between the motions of two landmarks
i and j, calculated with the following equation:

dij =
1
2

avg
t

(∥∥∥lij
t − lij

∗
∥∥∥2

σij
t

+ log σij
t

)
+ α max

t
yij

t

lij
∗ �

∑
t

(
1

σij
t

· lij
t

)/∑
t

1
σij

t

, yij
t =

∥∥∥xi
t−xj

t

∥∥∥2

Σij
t

(1)
where ‖ x ‖2

Σ� xTΣ−1x is the squared Mahalanobis
distance with covariance matrix Σ. We use those
frames t in which both landmarks i and j are observed
to calculate their distance. The first term is the
3D geometric distance term, which comes from the
consistency of pairwise 3D spatial distance lij

t ∈ R

from frame t w.r.t. their maximum-likelihood lij
∗ . This

term is obtained via negative log-likelihood, and we
refer readers to Appendix A.1 for the derivation.

Generally, using the vector form l∗,ij
t = X∗,i

t −
X∗,j

t ∈ R
3 instead of the scalar form lij

t provides
more accurate uncertainty estimation as Σ∗,i

t + Σ∗,j
t

for depicting motion consistency (∗ stands for any
valid coordinate system), but the scalar form lij

t =
‖ l∗,ij

t ‖ has the property of being invariant to local
coordinate system changes. Hence, we use the scalar
form lij

t and approximate its distribution using a
1-dimensional Gaussian as lij

t ∼ N (
lij
∗ , σij

t

)
, with

variance σij
t approximated as the error propagation

from l∗,ij
t to lij

t :

σij
t ≈

∥∥∥l∗,ij
t

∥∥∥2

Σ∗,i
t

+
∥∥∥l∗,ij

t

∥∥∥2

Σ∗,j
t∥∥∥l∗,ij

t

∥∥∥2 (2)

where each Mahalanobis term can be computed under
any unified coordinate system ∗. The derivation is
given in Appendix A.2.

The second term of Eq. (1) is a vision based prior,
based on the observation that we are likely to group
pixels which are close in image space into a single
cluster and Σij

t = Σi
t + Σj

t . Since the 2D distance
between two landmarks in image space depends on
camera pose, we pick the maximum rather than
the average to calculate this prior. The constant
logarithm of covariance from this term is ignored
since all extracted landmarks are treated with equal
uncertainty in image space. α = 4 × 10−4 is a
balancing factor to control the importance of the
prior. Combining both terms in such a noise-aware
form enables us to take measurement uncertainty into
account when clustering. An ablation study ignoring
these uncertainties during clustering is presented in
Section 4.4.

Element rejection. If co-occurrences of a pair
of landmarks are too rare (fewer than 4 in our
implementation), the maximum-likelihood estimation
is no longer considered accurate due to insuffient
measurements. In such cases, we mark the
corresponding dij as invalid. Hence, D becomes
a sparse matrix for scenes with few co-occurrences.
Our hierarchical clustering method (Section 3.2.2)
can cope with such sparse input.

Iterative scheme. In Eq. (1), l and σ are
refined during multiple iterations, since the SLAM
module may update the 3D position X∗,i

t and X∗,j
t

of each landmark. We begin iteration with these
variables computed using camera local coordinates
c, but instead transform them into cluster-specific
coordinates q in subsequent iterations once the shape
of a cluster is initialized.
3.2.2 Hierarchical agglomerative clustering
We use hierarchical agglomerative clustering (HAC)
[38] which enables us to perform clustering on the
sparse distance matrix D. At the beginning of
clustering, we take each landmark i as a cluster,
and then iteratively merge clusters pairwise until
the distance between any pair of clusters (defined as
the maximum distance between their landmarks) is
larger than a given parameter ε (set to 60.0 in our
implementation). This complete-linkage criterion [41]
is chosen since motion consistency between landmarks

ClusterSLAM: A SLAM backend for simultaneous rigid body clustering and motion estimation 91

is not transitive, i.e., consistency between landmarks
i, j and j, k does not ensure consistency between
landmarks i and k. By implementing a heap structure
over all elements in D and keeping track of changes,
the time complexity of HAC is O(n2 log n). Several
alternative choices for clustering are compared in
Section 4.4, showing the advantage of using HAC.
3.2.3 Consensus clustering from multiple chunks
The size of D grows quadratically with the number
of landmarks, which increases with the number of
input frames. To speed up the clustering algorithm,
we divide the input sequence into multiple chunks
(100 frames with 25 frame overlap to the next chunk,
for cluster association) and perform HAC clustering
(Section 3.2.2) separately. The influence of chunk size
is examined in Section 4.4.

Next, we perform consensus clustering based on all
assignments computed from each individual chunk,
by constructing a sparse vector for each landmark i

as yi = {θm(i)}m to depict its per-chunk assignments,
and perform the iterative voting consensus algorithm
[42]. Detailed in Algorithm 2, this algorithm
resembles k-means in spirit but instead treats the
assignments themselves as data points. The desired
number of consensus clusters k is selected as the sum
of numbers of clusters for all chunks for outdoor cases,
and the maximum number of clusters for all chunks
for indoor cases. The final cluster assignments θ are
initialized randomly, with the probability of cluster
q = 0 (the cluster with static landmarks) set to 80%

Algorithm 2 Iterative voting consensus

Input: a set of landmarks
⋃

i
Xi to be classified, a set of

clusters
⋃

m
θm obtained from all chunks and the desired

number of consensus clusters K.
Output: Consensus clustering θ with K clusters.
Initialize θ as described in text;
repeat

Let Xq = {i|θ(i) = q} be the q-th cluster;
Compute the representation center for each cluster:
yXq

= {majority{(Xq)1}, . . . , majority{(Xq)m}}, where
{ (Xq)m} is the set of clustering results of Xq according
to θm;
for all landmark i do

Re-assign θ(i) ← argminq D(yi, yXq
), where

D(yi, yXq
) is the Hamming distance between vector

yi and yXq
; only valid values in the sparse vector yi

are considered;
end for

until θ does not change.

while other clusters are chosen uniformly. Clusters
with too few landmarks (� 2) are pruned to make
the total number of clusters controllable.

