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Abstract The perception of the visual world through
basic building blocks, such as cubes, spheres, and cones,
gives human beings a parsimonious understanding of
the visual world. Thus, efforts to find primitive-based
geometric interpretations of visual data date back to
1970s studies of visual media. However, due to the
difficulty of primitive fitting in the pre-deep learning
age, this research approach faded from the main stage,
and the vision community turned primarily to semantic
image understanding. In this paper, we revisit the
classical problem of building geometric interpretations
of images, using supervised deep learning tools. We
build a framework to detect primitives from images in
a layered manner by modifying the YOLO network;
an RNN with a novel loss function is then used
to equip this network with the capability to predict
primitives with a variable number of parameters. We
compare our pipeline to traditional and other baseline
learning methods, demonstrating that our layered
detection model has higher accuracy and performs
better reconstruction.
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1 Introduction
The computer vision community has been interested
in performing detection tasks on images for a long
time. The success of object detection techniques has
been a shot-in-the-arm for better image understand-
ing. The potent combination of deep learning
techniques with traditional techniques [1, 2] has
yielded state-of-the-art techniques which focus on
detecting objects in an image through bounding
box proposals. While this works well for tasks that
require strong object localization, other applications
in robotics and autonomic systems require a more
detailed understanding of the objects in the image.
Thus, another well-studied task in visual media
processing is that of instance segmentation, where
a per-pixel class label is assigned to an input image.
Such dense labeling schemes are too redundant, and
an intermediate representation needs to be developed.

Understanding images or shapes in terms of basic
primitives is a very natural human abstraction. The
parsimonious nature of primitive-based descriptions,
especially when the task at hand does not require
fine-grained knowledge of the image, makes them easy
to use and a good choice. This has been explored
extensively in the realms of both computer vision
and graphics. Various traditional approaches exist
for modeling images and objects, such as blocks
world [3], generalized cylinders [4], and geons [5].
While primitive-based modeling generally uses classical
techniques, using machine learning techniques to
extract these primitives can help us to attack more
complex images, with multiple layers of information in
them. Basic primitive elements such as rectangles,
circles, triangles, and spline curves are usually
the building blocks of objects in images, and in
combination, provide simple, yet extremely informative
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representations of complex images. Labeling image
pixels with high-level primitive information also aids
in vectorizing rasterized images.

Complex images have multiple layers of information
embedded in them. It is shown in Ref. [6], that
human analysis of an image is always performed in
a top–down manner. For example, when given an
image of a room, the biggest objects such as desks,
beds, chairs, etc., are observed. Then the focus shifts
to specific objects, e.g., objects on the desk such
as books and monitor; this analysis is performed
recursively. When analyzing an image of a window,
humans tend to focus on the border of the window
first; the inner structure within the window and
decorations are considered later. However, original
object detection networks neglect this layered search
and treat objects from different information layers
the same. Layered detection has added value when
there are internal occlusions in the image, which make
traditional object detection more difficult to perform.
In this work, we attempt to generate a deep network
that separates multiple information layers as in Fig. 1,
and is able to detect the positions of the primitives in
each layer as well as estimating their parameters (e.g.,
the width, height, and orientation of a rectangle or
the number and positions of control points of a spline).
The proposed method is shown to be more accurate
than traditional methods and other learning-based
approaches.

This paper is organized as follows. We consider
related work in Section 2, and provide an analysis
of the novelty of our work. Then, in Section 3,
we propose a framework based on the traditional
YOLOv2 network [2], to provide parameters that are
fully interpretable and high-level. We also tackle
the problem of regressing parameters for primitives

Fig. 1 Motivation: given an image composed of abstract shapes, our
framework can decompose overlapping primitives into multiple layers
and estimate their parameters.

with a variable number of unknowns. Then, we
propose a layered architecture in Section 4, which can
learn to separate different information layers of the
image and regress parameters in each layer separately.
In Section 6, we give experiments used to evaluate
the performance of our network against existing
traditional state-of-the-art techniques, and in Section
7, we show how this framework could be applied
to image editing and recognition by components.
We also discuss the limitations of our framework.
Finally, in Section 9, we attempt to envisage how
the framework provided in this work would help
to solve the important problem of primitive-based
representations, which has applications that lie at the
intersection of vision, AI, and robotics.

To sum up, our contributions in this paper include:
• A framework based on the YOLOv2 network that

enables class-wise parameter regression for different
primitives.

• An RNN model to estimate a sequence of a variable
number of control points representing a closed
spline curve in a single 2D image.

• A layered primitive detection model to extract
relationship information from an image.

