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Comfort-driven disparity adjustment for stereoscopic video
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Abstract Pixel disparity—the offset of corresponding
pixels between left and right views—is a crucial
parameter in stereoscopic three-dimensional (S3D)
video, as it determines the depth perceived by the
human visual system (HVS). Unsuitable pixel disparity
distribution throughout an S3D video may lead to
visual discomfort. We present a unified and extensible
stereoscopic video disparity adjustment framework
which improves the viewing experience for an S3D
video by keeping the perceived 3D appearance as
unchanged as possible while minimizing discomfort. We
first analyse disparity and motion attributes of S3D
video in general, then derive a wide-ranging visual
discomfort metric from existing perceptual comfort
models. An objective function based on this metric is
used as the basis of a hierarchical optimisation method
to find a disparity mapping function for each input
video frame. Warping-based disparity manipulation
is then applied to the input video to generate the
output video, using the desired disparity mappings as
constraints. Our comfort metric takes into account
disparity range, motion, and stereoscopic window
violation; the framework could easily be extended to
use further visual comfort models. We demonstrate the
power of our approach using both animated cartoons
and real S3D videos.
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1 Introduction

With the recent worldwide increase in stereoscopic
display hardware, there has been great interest in
both academia and industry in stereoscopic three-
dimensional (S3D) movie production, for instance,
glasses-free multi-view display technology [1, 2]
and perceptual disparity models [3, 4]. Viewing
the 3D world through a display screen differs
from natural viewing—it introduces vergence-
accommodation conflict [5, 6]. As a result, poor
scene design in S3D movies can lead to visual
fatigue. In addition to vergence-accommodation
conflict, other factors such as motion and luminance
also affect the human visual system (HVS), and
may make the viewer feel uncomfortable. Most of
these factors have a close relationship to binocular
disparity—the difference in an object’s location on
the left and right retinas [7]. The brain uses
binocular disparity to extract depth information via
a process of stereopsis.

The goal of making a movie stereoscopic is to
add realism by providing a feeling of depth, but
care must be taken to avoid visual discomfort. It
is thus a tedious process to tune the perceptual
depth of S3D videos during shooting, even for
professionals with years of experience [8]. Existing
S3D video post-processing technology [9, 10] helps
to manipulate the original disparity of S3D images
and videos. Given the desired disparity mapping,
these methods manipulate the original disparity
to meet the requirements. Unfortunately, such
approaches require manually input disparity targets
or manipulation operators for guidance. A general,
content-driven solution for ensuring the comfort of
S3D video is still lacking.

In this paper, we provide an automatic solution
to the disparity tuning problem using a unified
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Fig. 1 Inputs and outputs: given an input stereoscopic 3D video (sample frames (a) and (c)), our framework automatically determines
comfort-driven disparity mappings (b) and (d) for every frame. Output video frames (e) and (g) are produced by applying these mappings to
the input video frames, improving visual comfort. (f) and (h) show close-ups of frames before and after manipulation ( c© Blender Foundation).

and extensible comfort-driven framework. Unlike
previous works that focus on user-guided S3D
video disparity retargeting [9, 10], we automatically
manipulate the disparity of an original S3D
video, to improve visual comfort while maintaining
satisfactory parts of the original content whenever
possible. The challenge of this problem is to
build a bridge between S3D visual comfort and the
automatic manipulation of video content. By taking
advantage of existing S3D visual comfort models,
we derive a general discomfort metric which we
use to evaluate and predict the discomfort level.
We build on this metric to define an objective
function for use in optimising disparity mapping
functions. Our metric may be further extended
if needed, to incorporate further visual comfort
models. We optimise the mappings over the whole
video, using a hierarchical solution based on a
genetic algorithm. The output video is generated by
applying the disparity mappings to the original video
using a warping-based technology (Fig. 1). To our
knowledge, our framework is the first system which
can automatically improve visual comfort by means
of comfort-driven disparity adjustment.

The major contributions of our work are thus:
• A unified S3D video post-processing framework

that automatically reduces visual discomfort by
disparity adjustment.
• A discomfort metric that combines several key

visual comfort models; it could be easily extended
to incorporate others too if desired. It provides
a basis for an objective function used to optimise
disparity.

• A hierarchical optimisation method for computing
a disparity mapping for each video frame.

2 Related work

Causes of visual discomfort experienced when
watching S3D movies have been investigated, with
a view to improving such movies. Mendiburu [8]
qualitatively determined various factors such as
excessive depth and discontinuous depth changes
that contribute to visual fatigue. Liu et al. [11]
summarized several principles, and applied them to
photo slideshows and video stabilization.

Various mathematical models have also been
proposed to quantitatively evaluate discomfort
experienced by the HVS. Besides viewing
configurations such as viewing distance [12],
time [13], and display screen type, effects particular
to stereoscopic content have also been widely
investigated [3, 4, 14–18], which we now consider in
turn.