3.3 SLAM for clusters and camera ego-motion
3.3.1 Noise-aware cluster shape initialization
The initialization process for a new cluster q aims to
estimate the positions of its landmarks X̂q,i

t (note
the difference between X̂t and the back-projected
single-frame position X, where the former represents
estimated state using all historical frames up to frame
t). Like the reconstruction pipelines in Ref. [43],
this process contains two operations, registration and
integration, and we consider uncertainty of frame
observations in both. In our implementation, we
maintain a Gaussian mixture Gq,i

t for each landmark
i and regard X̂q,i

t as the mean for all components in
the mixture.

Frame-to-model registration. When the first
frame of a cluster q is encountered in frame t, we
initialize the local coordinates of this cluster by
assigning T qc

t = I for integration. For subsequent
frames, frame-to-model registration is executed to
obtain the transformation T qc

t which best aligns
points Xc,i

t from the current local coordinates of the
frame P c

t with the points X̂q,i
t−1 in the previously

constructed coordinate system, with acceptable
noise Σi

g:

T qc
t = argmax

T

∏
i

∑
g∈Gq,i

t−1

N
(

T Xc,i
t − X̂q,i

t−1; 0, Σi
g

)

≈ argmax
T

∏
i

max
g∈Gq,i

t−1

N
(

T Xc,i
t − X̂q,i

t−1; 0, Σi
g

)
(3)

where N (x; μ, Σ) is the probability density function
of the multivariate normal distribution. The above
equation is equivalent to minimizing the following
energy:

T qc
t = argmin

T

∑
i

min
g∈Gq,i

t−1

(
1
2

∥∥∥T Xc,i
t −X̂q,i

t−1

∥∥∥2

Σi
g

− Ci
g

)

Ci
g � 1

2
log |Σi

g| + log |Σg| (4)
where g traverses each component of the Gaussian
mixture Gq,i

t−1, and Σg is its g-th covariance
component. Σi

g = RΣc,i
t RT + Σg. Ci

g is the
constant factor introduced by maximum-likelihood
estimation [44]. This formulation can be viewed as a
weighted ICP algorithm, with the weight considering
the uncertainty of both the frame and the model.

92 J. Huang, S. Yang, Z. Zhao, et al.

Frame integration and shape refinement. After
the transformation matrix for the latest frame t has
been robustly estimated, we update the Gaussian
mixture Gq,i

t−1 by inserting a new component with
covariance Σg′ = Rqc

t Σc,i
t (Rqc

t)T weighted by 1/|Σg′ |,
and remove the component with the least weight from
the mixture if the size of Gq,i

t−1 exceeds 3. This strategy
ensures registration is considered using one of the
most reliable measurements. Then, we integrate the
obervation into the landmark position X̂q,i

t using:

X̂q,i
t =argmin

X

∥∥∥Xc,i
t −T cq

t X
∥∥∥2

Σc,i
t

|Σg′ | +
∑

g

∥∥∥X̂q,i
t−1−X

∥∥∥2

Σg

|Σg|
(5)

where the first term is used to add current observations
and the other terms are for previous observations.

Eqs. (4) and (5) can be solved efficiently using
the Gauss–Newton method and QR decomposition,
respectively. In practice, we choose to fix Σi

g in
Eq. (4) during each iteration to make registration
easier to solve. We compare such a probabilistic
form of registration and integration to the traditional
point-to-point registration in Section 4.4. The final
initialized cluster poses and landmark positions are
T qc = T qc

T and X̂s,i = X̂s,i
T , respectively, where T

is the index of the last frame.
3.3.2 Decoupled factor graph optimization
Traditional factor graph optimization only treats
static landmarks X̂0,i and camera ego-motion

⋃
t P c

t

as objectives. As the dynamic scene comprises
multiple rigid bodies, we additionally treat the motion
of all clusters

⋃
q,t P q

t and their landmarks
⋃

q,i X̂q,i

as objectives. Then the bundle adjustment (BA)
energy function for each individual cluster can be
written as

Eq �
∑
i,t

ρ

(∥∥∥xi
t − f ′

(
(P c

t)′P q
t X̂q,i

)∥∥∥2

Σi
t

)
(6)

where ρ(·) is an optional robust kernel [1] and f ′ is
the inverse of f , i.e., the stereo projection model.

We considered three candidate optimization
strategies. Firstly, fully-coupled optimization tries to
solve E =

∑
q Eq w.r.t. variables of all clusters jointly.

Secondly, decoupled optimization follows three steps:
(1) solve Eq (q
= 0) for

⋃
q �=0{⋃

i X̂q,i,
⋃

t T cq
t } by

regarding (P c
t)′P q

t as a single variable; (2) solve
E0 to obtain the camera ego-motion

⋃
t P c

t and
static landmark positions

⋃
i X̂0,i; (3) composte the

ego-motion and these transformations to generate

the motion of clusters as
⋃

q,t P q
t . Thirdly, semi-

decoupled optimization adds an additional step to
the decoupled strategy by solving the whole objective
function E =

∑
q Eq again only for camera motion

and static landmarks with other state variables fixed.
We plot the sparsity pattern of Hessian matrices of

decoupled and fully-decoupled optimization methods
in Fig. 2 for comparison. Let N be the number
of landmarks (# Landmarks), T be the number
of frames (# Frames), and Q be the number of
clusters (# Clusters). Decoupled optimization solves
Q sub-problems of size (N/Q+T)2 while fully-coupled
optimization method solves one problem with size
(N + TQ)2, which is much larger. However, this
analysis does not reflect the matrix sparsity, so an
experimental comparison (Section 4.4) was performed.
We found empirically that the decoupled strategy is
sufficiently efficient, and we adopt this method in our
final algorithm.

Fig. 2 Comparison of sizes and sparsity patterns of Hessian matrix
for decoupled and fully-coupled factor graph optimization. Red:
camera pose block. Green: cluster motion block. Blue: landmark
position block. Brown rectangles show a possible sparsity pattern of
observations. The intersection of the transparent yellow rectangles
denotes the 9 Hessian blocks filled for one observation using the
Gauss–Newton method.