2 Related work
Our task of decomposing an input image into layers
of correlated and possibly overlapping geometric
primitives is inherently linked to three categories
of problems, which have been treated and studied
independently in the traditional setting. Object
detection and high-level vision, regression and
reconstruction of geometric components such as
splines and primitives, and finally, understanding
relationships and layout of objects and entities are
problems that provide information at different scales,
all of great importance to the computer vision
and graphics communities. After considering these
three categories of applications, we conclude the
discussion of related work with relevant machine
learning methodologies, with a focus on recurrent
neural networks.

2.1 Object detection and high-level vision

Among the traditional model-driven approaches
to object detection, the generalized Hough
transform [7] is a classical technique applicable to
detecting particular classes of shapes up to rigid
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transformations. Variability of shapes as well as
input nuances are tackled by deep-learning based
techniques; faster-RCNN [8] utilizes region proposal
networks (RPN) to locate objects and fast-RCNN
to determine the semantic class of each object.
Recent works like YOLO [1, 2] and SSD [9] formulate
the task of detection as a regression problem and
propose end-to-end trainable solutions. We use the
detection framework of the efficient YOLOv2 [2] as
the backbone of our framework. However, unlike
YOLO or YOLOv2, as well as providing bounding
boxes and class labels, our framework also regresses
geometric parameters and handles the problem of
occlusion, in layered fashion.

To construct high-level objects using simple
primitives, Biederman [5] introduced the idea of visual
composition. Recently, SCAN [10] tries to compose
visual primitives in a hierarchical way and learn an
implicit hierarchy of concepts as well as their logical
relations using a β-VAE network. While they build
their hierarchy over concepts, our work is based on
visual containment relationships for different shapes.
Lake et al. [11] proposed a probabilistic program
induction scheme to parse hand-writing images into
several strokes and sub-strokes using a few images
as training data, but their method is limited to the
specific domain of hand-written characters.

2.2 Spline fitting and vectorization

Primitives and splines are widely used for representing
geometry or images due to their succinctness and
precision. Thus, recovering them by fitting input
data is a long-standing problem in graphics. The
idea of iteratively minimizing a distance metric [12–
14], serving as a foundation of many studies, has been
improved by either more effective distance metrics
[15] or more efficient optimization techniques [16].
However, most previous works fail due to lack of
decent initialization, which is overcome by a learning-
based algorithm in our case. It is worth noting that
vectorizing rasterized images [17, 18] also aims to
solve a related problem. However, since previous
works do not decompose an image into assemblies
of clean primitives, there is a loss of high-level
information about shape and layering.

2.3 Layered object detection

Multiple works have of late attempted to introduce
composable layers into the process of object detection.

Liu et al. [9] attempt to use feature hierarchies
and detect objects based on different feature maps.
Lin et al. [19] further improve this elegant idea
by adding top–down convolutional layers and skip
connections. However, these works only focus on how
to combine features at different scales regardless of
the relationships between objects and the associated
layers composing the original image. The work
by Bellver et al. [6] formulates detection as a
reinforcement learning problem and represents an
image as a predefined hierarchical tree, leaving the
agent to iteratively select subsequent parts to look
at. The work most relevant to ours is CSGNet [20],
a recursive neural network model which generates a
structured program defining the relationships between
a sparse set of primitives. However, the possible
positions and sizes of the primitives are limited
to the size of a finite action space. In contrast,
our work allows more detailed transformations of
primitives, and our layered representation is less
prone to redundancy.

2.4 Recurrent neural networks

The recurrent neural network (RNN) (and its variants
LSTM [21], GRU [22]) is a common model widely used
in natural language processing which has recently
been applied to computer vision tasks. One key
inspiration for our work is polygon-RNN [23], in which
a sequence of vertices forming a polygon is predicted
in a recurrent manner. One of the key differences
in our work is that we aim to abstract the simplest
types of representation on different layers, based on
general splines instead of polylines, or interpolating
cubic Bézier curves as in the polygon-RNN.

The discussion above only samples the studies
most relevant to our work. There are many other
relevant areas such as image parsing, dense captioning,
structure-aware geometry processing, and more.
Despite richness of relevant works across a wide range
which manifest the importance of the topic, we believe
that the problem of understanding images as abstract
compositions is underexplored.