Vergence-accommodation conflict is widely
accepted to be a key factor in visual discomfort.
These ideas may be used to quantitatively determine
a comfort zone within which little discomfort
arises [12]. Stereoscopic fusion disparity range is
modeled in Ref. [19], based on viewing distance and
display sizes. Didyk et al. [3] modeled perceptual
disparity based on experiments with sinusoidal
stimuli; the ideas can be used to produce backward-
compatible stereo and personalized stereo. This
work was later extended to incorporate the influence
of luminance contrast [4]. Our metric includes a
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disparity range term, based on the comfort zone
model in Ref. [12]. It allows us to decide whether
the disparity of a given point lies within the comfort
zone.

Motion is another important factor in perceptual
discomfort [14, 15, 20]. In Ref. [20], the contribution
of the velocity of moving objects to visual discomfort
is considered. Jung et al. [15] gave a visual
comfort metric based on salient object motion. Cho
and Kang [13] conducted experiments with various
combinations of disparity, viewing time, and motion-
in-depth, measuring the visual discomfort. Du
et al. [14] proposed a comfort metric for motion
which takes into account the interaction of motion
components in multiple directions, and depths. Such
literature shows that visual comfort is improved
when objects move at lower velocities or lie closer
to the screen plane. Movements perpendicular to the
screen (along the z-axis) play a more powerful role in
comfort than movements parallel to the screen plane
(the x – y plane).

Abrupt depth changes at scene discontinuities may
also induce discomfort: for instance, a sudden jump
from a shot focused in the distance to an extreme
close-up can be disorienting. Disparity-response time
models [17, 18] have been determined by a series of
user-experience experiments. To reduce discomfort
caused by depth changes, depths in shots should
change smoothly.

Stereoscopic window violation describes a situation
in which any object with negative disparity (in
front of the screen) touches the left or right screen
boundary. Part of the object may be seen by
one eye but hidden from the other eye, leading to
confusion by the viewer as to the object’s actual
position; this too causes fatigue [21]. Yet further
factors are discussed in a recent survey [22]. As
our approach provides a post-processing tool, we
consider factors related to scene layout rather than
camera parameters. These factors are disparity
range, motion, stereoscopic window violation, and
depth continuity; they are meant to cover the major
causes of discomfort, but our approach could be
extended to include others too.

Use of post-processing technology has increased in
recent years, helping amateurs to create S3D content
and directors to improve S3D movie appearance. Lo
et al. [23] showed how to perform copy & paste for
S3D, to create new stereoscopic photos from old ones;

constraints must be carefully chosen. Later, Tong
et al. [24] extended this work to allow pasting of
2D images into stereoscopic images. Kim et al. [25]
provided a method to create S3D line drawings from
3D shapes. Niu et al. [26] gave a warping-based
method for stereoscopic image retargeting. Lang et
al. [10] provided a disparity manipulation framework
which applies desired disparity mapping operators to
the original video using image warping. Kellnhofer
et al. [9] optimised the depth trajectories of objects
in an S3D video, providing smoother motion. Kim
et al. [27] computed multi-perspective stereoscopic
images from a light field, meeting users’ artistic
control requirements. Masia et al. [28] proposed
a light field retargeting method that preserves
perceptual depth on a variety of display types.
Koppal et al. [29] provided an editor for interactively
tuning camera and viewing parameters. Manually
tuned parameters of cameras are applied to video;
the results are then immediately fed back to the
user. However, there is presently a gap between
mathematical comfort models and post-processing
applications—few technologies automatically work
in a comfort-driven manner.

In a similar vein to our work, the OSCAM system
[30] automatically optimises the camera convergence
and interaxial separation to ensure that 3D scene
contents are within a comfortable depth range.
However this work is limited to processing virtual
scenes with known camera settings. Tseng et al. [31]
automatically optimised parameters of S3D cameras,
taking into account the depth range and stereoscopic
window violation. The major differences between
their work and ours are, firstly, they optimise
the camera separation and convergence, while our
system automatically generates an output video
with a better viewing experience. Secondly, their
objective functions are derived from either a simple
depth range or a few general principles while ours
relys on mathematical models. We build upon
existing S3D post-processing approaches, especially
warping-based ones, to build a bridge between
comfort models and a practical tool.

3 Overview

In this section, we explain our notation, and then
sketch our proposed framework.
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We adapt the measure of binocular disparity from
Ref. [14], expressed as angular disparity. Assuming
the viewer focuses on the display screen with a
vergence angle θ′, the angular disparity at a 3D
point P with a vergence angle θ is measured as the
difference of vergence angles θ′ − θ (see Fig. 2(a)).
We also use the concept of pixel disparity in the
metric and disparity mapping optimisation. The
pixel disparity of a feature point fL in the left view
L is defined as an integer offset fR − fL where fR
is the corresponding feature location in the right
view R (see Fig. 2(b)). Given these definitions,
both the angular disparity and pixel disparity are
negative when the 3D point P is in front of the
screen and positive when it is behind the screen.
A disparity mapping is a function φ(d) that given
an input disparity value d, returns a new output
disparity value d′. In this paper, φ is presented in
discrete form: given a set of τ different disparity
values Din = {dmin, . . . , dτ}, and a corresponding set
of output disparity values Dout = {d′min, . . . , d

′
τ}, we

regard φ : Din → Dout as a disparity mapping, where
d′i = φ(di).