4 Evaluation
4.1 Datasets and parameter setup
Our experiments were performed on two synthetic
datasets, SUNCG [45] and CARLA [46], and one
real-world dataset, KITTI [16].
4.1.1 Synthetic datasets
The SUNCG dataset [45] provides 3D models for
constructing indoor scenes, and we built 3 scenes
with 2 sequences for each. In these sequences, 2–5
objects as well as the stereo camera are dynamic,
with their motions generated manually with 6 degrees
of freedom. The CARLA simulator [46] is used

ClusterSLAM: A SLAM backend for simultaneous rigid body clustering and motion estimation 93

for generating outdoor car-driving scenes. We used
its engine to simulate streets with multiple driving
vehicles and generated 4 (2 short, CARLA-S1/2 + 2
long, CARLA-L1/2) sequences for experiments.

Ground-truth landmarks were extracted by random
sampling of the vertices of these models, and we
added a maximum of 1.5 pixels noise to both u, v

coordinates to simulate noisy landmark observations
on these stereo frames. The synthetic stereo camera
had a resolution of 1280×720 and a horizontal field-of-
view of 90◦, with its baseline set to 10 cm for indoor
SUNCG and 50 cm for outdoor CARLA, respectively.

Sampled frames from the generated sequences are
shown in Fig. 3 and detailed statistics are listed in
Table 1. In order to facilitate future research, we
have made this dataset publicly available to the
community at https://cg.cs.tsinghua.edu.cn/
people/˜huangjh/page/clusterslam-dataset/.
4.1.2 Real-world dataset
We used selected KITTI raw sequences [16] in
which most cars are moving, in order to show
the effectiveness of our algorithm. We detected
and described landmarks using the state-of-the-art

Fig. 3 Frames from our synthetic dataset. First 6 images: indoor
sequences rendered from SUNCG. Last 6 images: outdoor sequences
simulated by CARLA.

Table 1 Statistics of our synthetic datasets. “# Inst.” denotes the
number of moving objects. Travel distance shows the length of the
camera trajectory, the unit of which is meter

Sequence # Frames # Inst. # Landmarks Travel
distance

SUNCG-1-1 190 2 748 1.94
SUNCG-1-2 250 2 2595 21.10
SUNCG-2-1 300 3 381 6.03
SUNCG-2-2 200 3 370 6.01
SUNCG-3-1 200 5 554 3.61
SUNCG-3-2 200 5 620 11.37
CARLA-S1 200 5 2402 120.92
CARLA-S2 200 8 4179 164.70
CARLA-L1 750 14 13,600 480.87
CARLA-L2 600 17 10,486 367.62

Superpoint [39] network. A similar step as used
in Ref. [20] was performed in the frontend to find
associations and generate landmark tracklets.
4.1.3 Parameters and hardware setup
Since both the baseline and scales were different
in indoor and outdoor scenes, we used two sets of
parameters for these two scenarios, respectively. For
indoor scenes, these parameters remain as presented
in Section 3. For outdoor scenes, we adjusted ε

to 90.0 to allow for the change in stereo baseline
and larger vehicles, and raised the size of each
chunk to 200 to maintain the density of D (i.e.,
to provide sufficient pairwise distances for intra-
chunk clustering). We utilized the g2o framework
[47] to implement least-squares optimizations. All
experiments for the backend were executed on an
Intel Core i7-8700K, 32 GB RAM computer with a
GTX 1080 GPU.

4.2 Full backend performance
4.2.1 Baselines
To compare the full backend performance, three
candidate baseline methods were built. The first used
full bundle adjustment, where BA was performed on
all visible landmarks assuming them to be static. The
second used progressive DCS (dynamic covariance
scaling), which goes beyond full BA, using a robust
dynamic covariance scaling kernel [1] to determine
dynamic objects one by one during each iteration.
Specifically, landmarks with average error larger
than χ2

N + 0.3(χ2
M − χ2

N) were marked as dynamic
and introduced at the next iteration (χ2

N represents
the smallest reprojection error and χ2

M the largest).
The algorithm repeatedly segments one consensus
object after each iteration, until the number of
outliers is smaller than 10. The third used semantic
segmentation, where a mask R-CNN model trained
on the MS-COCO dataset [12] was employed for
instance-level segmentation of each input frame.
These predicted labels were used to vote for the
final labeling of each landmark through a recursive
Bayesian. In conclusion, these three categories
represent the classical strategy, a robust strategy, and
sequential tracking-by-detection methods respectively,
as discussed in Section 2.
4.2.2 Evaluation criteria
We use the following metrics to quantitatively
compare the performance: (1) log χ2, as the logarithm

94 J. Huang, S. Yang, Z. Zhao, et al.

of reprojection error in BA, reflecting agreement of
the optimization results with the input constraints,
(2) RMSE, the pointwise root mean square error in
position of each tracked landmark w.r.t. its ground
truth position, measuring the quality of mapping,
(3–5) ATE and R./T.RPE, as the RMSE of absolute
trajectory error and rotational/translational relative
pose error w.r.t. the ground truth motions, showing
the quality of motion estimation (with camera ego-
motion and object motion separately recorded); ATE
and R./T.RPE are measured in meters, radians, and
meters, respectively, (6,7) clustering accuracy, taken
as the best among all permutations of ground truth
and prediction label correspondences and βV I , as
the variation of information distance [48]; these two
metrics reflect the performance of segmentation, (8)
runtime of the whole backend when all frames of the
sequence are considered as a batch.
4.2.3 Results and analysis
Quantitative comparisons on all synthetic sequences
are averaged and listed in Table 2, with variations of
our methods presented together but further discussed
in Section 4.4. While our method requires more
processing time, it outperforms other methods for
tracking and mapping. Although mask R-CNN [12]
is better than ours for segmenting individual objects
in outdoor sequences, it requires a pre-trained model
and extra time for prediction (it costs on average 40.5
and 67.0 additional seconds in the frontend for indoor
and outdoor sequences, respectively), and does not
work for object categories not present in the training
data. Progressive DCS is fastest due to a better
Gauss–Newton quadratic approximation of its cost
function [1].

In terms of quality, the progressive DCS only
tends to reject dynamic outliers in its first pass. In
its second pass few outliers can be detected even
though the landmarks left may contain multiple
rigid bodies. This is because the dramatically
reduced sparse observation constraints cannot provide

enough information to determine accurate kinematics
(there is a low signal-to-noise ratio). Despite the
higher clustering accuracy of semantic segmentation
than our method, its estimation of motions and
landmark positions is affected by their imprecise
masks, since an inaccurate mask at the border of an
object may erroneously categorize nearby landmarks,
influencing backend performance. We show visual
comparisons of different clustering results on sample
frames (Fig. 4) and motion trajectories (Fig. 5): our
method produces more accurate results.
4.2.4 Performance on KITTI
Our algorithm is also tested on KITTI and the
estimated trajectories are further smoothed by
applying Gaussian interpolation [49] to reduce jitter.
We compare and list the results in Table 3 with a
visualized sample shown in Fig. 6. In addition to a
better camera ego-motion, our algorithm can further
detect and track multiple moving cars.

We also compared our ego-motion estimation
performance with two dynamic SLAM systems,
DynSLAM [7] and Li et al. [10]. Results are given in
Table 4 using ATE as metric. In general, our backend
can reasonably identify the static scene, leading to
accurate camera tracking. We outperform DynSLAM
by a large margin because DynSLAM uses simple
frame-to-frame odometry which is inherently prone

Fig. 4 Visual comparisons on a SUNCG sequence. Landmarks are
colored according to cluster.

Table 2 Quantitative comparison on synthetic sequences

Indoor sequences Outdoor sequences
log χ2 RMSE (m) ATE R.RPE T.RPE Acc. (%) βVI Time (s) log χ2 RMSE (m) ATE R.RPE T.RPE Acc. (%) βVI Time (s)

Full BA 9.61 2.10 0.53/– 0.48/– 0.87/– 52.73 1.19 5.45 10.92 14.39 12.94/– 0.73/– 42.55/– 81.39 0.84 6.00
P. DCS 12.80 1.53 0.63/1.61 0.49/1.82 0.99/2.60 56.05 1.18 3.83 13.85 11.22 9.36/– 0.73/– 37.61/– 80.22 0.82 1.86
Sem. SEG 9.31 0.84 0.31/0.51 0.12/0.87 0.49/0.95 69.60 1.19 3.82∗ 8.55 2.69 1.65/3.09 0.18/0.32 2.34/8.11 96.70 0.24 5.28∗

Ours w/o U 7.88 1.21 0.35/0.34 0.15/0.37 0.53/0.57 65.60 0.96 9.60 8.56 2.48 1.86/5.13 0.02/0.40 3.18/12.32 86.51 0.64 6.96
Ours w/o I 8.65 1.05 0.15/0.31 0.05/0.57 0.21/0.55 76.16 1.06 9.47 9.70 9.56 2.12/3.44 0.47/0.20 4.47/9.94 81.83 0.57 5.84
Ours 7.15 0.44 0.01/0.12 0.01/0.29 0.02/0.22 91.54 0.40 11.15 6.52 0.63 0.53/3.37 0.02/0.18 1.10/8.65 94.15 0.27 6.14

∗ Mask R-CNN [12] prediction time is excluded.

ClusterSLAM: A SLAM backend for simultaneous rigid body clustering and motion estimation 95

Fig. 5 Trajectories recovered from synthetic sequences. Resolutions of the major grids (solid lines) are 1, 1, 20, and 5 m, respectively.
Disconnected trajectories indicate multiple dynamic objects.

Fig. 6 Our results on the KITTI dataset. Middle: Overview of the
street with the camera trajectory (black) and multiple clusters colored
by index and time. Top, bottom: Sample images and visualized point
clouds in perspective view.

to drift. We perform on par with Li et al. [10] in ego-
motion estimation even without a semantic detection
module thanks to our robust motion clustering
mechanism. However, for sequences like 1003-0047
with slow movement over long distances, it is hard to
detect subtle motions and these motions eventually
corrupt odometry estimation in our system.

Table 3 Ego motion comparison on KITTI sequences

0926-0013 0926-0015 0926-0017
ATE R.RPE T.RPE ATE R.RPE T.RPE ATE R.RPE T.RPE

Sem. SEG 2.65 0.06 4.70 2.64 0.07 8.35 0.77 0.09 1.11
Ours 2.12 0.07 5.50 1.32 0.03 3.64 0.27 0.02 0.40

Table 4 Camera ego-motion comparison on selected KITTI raw
sequences. The error is ATE in meters

Sequence DynSLAM [7] Li et al. [10] Ours
0926-0009 7.51 1.14 0.92
0926-0014 5.98 0.51 0.81
0926-0051 10.95 0.76 1.19
0926-0101 10.24 5.30 4.02
0929-0004 2.59 0.40 1.12
1003-0047 9.31 1.03 10.21

4.3 Real-time SLAM system performance
The evaluation in Section 4.2 runs our algorithm
using the entire video sequence as a single batch.
In real-time scenarios, it is intractable to run batch
optimization on all acquired frames. We now consider
implementation strategies to build an online version
of our system which can run at 7 Hz for outdoor
cases.
4.3.1 Implementation
Following Ref. [20], we restrict the number of input
frames to our backend algorithm to a small window
of 30 recent frames and optimize within the window
periodically. Clusters detected in different runs of
the backend are associated by counting co-existing
landmarks. Pairs of historical and new clusters
are associated if the landmark overlap ratio is
over 70%; otherwise the clusters are either split
or dropped. After cluster association, the involved
landmarks are aligned to find the best transform
between the historical and new trajectories to connect
them. Experiments show that this implementation
takes 80 and 21 ms on average for every iteration
of optimization for indoor and outdoor sequences,
respectively, due to their different numbers of
landmarks.
4.3.2 Comparisons and analysis
We compared accuracy and speed of our online
method, denoted “Ours (RT)”, to our batch version
(denoted as “Ours”), stereo ORB-SLAM2 [18], its
variant proposed by Murali et al. [50], DynSLAM [7],
and CarFusion [21]. Table 5 shows the effectiveness
of our method in precisely acquiring trajectory
and clustering. The criteria used are the same as
Section 4.2.