As explained in Section 1, our comfort-driven
disparity mapping framework automatically adjusts
the disparity in an S3D video to improve visual
comfort. Given an input S3D video to be optimised,
we first evaluate the discomfort level of every

Fig. 2 Definitions: (a) angular disparity and (b) pixel disparity.

frame, using the proposed metric, then determine
time intervals which cause discomfort and key
frames inside each interval throughout the video
(see Section 4). Next, based on the key frames,
we optimise a disparity mapping φ for every
frame using a hierarchical optimisation method (see
Section 5), using an objective function derived from
the discomfort metric. Finally, the mappings are
applied to the original video by video warping. The
pipeline is illustrated in Fig. 3.

4 Discomfort metric

An objective function measuring discomfort level
is essential for automatic S3D video comfort
optimisation. In this section, we present a general
discomfort metric which is used to determine
the objective function for disparity mapping
optimisation. The metric takes into account disparity
range, motion, stereoscopic window violation, and
temporal smoothness, all of which have been shown
to have a major impact on the HVS. Each factor
is formulated as a cost function. The temporal
smoothness term relates pairs of successive frames
(so is a binary term) while others are only
dependent on one frame (so are unary terms).
The wide-ranging nature of this metric enables
us to evaluate discomfort level in the round.
The disparity range term measures the severity
of vergence-accommodation conflict. The motion
term evaluates discomfort brought about by eye
movements. Retinal rivalry arises from inconsistent
screen boundary occlusions, and is assessed by
the stereoscopic window violation term. Flickering
resulting from temporal inconsistency is evaluated
by the temporal smoothness term. We now discuss
each term individually and then explain how they

Fig. 3 Pipeline. The input of our system is a stereoscopic 3D video. Discomfort level of every frame is evaluated using the proposed metric.
Discomfort intervals and key frames inside each interval are determined. A disparity mapping for every frame is optimised, based on the key
frames, using a hierarchical optimisation method. Finally, the output video is generated by applying the mappings to the original video by
warping.
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are combined.
4.1 Individual terms

Disparity range. Excessive disparity leads to
strong adverse reactions in the HVS due to vergence-
accommodation conflict [5, 6]. To reduce the
resulting discomfort, one intuitive approach is to
compress the disparity range, but severe compression
makes an S3D video appear flat, and ultimately
imperceptibly different from 2D. Instead, we evaluate
how far each 3D point is from the screen plane and
penalize points that fall outside the comfort zone. In
Ref. [12], the far and near comfort zone boundaries
Bfar and Bnear are introduced. In terms of angular
disparity, these may be written as

Bfar = 2 tan−1
[

da

2mfardf
(1− Tfardf)

]
−2 tan−1

(
da

2df

)
Bnear = 2 tan−1

[
da

2mneardf
(1− Tneardf)

]
−2 tan−1

(
da

2df

)


(1)

where the constants in their model are mfar = 1.129,
mnear = 1.035, Tfar = 0.442, and Tnear = −0.626.
da is the angular disparity (in degree) of a pixel and
df is the viewing distance (in metre), which, in our
viewing configuration, is set to 0.55 m.

In this formulation, whether the angular disparity
da(p) of a pixel p is within the comfort zone range is
determined by

δ(p) =
{

1, if Bnear < da(p) < Bfar

0, otherwise
(2)

The fraction of pixels in frame f whose disparity is
outside the comfort zone is computed, and used to
define the disparity range penalty term Ed(f) for
frame f :

Ed(f) = 1− 1
N

∑
p∈f

δ(p) (3)

where N is the number of pixels in frame f . Figure
4 shows examples where disparities of certain pixels
lie beyond the comfort zone.

Motion is an important source of visual
discomfort [15, 20]. In Ref. [14], a novel visual
comfort metric for S3D motion is proposed. This
metric is a function of both the combination of
velocity and depth, and luminance frequency. It
returns a comfort value from 1 to 5 (the higher,

Fig. 4 Comfort zone. Left: anaglyph 3D images. Right: disparities
beyond the comfort zone shown in blue.

the more comfortable). We adopt this model in
our metric and assign to every video frame a
motion discomfort value. We first assign a motion
discomfort value Vc(p) = ωn(5 − Mp(p)) for every
pixel p, where ωn is a coefficient normalising Vc(p)
to [0, 1), set to 0.25. Mp(p) is the pixel-wise motion
comfort value calculated as in Ref. [14]:

Mp(p) =
n∑
k=0

C(vxy, vz, d,
fl0
2k )× Lk(p)∑

k

Lk(p)

where C(vxy, vz, d,
fl0
2k ) is a model of motion comfort

based on planar velocity vxy, spatial velocity vz,

angular disparity d, and luminance frequency fl0
2k .