96 J. Huang, S. Yang, Z. Zhao, et al.

Table 5 Quantitative comparisons to existing systems

Indoor sequences
ATE R.RPE T.RPE Acc. (%) βVI Hz

ORB-SLAM2 0.03/– 0.01/– 0.02/– (52.73)† (1.19)† 8.5
Murali et al. 0.03/– 0.01/– 0.01/– (52.73)† (1.19)† 4.9
DynSLAM 0.54/0.19 1.10/0.73 2.60/0.40 61.12 1.21 2.0
Ours 0.01/0.12 0.01/0.29 0.02/0.22 91.54 0.40 �

Ours (RT) 0.03/0.12 0.01/0.30 0.05/0.21 85.27 0.60 2.2
Outdoor sequences

ATE R.RPE T.RPE Acc. (%) βVI Hz
ORB-SLAM2 2.82/– 0.84/– 6.09/– (81.39)† (0.84)† 9.0
Murali et al. 1.19/– 0.53/– 3.45/– (81.39)† (0.84)† 5.0
DynSLAM 3.95/4.32 0.96/0.09 9.61/9.44 93.73 0.44 2.1
CarFusion –/2.97 –/0.22 –/9.39 93.02 0.51 �

Ours 0.53/3.37 0.02/0.18 1.10/8.65 94.15 0.27 �

Ours (RT) 0.92/1.53 0.04/0.20 1.82/3.35 88.58 0.51 7.1

†These methods do not detect dynamics, so Acc. and βVI are listed as the
values when assigning all landmarks into one static cluster.
�Offline methods.

ORB-SLAM2 [18] and Murali et al.’s system [50]
are only designed for ego-motion tracking, which
perform on a par with ours for indoor cases. But for
outdoor sequences where a large part of the scene is
dynamic, as at road junctions, they fail to precisely
track the ego-motion, causing large trajectory error
or even tracking loss.

Both DynSLAM [7] and CarFusion [21] determine
segmentation through an external deep network
instead of optimization. DynSLAM furthermore does
not perform backend optimization and suffers from
cumulative drift. CarFusion addresses a different kind
of input, multiple video sequences captured alongside
the road, so we provided it with groundtruth ego-
motion to avoid tracking failure, allowing us to
concentrate on assessing the motions of the dynamic
objects. We find its performance depends on the
precision of car keypoint detection: inaccurate
detections may conflict with intra-frame smoothing
constraints and generate undesirable results.

4.4 Ablation study
Ablation studies were performed and are now
discussed for the modules presented in Section 3.
4.4.1 Formulation of motion distance
We evaluated the effectiveness of Eq. (1) by
validating the necessity of its formulation, specifically:
(1) the noise-aware formulation by switching the
Mahalanobis form of the first term to Euclidean and
replacing the weighted average lij

∗ by an unweighted
average (denoted, w/o U); (2) the second, vision
based prior term by removing it (denoted w/o I).
Results are provided in Table 2, with other parts

of the algorithm unchanged. For outdoor sequences,
w/o U requires more iterations to converge, and
therefore is slower. Since most metrics except running
time are worse with these changes, we prove the utility
of both forms in improving the final quality of the
backend.
4.4.2 Alternative clustering methods
We compared both the clustering accuracy and
βVI of our agglomerative clustering method with
spectral clustering (SC) and affinity propagation (AP)
methods. All three methods do not need a feature
vector for each element and therefore are suitable for
our problem with the dense pairwise matrix form.
We eliminated all non co-visible landmarks and built
a dense motion distance matrix D for comparison. In
this experiment, we generated landmark observations
on synthetic scans with a standard deviation of noise
varying from 0 to 3 pixels to test the robustness.

Their performance w.r.t. the standard deviation of
noise is shown in Fig. 7. We found that clustering
accuracy of AP drops quickly when noise becomes
severe. Even for low noise, SC is not as stable as
our method (it is not fully accurate even if the input
observations are noise-free). For a motion distance
matrix D of size 260 × 260, the average running time
of our approach is only 6 ms while AP takes 13 ms
and SC takes 180 ms on average.
4.4.3 Chunk size
We used the two long CARLA sequences (CARLA-
L1 and CARLA-L2) to investigate how the length
of chunks affects βV I and run time. We adjusted
the chunk size from 30 to 300 and give the results
in Fig. 8. In general, smaller chunks present better
clustering results but reduce the number of obser-
vations (challenging the density of D). It also increases
the total running time since inter-chunk merging
requires more computation.

Fig. 7 Accuracy and variation of information for different clustering
methods with respect to noise.

ClusterSLAM: A SLAM backend for simultaneous rigid body clustering and motion estimation 97

Fig. 8 Chunk size versus quality of clustering and run time for two
long CARLA sequences.

4.4.4 Noise-aware cluster initialization
Table 6 shows our results compared to a traditional
point-to-point ICP approach, which neglects
uncertainty in both registration and integration
phases. Our method works better especially on
these outdoor sequences, since the uncertainty of
the disparity becomes more important as the baseline
increases. It is also notably slower than traditional
ICP due to the requirement to compute all covariances
of observations and the replacemenet of the SVD
by Gauss Newton optimization. However, the time
taken to initialize all poses is not a bottleneck in the
backend.
4.4.5 Decoupled optimization
The three alternative optimization strategies in
Section 3.3.2 were tested; their RMSE and run time
per iteration are given in Table 7. All optimizers ran
for 20 iterations. The results show that the decoupled
strategy is the fastest, with no obvious difference in
quality to the semi-decoupled strategy. The fully-
coupled strategy obtains better results indoors but
pose estimation for these dynamic clusters and the
camera ego-motion may interfere with each other,
producing unexpected results especially on noisy
outdoor sequences.

Table 6 Comparison of the initialization methods

Indoor Outdoor
ATE RMSE (m) ATE RMSE (m) Time (ms)

Point-to-point ICP 0.07/0.13 0.22 7.83/1.37 8.54 0.01
Noise-aware ICP 0.01/0.15 0.12 0.98/0.61 0.94 0.12

Table 7 Comparison of different optimization schemes

Indoor Outdoor
RMSE (m) Time/iter (s) RMSE (m) Time/iter (s)

Fully-coupled 0.034 0.83 0.73 0.57
Semi-coupled 0.047 1.04 0.12 1.07
Decoupled 0.047 0.57 0.12 0.53

5 Limitations
Despite the general applicability of our approach,
there are several limitations worth noticing. Firstly,
our backend algorithm relies on the quality of
landmark extraction and association from the
frontend. Although false associations may be
numerically filtered out by the robust kernel, excessive
errors can cause unexpected results from our backend.
Secondly, our algorithm may fail to detect dynamic
objects with insufficient landmarks, since their
recovered trajectories are more severely affected by
each single noisy landmark.

6 Conclusions
In this paper we presented ClusterSLAM, a
general SLAM backend to simultaneously cluster
rigid bodies and estimate their motions. In
future, our formulation of the multi-body factor
graph optimization could be enhanced by external
measurements to further develop its functionality,
and it is also worth attempting to utilize long-term
consistency from the backend to reciprocally refine
data associations in the frontend.

Appendix A Derivations
A.1 Noise-aware distance term dij

We start by defining the affinity probability of
landmarks i and j as the product of 3D geometric
probability P3D and vision based prior probability
P2D with balancing factor 2α:

Pij = P3D(P2D)2α (7)
For P3D, we assume that the distance between

the two endpoints should stay unchanged in
different frames, i.e., lij

t = lij
t′ , ∀t, t′, and utilize a

maximum likelihood estimate of the optimal length
lij
∗ considering the uncertainty of each lij

t :

lij
∗ = argmax

l
exp(−1

2
∑

t

‖ lij
t − l ‖2

σij
t

)

= argmin
l

∑
t

‖ lij
t − l ‖2

σij
t

=
∑

t

(
1

σij
t

· lij
t)

/ ∑
t

1
σij

t

(8)

If the deviations of the observed lengths w.r.t. the
optimal length conform to their noise distribution,
the likelihood should be large and vice versa.
Hence, the 3D geometric probability is summarized

98 J. Huang, S. Yang, Z. Zhao, et al.

through maximum-a-posteriori calculation over all
observations in co-visible frames, whose total number
is denoted ψij (N is the normal distribution):

P3D =
∏

t

N (lij
t ; lij

∗ , σij
t)

1
ψij (9)

The prior probability P2D is defined as follows:

P2D = C2D exp
(

−1
2

max
t

‖ xi
t − xj

t ‖2
Σij

t

)
(10)

where C2D normalizes the probability; Σij
t is the

uncertainty in landmark distance in image space
and we assume this uncertainty stays unchanged in
different frames t.

The noise-aware distance term dij is therefore taken
as the negative logarithm of the affinity probability
Pij to avoid numerical underflow:

dij = − log Pij

= − log P3D − 2α log P2D

=
1
2

avg
t

(∥∥∥lij
t − lij

∗
∥∥∥2

σij
t

+ log σij
t

)

+ α max
t

∥∥∥xi
t − xj

t

∥∥∥2

Σij
t

+
1
2

log 2π + 2αC2D︸ ︷︷ ︸
constant,∀i,j

(11)
We ignore the trailing common constant in dij since it
does not affect the output of the clustering algorithm
which relies only on relative ordering of values.

A.2 Approximate variance σij
t

The variance of length σij
t is approximated by the

error propagation theorem, as the variance of h(x)
can be deduced from the variance of x, denoted Σx,
through a first-order approximation:

Σh(x) ≈ JhΣxJT
h (12)

with Jh being the Jacobian of h w.r.t. x. Such an
approximation is the basis for both the stereo back-
projection uncertainty and Eq. (2).

In Eq. (2), we define function h as the Euclidean
distance:

h

([
X×,i

t

X×,j
t

])
=

∥∥∥X×,i
t − X×,j

t

∥∥∥ = lij
t (13)

Its Jacobian can be computed as

Jh =
1
lij
t

[
X×,i

t − X×,j
t

X×,j
t − X×,i

t

]T

(14)

The covariance of argument x is

Σx =
[
Σ×,i

t 0
0 Σ×,j

t

]
(15)

We can then obtain σij
t = Σh by substituting

Eqs. (14) and (15) into Eq. (12).

Appendix B List of abbreviations
• SLAM: Simultaneous localization and mapping
• AuT: Autonomous things
• MAP: Maximum-a-posteriori
• HAC: Hierarchical agglomerative clustering
• IVC: Iterative voting consensus
• ICP: Iterative closest point
• BA: Bundle adjustment
• DCS: Dynamic covariance scaling
• RMSE: Root mean square error
• ATE: Absolute trajectory error
• RPE: Relative pose error
• RT: Real-time
• MLE: Maximum likelihood estimate

Acknowledgements
This work was supported by the National
Key Technology R&D Program (Project No.
2017YFB1002604), the Joint NSFC-DFG Research
Program (Project No. 61761136018), and the National
Natural Science Foundation of China (Project No.
61521002).

References

[1] Agarwal, P.; Tipaldi, G. D.; Spinello, L.; Stachniss, C.;
Burgard, W. Robust map optimization using dynamic
covariance scaling. In: Proceedings of the IEEE
International Conference on Robotics and Automation,
62–69, 2013.

[2] Carlone, L.; Censi, A.; Dellaert, F. Selecting good
measurements via �1 relaxation: A convex approach
for robust estimation over graphs. In: Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2667–2674, 2014.

[3] Kim, D. H.; Kim, J. H. Effective background model-
based RGB-D dense visual odometry in a dynamic
environment. IEEE Transactions on Robotics Vol. 32,
No. 6, 1565–1573, 2016.