Lk(p) is the contrast value of the (2k+1 + 1)-
neighborhood at p at the k-th Laplacian level of the
Laplacian pyramid of the luminance; see Ref. [14] for
further details.

After computing a discomfort value for every
pixel, we determine the motion discomfort for the
whole frame. In Ref. [14], average motion comfort
values are calculated for individual saliency-based
segments [32], assigning an importance value to
every segment. The segments are obtained by
graph-based segmentation [33]. They assumed that
the most uncomfortable region in a frame dictates
the discomfort of the whole frame. However, we find
that calculating the most salient and uncomfortable
region in separate images without considering
temporal coherence can lead to motion comfort
instability. Instead, we modify their approach to
perform SLIC superpixel segmentation [34], consider
multiple discomfort-causing segments, and regard
every segment as having the same importance. We
extract an average motion comfort value for the
top-K (K=20 by default) segment discomfort values
as a motion penalty. The motion discomfort Em(f)
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for the whole frame f is

Em(f) = 1
K

K∑
k=1

T (Vs(sk)) (4)

where Vs(s) =
∑
p∈s

Vc(p)/m is the average motion

discomfort value for a segment s having m pixels.
T (·) is the set of segment motion discomfort values,
in descending order, as computed in Ref. [14].
Figure 5 shows example S3D frames with segment-
wise discomfort maps according to motion.

Stereoscopic window violation occurs when
an object is virtually located in front of the screen
(i.e., has negative disparity) but is occluded by the
screen boundary. This is confusing as a nearer object
appears to be occluded by a further one, causing
retinal rivalry [8]. If this happens, only one eye can
see part of the object, leading to visual inconsistency
and hence discomfort (see Fig. 6). One practical way
to alleviate this is to trim off the offending part.

To measure stereoscopic window violation (SWV),
we use a term Ev(f) for frame f . We first detect
violations by checking pixels near left and right
boundaries: if pixels touching the frame boundaries
have negative disparity, they violate the stereoscopic

Fig. 5 Motion discomfort estimation: (a) anaglyph 3D frames
( c© Blender Foundation); (b) estimated discomfort caused by motion.

Fig. 6 Stereoscopic window violation (SWV). Left: a toy example
illustrating SWV. Part of the object in green falling in the light
blue region can only be seen by the left eye. Right: a real S3D
photo showing SWV ( c© KUK Filmproduktion GmbH). There is
inconsistent content in the leftmost part of the photo, leading to
viewer discomfort.

window. The SWV penalty for frame f is then
defined by counting the number of pixels included
in violating objects:

Ev(f) = 1
N

∑
s∈Rb

n(s) (5)

where s stands for image segments extracted as
before, and Rb is an approximation of violating
objects in the form of segments; every segment in
Rb has a negative average disparity. Rb is initially
set to those boundary segments with a negative
average disparity, and is then iteratively augmented
by adding new neighbouring segments with negative
average disparity until no new segments with
negative average disparity are found. n(s) is the
number of pixels in segment s and N is the number
of pixels in frame f .

Temporal smoothness. To avoid sudden depth
changes, the disparity should vary smoothly and
slowly, as needed. In Ref. [11], the importance
of temporal smoothness is emphasised in 3D
cinematography; they suggested that the disparity
range of successive frames should vary smoothly.
Following the definition of disparity map similarity
in Ref. [11], we define the similarity of disparity
between neighbouring frames f and f ′ using Jensen–
Shannon divergence [35]:

Es(f, f ′) = H(Ψ(f) + Ψ(f ′)
2 )−H(Ψ(f)) +H(Ψ(f ′))

2
(6)

where Ψ(f) is a pixel disparity histogram for frame
f with dmax − dmin + 1 bins; dmax is the largest
integer pixel disparity value in f and dmin is the
smallest integer pixel disparity value in f . H(X) is
the Shannon entropy for distribution X. Intuitively,
the more unlike the disparity histograms are, the
higher the value of Es.

4.2 Discomfort metric

Our general discomfort metric for a set of successive
frames F̂ in an S3D video is formulated as a linear
combination of the above terms in Eqs. (3)–(6),
summed over the frames:

Ec(F̂ ) =
∑
f∈F̂

Ec(f)

Ec(f) = λdEd(f) + λmEm(f)
+ λvEv(f) + λsEs(f, f ′)

 (7)

where f ′ is the successor frame to f in F̂ . λd, λm,
λv, and λs are weights balancing the penalty terms,
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set to 1, 0.4, 10, and 0.1 respectively. The weights
are determined via experiments. We did a small scale
perceptual study on 10 subjects with 10 input videos:
we enumerated every weight from 0 to 20 with step
0.1, generating 1.6 × 109 possible combinations of
weights. After calculating the corresponding general
metrics for input videos based on each group of
weights, we asked 5 subjects to view each video and
evaluate its comfort level by assigning integer scores
from 1 to 5. We finally selected the group of weights,
for which the metric score best reflected the subjects’
comfort feelings. The weights were further validated
by the other 5 subjects’ evaluation. This metric can
be used to predict the overall discomfort level of
part or all of an S3D video. An S3D video frame
is predicted as visually comfortable if the discomfort
value Ec < 0.3. Figure 7(b) shows example frames
with their corresponding discomfort values.