[4] Bescos, B.; Facil, J. M.; Civera, J.; Neira, J. DynaSLAM:
Tracking, mapping, and inpainting in dynamic scenes.
IEEE Robotics and Automation Letters Vol. 3, No. 4,
4076–4083, 2018.

[5] Rünz, M.; Agapito, L. Co-fusion: Real-time segmentation,
tracking and fusion of multiple objects. In: Proceedings

ClusterSLAM: A SLAM backend for simultaneous rigid body clustering and motion estimation 99

of the IEEE International Conference on Robotics and
Automation, 4471–4478, 2017.

[6] Runz, M.; Buffier, M.; Agapito, L. MaskFusion:
Real-time recognition, tracking and reconstruction of
multiple moving objects. In: Proceedings of the IEEE
International Symposium on Mixed and Augmented
Reality, 10–20, 2018.

[7] Barsan, I. A.; Liu, P.; Pollefeys, M.; Geiger, A. Robust
dense mapping for large-scale dynamic environments.
In: Proceedings of the IEEE International Conference
on Robotics and Automation, 7510–7517, 2018.

[8] Xu, B.; Li, W.; Tzoumanikas, D.; Bloesch, M.; Davison,
A.; Leutenegger, S.; MID-fusion: Octree-based object-
level multi-instance dynamic SLAM. In: Proceedings
of the IEEE International Conference on Robotics and
Automation, 5231–5237, 2019.

[9] Paull, L.; Huang, G.; Seto, M.; Leonard, J. J.
Communication-constrained multi-AUV cooperative
SLAM. In: Proceedings of the IEEE International
Conference on Robotics and Automation, 509–516, 2015.

[10] Li, P. L.; Qin, T.; Shen, S. J. Stereo vision-based
semantic 3D object and ego-motion tracking for
autonomous driving. In: Computer Vision – ECCV
2018. Lecture Notes in Computer Science, Vol. 11206.
Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y.
Eds. Springer Cham, 664–679, 2018.

[11] Jaimez, M.; Kerl, C.; Gonzalez-Jimenez, J.; Cremers,
D. Fast odometry and scene flow from RGB-D cameras
based on geometric clustering. In: Proceedings of
the IEEE International Conference on Robotics and
Automation, 3992–3999, 2017.

[12] He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask
R-CNN. In: Proceedings of the IEEE International
Conference on Computer Vision, 2961–2969, 2017.

[13] Chen, L. C.; Papandreou, G.; Kokkinos, I.; Murphy, K.;
Yuille, A. L. DeepLab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and
fully connected CRFs. IEEE Transactions on Pattern
Analysis and Machine Intelligence Vol. 40, No. 4, 834–
848, 2018.

[14] Lenz, P.; Ziegler, J.; Geiger, A.; Roser, M. Sparse scene
flow segmentation for moving object detection in urban
environments. In: Proceedings of the IEEE Intelligent
Vehicles Symposium, 926–932, 2011.

[15] Huang, J.; Yang, S.; Zhao, Z.; Lai, Y.-K.; Hu, S.-M.
Clusterslam: A slam backend for simultaneous rigid
body clustering and motion estimation. In: Proceedings
of the IEEE International Conference on Computer
Vision, 5875–5884, 2019.

[16] Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision
meets robotics: The KITTI dataset. The International
Journal of Robotics Research Vol. 32, No. 11, 1231–1237,
2013.

[17] Alcantarilla, P. F.; Yebes, J. J.; Almazán, J.; Bergasa,
L. M. On combining visual SLAM and dense scene flow
to increase the robustness of localization and mapping
in dynamic environments. In: Proceedings of the IEEE
International Conference on Robotics and Automation,
1290–1297, 2012.

[18] Mur-Artal, R.; Tardos, J. D. ORB-SLAM2: An open-
source SLAM system for monocular, stereo, and RGB-
D cameras. IEEE Transactions on Robotics Vol. 33, No.
5, 1255–1262, 2017.

[19] Kundu, A.; Krishna, K. M.; Jawahar, C. Realtime
multibody visual SLAM with a smoothly moving
monocular camera. In: Proceedings of the IEEE
International Conference on Computer Vision, 2080–
2087, 2011.

[20] Judd, K. M.; Gammell, J. D.; Newman, P. Multimotion
visual odometry (MVO): Simultaneous estimation of
camera and third-party motions. In: Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 3949–3956, 2018.

[21] Dinesh Reddy, N.; Vo, M.; Narasimhan, S. G.
CarFusion: Combining point tracking and part
detection for dynamic 3D reconstruction of vehicles.
In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1906–1915, 2018.

[22] Strecke, M.; Stuckler, J. Em-fusion: Dynamic object-
level slam with probabilistic data association. In:
Proceedings of the IEEE International Conference on
Computer Vision, 5865–5874, 2019.

[23] Saputra, M. R. U.; Markham, A.; Trigoni, N.
Visual SLAM and structure from motion in dynamic
environments. ACM Computing Surveys Vol. 51, No. 2,
1–36, 2018.

[24] Costeira, J. P.; Kanade, T. A multibody factorization
method for independently moving objects. International
Journal of Computer Vision Vol. 29, No. 3, 159–179, 1998.

[25] Li, T.; Kallem, V.; Singaraju, D.; Vidal, R. Projective
factorization of multiple rigid-body motions. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1–6, 2007.

[26] Fischler, M. A.; Bolles, R. C. Random sample consensus:
A paradigm for model fitting with applications to image
analysis and automated cartography. Communications
of the ACM Vol. 24, No. 6, 381–395, 1981.

[27] Azartash, H.; Lee, K.; Nguyen, T. Q. Visual odometry
for RGB-D cameras for dynamic scenes. In: Proceedings
of the IEEE International Conference on Acoustics,
Speech and Signal Processing, 1280–1284, 2014.

[28] Xu, X.; Cheong, L.F.; Li, Z. Motion segmentation
by exploiting complementary geometric models. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2859–2867, 2018.

100 J. Huang, S. Yang, Z. Zhao, et al.

[29] Vidal, R.; Ma, Y.; Soatto, S.; Sastry, S. Two-view
multibody structure from motion. International
Journal of Computer Vision Vol. 68, No. 1, 7–25, 2006.

[30] Vidal, R.; Hartley, R. Three-view multibody structure
from motion. IEEE Transactions on Pattern Analysis
and Machine Intelligence Vol. 30, No. 2, 214–227, 2008.

[31] Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy,
A.; Brox, T. FlowNet 2.0: Evolution of optical flow
estimation with deep networks. In: Proceedings of the
IEEE International Conference on Computer Vision,
2462–2470, 2017.

[32] Xie, Z.-F.; Guo, Y.-C.; Zhang, S.-H.; Zhang, W.-J.; Ma,
L.-Z. Multi-exposure motion estimation based on deep
convolutional networks. Journal of Computer Science
and Technology Vol. 33, No. 3, 487–501, 2018.

[33] Zhang, C. C.; Liu, Z. L. Prior-free dependent motion
segmentation using Helmholtz–Hodge decomposition
based object-motion oriented map. Journal of Computer
Science and Technology Vol. 32, No. 3, 520–535, 2017.

[34] Isack, H.; Boykov, Y. Energy-based geometric multi-
model fitting. International Journal of Computer
Vision Vol. 97, No. 2, 123–147, 2012.

[35] Fan, R. C.; Zhang, F. L., Zhang, M.; Martin, R. R.
Robust tracking-by-detection using a selection and
completion mechanism. Computational Visual Media
Vol. 3, No. 3, 285–294, 2017.

[36] Yuan, G.; Sun, P. H.; Zhao, J.; Li, D. X.; Wang, C.
W. A review of moving object trajectory clustering
algorithms. Artificial Intelligence Review Vol. 47, No.
1, 123–144, 2017.

[37] Guha, S.; Rastogi, R.; Shim, K. CURE: An
efficient clustering algorithm for large databases. ACM
SIGMOD Record Vol. 27, No. 2, 73–84, 1998.

[38] Sokal, R. R. A statistical method for evaluating
systematic relationship. University of Kansas Science
Bulletin Vol. 28, 1409–1438, 1958.

[39] DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperPoint:
Self-supervised interest point detection and description.
In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 337, 2018.

[40] Hartley, R.; Zisserman, A. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2003.

[41] Defays, D. An efficient algorithm for a complete link
method. The Computer Journal Vol. 20, No. 4, 364–366,
1977.

[42] Nguyen, N.; Caruana, R. Consensus clusterings. In:
Proceedings of the IEEE International Conference on
Data Mining, 607–612, 2007.

[43] Newcombe, R. A.; Izadi, S.; Hilliges, O.; Molyneaux,
D.; Kim, D.; Davison, A. J.; Kohi, P.; Shotton, J.;
Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time

dense surface mapping and tracking. In: Proceedings
of the IEEE International Symposium on Mixed and
Augmented Reality, 127–136, 2011.

[44] Cao, Y. P.; Kobbelt, L., Hu, S. M. Real-time
high-accuracy three-dimensional reconstruction with
consumer RGB-D cameras. ACM Transactions on
Graphics Vol. 37, No. 5, Article No. 171, 2018.

[45] Song, S.; Yu, F.; Zeng, A.; Chang, A. X.; Savva, M.;
Funkhouser, T. Semantic scene completion from a single
depth image. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 1746–
1754, 2017.

[46] Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.;
Koltun, V. CARLA: An open urban driving simulator.
In: Proceedings of the 1st Annual Conference on Robot
Learning, 1–16, 2017.

[47] Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige,
K.; Burgard, W. G2o: A general framework for graph
optimization. In: Proceedings of the IEEE International
Conference on Robotics and Automation, 3607–3613,
2011.

[48] Meilǎ M. Comparing clusterings by the variation
of information. In: Learning Theory and Kernel
Machines. Lecture Notes in Computer Science, Vol.
2777. Schölkopf, B.; Warmuth, M.K. Eds. Springer
Berlin Heidelberg, 173–187, 2003.

[49] Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Hoshino,
Y.; Peng, C. C. Path smoothing techniques in
robot navigation: State-of-the-art, current and future
challenges. Sensors Vol. 18, No. 9, 3170, 2018.

[50] Murali, V.; Chiu, H.-P.; Samarasekera, S.; Kumar, R. T.
Utilizing semantic visual landmarks for precise vehicle
navigation. In: Proceedings of the IEEE International
Conference on Intelligent Transportation Systems, 1–8,
2017.

Jiahui Huang received his B.S. degree
in computer science and technology
from Tsinghua University in 2018. He
is currently a Ph.D. candidate in
computer science in Tsinghua University.
His research interests include computer
vision, robotics, and computer graphics.

Sheng Yang received his Ph.D. degree
in computer science from Tsinghua
University in 2019. He is currently
a software engineer in Alibaba. His
research interests include SLAM,
robotics, and computer graphics.

ClusterSLAM: A SLAM backend for simultaneous rigid body clustering and motion estimation 101

Zishuo Zhao is an undergraduate
student in the Institute for
Interdisciplinary Information Sciences
in Tsinghua University. His research
interests include computer graphics,
computational geometry, operations
research, and algorithm theory.

Yu-Kun Lai received his bachelor
and Ph.D. degrees in computer science
from Tsinghua University in 2003 and
2008, respectively. He is currently a
professor in the School of Computer
Science & Informatics, Cardiff University.
His research interests include computer
graphics, geometry processing, image

processing and computer vision. He is on the editorial boards
of Computer Graphics Forum and The Visual Computer.

Shi-Min Hu is currently a professor in
the Department of Computer Science
and Technology, Tsinghua University,
Beijing. He received his Ph.D. degree
from Zhejiang University in 1996.
His research interests include digital
geometry processing, video processing,
rendering, computer animation, and

computer-aided geometric design. He has published more
than 100 papers in journals and refereed conferences.
He is the Editor-in-Chief of Computational Visual Media
(Springer), and on the editorial boards of several journals,
including Computer Aided Design (Elsevier) and Computers
& Graphics (Elsevier).

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