The metric has a general form, with a default
set of weights balancing the penalty terms. If
considered unimportant, certain terms can be
ignored, by setting their corresponding weights
to 0. Alternatively, additional terms of a similar
kind could also be included with proper weight
configuration (as an example, we present a
variation of the metric, driving perceptual depth
enhancement, by adding another unary term to each
frame in the video (see Section 6)). We intentionally
do not include all factors that cause visual fatigue—
there are many such factors. Instead, we claim
that the above metric includes many of the most
significant factors, and the way we have formulated
it allows ready extension to include other comfort

Fig. 7 Typical frames ( c© Blender Foundation) and discomfort
scores. (a) Discomfort scores for frames in an S3D video clip.
The discomfort interval is marked in blue. Key frames selected by
our algorithm are highlighted in red. (b) shows three frames and
corresponding discomfort scores from (a).

models using additional penalty terms. The ideas in
the rest of the paper do not depend on the precise
form of this metric, only that such a metric can be
formulated. We next show how to use this metric to
define the objective function used to optimise pixel
disparity mapping.

5 Optimisation of pixel disparity
mapping

Based on the above visual discomfort metric, we
next derive the objective function used for disparity
mapping optimisation. A genetic algorithm is used
in a hierarchical approach to optimise disparity
mapping: given a set of input disparity values, we
compute a corresponding target output disparity for
each value.
5.1 Objective function

The visual discomfort metric Ec measures the
discomfort level of S3D video frames. However,
directly using it as an objective function in an
optimisation process leads to unsatisfactory results:
clearly, mapping all disparity values to zero would
minimise Ec, making it equal to zero at all times.
Also, making large changes to the disparity without
scaling the sizes of objects leads to a change in
the perceived size of the original content. We
thus add an additional unary term En(φ, f) to
every frame f with the intent that optimisation
should change the original disparities as little as
possible. En(φ, f) measures differences between new
and original disparities:

En(φ, f) = 1
N

∑
d∈[dmin,dmax]

Ψd(f)|φ(d, f)− d| (8)

where N is the number of pixels in frame f , d is
the integer pixel disparity value, and Ψd(f) is the
disparity histogram count for disparity d in frame
f , as in Eq. (6). φ(d, f) is disparity mapping for
disparity d in frame f . This formulation gives a cost
for the mapping φ, punishing large changes from the
original disparity distribution. This additional term
allows us to find a suitable disparity mapping for
each video frame that improves visual comfort while
also preserving the original appearance.

We denote the objective function for optimising a
sequence of mappings Φ̂ of a sequence of frames F̂
in a S3D video as E(Φ̂); it is defined as
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E(Φ̂) =
∑
f∈F̂

(λdEd(Γφf
(f)) + λmEm(Γφf

(f))

+λvEv(Γφf
(f)) + λnEn(φf , f)

+λsEs(Γφf
(f),Γφf′ (f ′))) (9)

where f ′ is the successor frame to f , and Γφf
(f) is

a function which applies the mapping operator φf
to frame f to produce a new frame with the desired
new pixel disparities. λn is a further weight, set to
0.01 by default.
5.2 Hierarchical optimisation

The objective function in Eq. (9) is complex;
we use an efficient hierarchical approach to
optimise it in a coarse-to-fine manner along the
time-line. We note that in S3D movies, frames
causing discomfort usually appear together, forming
discomfort intervals. Thus, we firstly extract
discomfort intervals for the whole video: we
manipulate the disparity only for frames which cause
discomfort, and leave the others unchanged. The
discomfort intervals are determined using Eq. (7):
a discomfort interval is a set of continuous frames
from starting frame fs to ending frame fe, within
which the discomfort metric Ec({f, f ′}) is above a
threshold α = 0.3, where f and f ′ are consecutive
frames inside the interval. During optimisation, at
coarser levels, inside every discomfort interval we
determine key frames where the disparity changes
drastically or there is a local maximum of discomfort.
Frames at discomfort interval boundaries are also
taken as key frames having a fixed identity pixel
disparity map (φ(d) = d). Next, we use a genetic
algorithm to optimise pixel disparity mappings of the
key frames, treating the key frames as neighbours.
After optimising the key frames at this hierarchy
level, we fix the disparity mappings of the current
key frames, and continue to seek new key frames
for finer intervals between any two successive key
frames at the current level. The mappings of the
current key frames are used as boundary conditions
for the next level. This process is recursively
performed until fewer than ten frames exist between
each neighbouring pair of key frames. Finally, the
disparity mapping for remaining frames between
these key frames is interpolated. We now give further
details of key steps.
5.2.1 Key frame determination
Key frame determination is a crucial step in the

hierarchical disparity mapping optimisation. Since
the optimisation is performed in a coarse-to-fine
manner, at coarser levels, key frames should provide
a story line overview of frames at finer levels,
especially in terms of disparity. Motivated by this
requirement, inside each discomfort interval we mark
a frame as a key frame when there is a sudden
depth change or the discomfort metric reaches a local
maximum within a window of Υl frames for each
level l. By default, Υl at level l is set to a quarter
of the interval length between the two boundary
key frames. Specifically, we use the inequality
Es(f, f ′) > β to determine whether frame f is a key
frame at a drastic depth change; by default β = 0.5.
After optimising key frames at level l, new key frames
at level l + 1 are recursively determined, by seeking
new key frames at level l+ 1 between every adjacent
pair of key frames at level l. We stop when fewer than
ten frames exist between each neighbouring pair of
key frames.
5.2.2 Heuristic optimisation using genetic

algorithm
After finding key frame sets F at level l, we use a
heuristic algorithm to optimise disparity mappings
of these key frames. Without loss of generality,
assume we are optimising a discomfort interval with
t detected key frames F = {f1, . . . , ft}. Including
the additional key frames at the discomfort interval
boundaries, the augmented key frame set becomes
F = {fs, f1, . . . , ft, fe}, with fixed identity disparity
mappings for fs and fe as boundary conditions. We
regard every successive pair of frames in F along
the time-line as neighbours in a coarse view. We
optimise the key frame mappings Φ = {φ1, . . . , φt}
at coarser levels using the objective function adapted
from Eq. (9):

E(Φ) =
∑
f∈F

(λdEd(Γφf
(f)) + λmEm(Γφf

(f))

+λvEv(Γφf
(f)) + λnEn(φf , f)

+λsEs(Γφf
(f),Γφf′ (f ′))) (10)

where f ′ is the successor frame to f in F . This
objective function is used as fitness assessment in
genetic algorithm.

A genetic algorithm (GA) is used to optimise the
disparity mapping φ for each frame f using this
objective function as a fitness function. We use the
GALib implementation of a steady-state genetic
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algorithm [36]; 50% of the population is replaced on
each generation. The genome for each individual is a
vector of real numbers, which is used to store target
disparity mapping values (with a conversion between
integer and real numbers). Uniform crossover [37]
is used with Gaussian mutation [38], which adds a
random value from a Gaussian distribution to each
element of an individual’s state vector, to create
offspring.

Genome of individuals. The genome
representation needs to be carefully designed;
poor choice can lead to GA divergence. The
target output disparity mapping values Dφf

=
{φ(dmin), . . . , φ(dmax)} of the mapping function φ

for a frame f is an elementary unit in each
individual’s genome. The disparity mapping φ(x)
should be a non-decreasing function, i.e., if x1 < x2,
then φ(x1) 6 φ(x2), to avoid depth reversal artifacts
in the output video. We enforce this requirement
by using an increment-based representation. We
represent the mapping values Dφf

= {φ(dmin),
. . . , φ(dmax)} as D̃φf

= {φ(dmin),∆1, . . . ,∆p−1}
where d ranges over all integer pixel disparity values
between dmin and dmax, and ∆i = φ(di+1)− φ(di) is
a non-negative mapping value increment. Obviously,
we can recover Dφf

from the relationship Dφf
[i] =

D̃φf
[i − 1] + D̃φf

[i]. The non-negativity of ∆i is
guaranteed by additional bound bi and lower bound
bi on each integer element of D̃φf

:

bi =
{
dmin + (dmax − dmin)/2, if i = 1
5, otherwise

and

bi =
{
dmin − (dmax − dmin)/2, if i = 1
0, otherwise

These upper and lower bounds also prevent the
mappings from making over-large increments ∆i.
This constraint is supported by the steady-state
genetic algorithm. The full genome of each individual
is a vector of integers which concatenates the
mapping values D̃Φ = {D̃φ1 , . . . , D̃φt} for the t key
frames in F .

Evolution. The state of every individual in the
first generation is initialised using random mappings.
The objective function in Eq. (10) is used for
individual fitness assessment. The uniform crossover
probability is pc = 0.7 and the Gaussian mutation
probability is pm = 0.05. The population size np
is set to 100 and the GA terminates after ng =
50 generations. As a steady-state GA is used,
the last generation includes the best solution found
for the desired mappings Φ′. Figure 8 illustrates
the mappings corresponding to the best solution in
different generations.

5.3 Warping-based manipulation

After optimising pixel disparity mappings for each
frame of the video, we have to adjust the input video
using these mappings. In Ref. [10], a warping-based
method is given to adjust disparity to match desired
disparity mappings. Their approach first extracts
sparse stereo correspondences, followed by warping
of left and right frames respectively with constraints
applied to the vertices of a mesh grid placed over
each frame. The output is thus a deformed mesh as

Fig. 8 Best disparity mapping solutions for improving comfort level of the frame shown in Fig. 1(c), at various generations of the genetic
algorithm. The frame set F contains four key frames. During optimisation, the discomfort cost Ec of F is reduced.
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well as the warped frame. We use this technology to
generate the output video.

6 Results

The experiments were carried out on a computer
with an Intel Core i7-4790K CPU with 32 GB RAM.
All videos were uniformly scaled to fit the screen
size (1920×1080 pixels) to the extent possible before
calculation. We calculate dense pixel correspondence
between the left view and right view to estimate the
pixel disparity in S3D videos using optical flow [39].
Motion in the x – y plane is also estimated using
this method, between consecutive frames in the left
view. Calculating the discomfort metric for one
S3D video frame of size 1920×1080 takes less than
0.2 s. The most time-consuming part is hierarchical
optimisation, but the time taken is variable. It
is dominated by the key frame determination step;
it takes up to 15 min to optimise ten key frames
together in our implementation, using a single core.

We have tested our approach on S3D video clips
whose lengths are less than one minute. As explained
in Ref. [14], the proposed motion comfort metric was
derived from experiments on short videos. All of
the results were obtained using default parameters.
Extensive experiments showed that our system is
insensitive to parameter settings.

Our method provides smooth scene transitions
between successive shots. Representative frames of
a video clip with shot cuts are shown in Fig. 9(a).

Boundary frames 1 and 40 do not cause discomfort,
so are fixed to retain their original disparities. Our
algorithm detects drastic disparity changes between
these boundary frames and automatically adjusts
disparities to provide smoother depth transitions by
finding suitable disparity mappings (see Fig. 9(b)).
In this example, frames where shot cuts occur
are detected as key frames. This is because the
values of motion term and temporal smoothness
term reach a local maximum within a window.
As can be seen in Fig. 9(c), after manipulating
the video, the depth storyboard suffers less from
sudden jumps in disparity. While the last part of
the video initially has a constant disparity range,
which after processing becomes a slowly increasing
disparity range, this does not lead to any perceptual
artifacts: (i) slow transitions in disparity are often
used to control disparity at shot cuts, (ii) the rate
of disparity change is small, and (iii) the warping
provides a smooth solution.

Figure 10 gives an example of automatic correction
of excessive disparity range. The ball popping out
towards the viewer in the center of the frame makes
it difficult for the viewer to comfortably perceive
the depth. Our correction pushes the ball a little
closer to the screen. Pushing the ball back into the
screen too far would change the content too much,
in disagreement with the film maker’s intent. The
deformed meshes of the left and right views used for
the warping-based disparity manipulation are also
shown. Discomfort scores in our metric before and

Fig. 9 Representative anaglyph frames of our results, with a fluent depth storyboard. (a) Sample input and output frames (frame 1 and
frame 40 are fixed to their original disparities). (b) Pixel disparity mappings along the time-line (colour encodes output disparity value). (c)
Depth storyboard before and after the manipulation, with colour encoding frequency of the occurrence of disparity values.
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Fig. 10 Disparity mapping. (a) An input S3D frame and
corresponding output frame. The “ball” outside the comfort zone is
pushed back towards the screen. (b) Disparity mapping generated
by our algorithm. (c) Deformed meshes for left and right views,
indicating the warping effect.

after manipulation are 0.58 and 0.22, respectively.
Figure 11 gives an example of eliminating

stereoscopic window violation. In the original input
frame, the front of the car appears in front of
the screen plane, but is occluded by the picture
boundary. This causes the leftmost part of the image
to be seen only by the left eye. Such inconsistent
content gives an unpleasant viewing experience. Our
approach detects such violation automatically and
eliminates it by pushing the car behind the screen.

We further tested our framework using videos from
a consumer stereoscopic camera (Fuji FinePix REAL
3D W3). Typical frames from one video are shown
in Fig. 12. The perceptual depth range is excessive,
making it hard to fuse the scene. In the result, the
depth of the building in the far distance is reduced,
while the disparity values of the flowers are subtly
changed.

Perceptual depth enhancement. In Sections 4
and 5, we presented an extensible framework
that optimises disparity mappings driven by
comfort. A variation of this framework can be
used to drive disparity manipulation to provide

Fig. 11 Eliminating stereoscopic window violation. Left: input
frames with SWV ( c© KUK Filmproduktion GmbH). Right: in the
manipulation result, the popped out parts are pushed back towards
the screen.

Fig. 12 Processing a video taken by a consumer S3D camera. The
depth of the scene is reduced to facilitate stereoscopic fusion.

depth enhancement (while not introducing visual
discomfort), for a greater feeling of depth. This goal
can be accomplished by introducing to the objective
function an additional unary term Ea(φ, f) for each
frame with weight λa = 1, with the aim of punishing
small disparities after applying the mapping φ to the
video:
Ea(φ, f) = exp(− 1

2N
∑

d∈[dmin,dmax]
Ψd(f)|φ(d, f)|)

(11)
where N is the number of pixels in frame f , d is
the integer pixel disparity value, and Ψd(f) is the
disparity histogram count for disparity d in frame
f , as in Eq. (8). This change allows the perceived
depths to be amplified, as shown in Fig. 13.

6.1 User study

We conducted two user studies with 20 subjects aged
from 18 to 32, to further assess the performance
of our proposed comfort-driven disparity adjustment
method. The primary aims for the two user studies
were to test whether the framework can produce
artifact-free results, and its ability to improve visual

Fig. 13 Enhancing perceptual depth. Left: input and output frames
( c© Blender Foundation). After enhancement, the head of the man
looks more angular. Right: the generated disparity mapping.



14 M. Wang, X.-J. Zhang, J.-B. Liang, et al.

comfort. Subjects participated by watching S3D
videos and filling in questionnaires.

We used a 23-inch interleaved 3D display
(1920×1080 pixels, 400 cd/m2 brightness), with
passive polarized glasses. The viewing distance was
set to 55 cm, as assumed in the proposed metric. All
subjects had normal or corrected-to-normal vision,
and were assessed to ensure they had no difficulty
in stereoscopic fusion. Videos were displayed at full
screen size.

We prepared ten pairs of S3D videos including
animated cartoons and real S3D videos. Both videos
in a pair had the same content, one being the original
and the other being modified by our system. A
random order was used for each pair, and displayed
three times in succession. Subjects were allowed to
pause and carefully examine the content at any time.

In the first user study, we evaluated whether our
output video provides greater visual comfort than
the original. After watching each video, each subject
was asked to rate the comfort level of their viewing
experience, in terms of ease of fusing the scene,
causing fewer or more severe headaches, and other
feelings of discomfort. Five ratings were used, from
1 to 5: very uncomfortable, uncomfortable, mildly
comfortable, comfortable, very comfortable. In all
ten pairs of test videos, our results achieved on
average a higher comfort score than the original
video. The differences in average score in each
pair varied from 0.3 to 1.35. A right-tailed paired-
sample hypothesis test was conducted, with the null
hypothesis H0: there was no significant difference
between the comfort scores of our outputs and the
original videos and alternate hypothesis HA: the
comfort scores of our results were significantly higher
than those for the original videos at significance level
α = 0.05 with n = 200 samples. The one-tailed
critical value was t = 1.653, while the test statistic
was t∗ = 9.905. Since t∗ > t, the null hypothesis
was rejected, indicating that the differences were
statistically significant: our approach provides an
improved stereoscopic video viewing experience.

The second user study aimed to assess artifacts in
our results. Before undertaking the user study, the
subject was told to note any disturbing perceptual
depth artifacts (e.g., depth reversals or unsuitable
depth changes) that caused confusion. After

watching each video, the subject was asked to rate
both videos for unsuitable perceived depths, which
were scored as follows: 4 = many strong artifacts,
2 = few strong/many weak artifacts, 1 = few weak
artifacts, and 0 = no artifacts. The results showed
that 8 out of 20 subjects did not notice artifacts in
any video, 2 subjects only saw artifacts in our results
and 2 subjects only saw artifacts in the original
videos. The other 8 subjects noticed artifacts in both
our results and the original videos. The worst score
for both our results and the original videos was 2
(few strong/many weak artifacts). To further test
whether statistically the two sets of scores have no
difference, a two-tailed paired-sample hypothesis test
was conducted, with the null hypothesis H0: there
was no significant difference between the artifact
scores of our outputs and the original videos and
alternate hypothesis HA: artifact scores of our
results and the original videos differ at significance
level α = 0.05 with n = 200 samples. The two-tailed
critical value was t = 1.972, while the test statistic
was t∗ = 1.236. This time, the null hypothesis was
not rejected, as |t∗| 6 |t|. We conclude that there
is no significant difference in the perceived level
of artifacts in the original videos and our results.
Indeed, viewers are fairly insensitive to artifacts in
these videos. Full statistics of the user studies are
provided in the Electronic Supplementary Material
(ESM) of this paper.

Limitations. Our approach has limitations. As
optimisation is based on a genetic algorithm, it may
only find a local optimum. However, tests in which
the genetic algorithm was initialized with differing
initial populations led to quite similar output
mappings. Secondly, existing individual comfort
models work well only for viewers with normal
stereoscopic fusion ability, and give an average
comfort evaluation. Thus using the discomfort
metric with default parameters may not give an
accurate comfort evaluation for every individual,
especially for those with poor stereoscopic fusion
ability. Across individuals, there may well be
differences in which aspects of an S3D video cause
most discomfort. Moreover, our system cannot
predict directors’ intention: shots intentionally
causing discomfort for artistic visual impact would
unfortunately be eliminated by our system.
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7 Conclusions

We have suggested a general framework for
automatic comfort-driven disparity adjustment,
together with an S3D discomfort metric. The metric
combines several key factors, and could be of general
benefit to S3D movie makers by giving an objective
visual comfort evaluation in the round. It underpins
our automatic disparity adjustment approach, which
is based on disparity mapping optimisation. Our
results demonstrate the effectiveness and uses of our
approach.

Our work is among the first attempts to tackle
this challenging problem, and leaves room for
improvement. In our framework, the disparity
mapping is automatically determined using a
heuristic method, and a closed-form solution for this
problem is desirable.
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