3 Basic model
In this section, we propose a framework based on
a standard modification of the YOLOv2 model [2],
inspired by Ref. [24], to perform parameter regression.
The parameters regressed by the model, as opposed
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to those in Ref. [24], are fully interpretable and high-
level.
3.1 Adapting YOLO for parameter regression

The primary idea of this model is to extend the
architecture of the state-of-the-art object detector
YOLOv2 to detect primitives in an image, and
in addition, to estimate the parameters of each
primitive. The deep neural network architecture
is capable of extracting more detailed descriptors
of detected objects, as well as the bounding box
location. Providing additional structural information
about the object to the YOLOv2 architecture aids in
augmenting the learned features.

The YOLOv2 network in the original paper
consumes an entire image and segments it into a
grid of size S × S. Each square in the grid can
contain multiple primitives. The networks model
this multiplicity by containing up to B possible
anchors (primitives in this case). Thus, traditional
YOLOv2 networks learn S ×S ×B × (K +5) different
parameters; the K + 5 term arises since, in addition
to the class labels for the K different primitive
classes, the network also predicts 1 object probability
value and 4 bounding-box related values [2]. While
regressing parameters for the bounding boxes, the
regressor needs to predict M extra variables for each
bounding box being predicted. The M variables
are the total number of possible parameters from
all different primitive categories. This increases the
number of parameters predicted by the network to
S × S × B × (5 + K + M).

To achieve this end, a new loss term is added to the
loss function previously proposed in Ref. [24]. The
new term, Lp, feeds information about the primitive
parameters into the network. This term is defined as

Lp =
S∑

i=0

S∑

j=0

B∑

k=0
1

(k)
i,j

K∑

l=0
1

(l)
(i,j),k

∑

m∈X(l)
L(t(m)

(i,j),k, t̂
(m)
(i,j),k)

(1)
where 1

(k)
i,j is an indicator function that determines if

grid square (i, j) is assigned a positive object label for
bounding box k. The indicator 1

(l)
(i,j),k is a function

that determines if bounding box k of grid square (i, j)
belongs to the primitive defined by l. The purpose
of introducing this term is to include a weighing for
a primitive in the loss only when the primitive is
plausible for the image. X(l) is the set of parameters
for primitive l. The terms t and t̂ denote the target

and predicted parameters respectively.

3.2 Definition of primitive parameters

Primitives with fixed number of parameters.
Simple primitives like rectangles or circles have fixed
numbers of parameters, and so the values of these
parameters can be used directly as ground truth
for training. For parameters lying within [0, 1], we
can further increase the network training stability
by applying a sigmoid function to the network
output to constrain the estimated parameters.
Readers are referred to Section S1 in the Electronic
Supplementary Material (ESM) for detailed definitions
of primitive parameters.

Primitives with variable number of para-
meters. Some of the primitives discussed in this
paper, including closed B-spline curves, have a
variable number of control points. This permits
primitives to represent different kinds of shapes,
but it is not compatible with the previously defined
model. This incompatibility is solved by learning a
fixed-length embedding of the control point positions.
In addition, a recurrent neural network (RNN) is
appended to the model, to serve as a decoder to
output the control points in a sequential manner. At
time step i, the model predicts the position of the
ith control point ci, and a stop probability pi ∈ [0, 1],
that indicates the end of the curve. We apply cross-
entropy life loss to the stop probability while training
the RNN.

The loss functions for the RNN-based model must
be designed with care. Naively, one can use a
simple mean-squared error (MSE) loss for control
point position prediction and a cross entropy loss for
probability prediction. However, this only handles
the situation where the sequence of control points is
fixed and well-defined. Note that every point in the
control point sequence C = (c1, . . . , cN ) of a closed
spline curve can be viewed as the starting point of
the sequence. Thus, in order to predict a control
point sequence invariant to the position of starting
point, a circular loss similar to that used in Ref. [23]
is defined as follows:

Lcirc = min
k∈[1,N ]

(min(L(C, Gk), L(C, G′
k))) (2)

where L is the MSE loss, Gk is the ground truth
control point sequence rotated by k places, i.e., if gi

denotes the ith control point in the ground truth, then
Gk is the sequence (gk, · · · , gN , g1, · · · , gk−1) and G′

k
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is the inverse sequence of Gk. In this way, the ground
truth sequence that leads to minimum MSE loss is
considered to be the target sequence, making the
loss function rotation-invariant. Also note that the
introduction of G′

k guarantees the loss to be invariant
to clockwise and anti-clockwise sequencing.

4 Layered detection model
4.1 Layered detection

We use a layered model to capture the nested
structure of primitives in an image. The idea is
inspired by two observations. Our first observation
is from how multiple layers in design tools, such as
Adobe Photoshop and Illustrator, can help create a
vector graphics image. With layers, artists can plan
the arrangement of items in the space in a top–down
manner. This fact that all vector icon images can be
decomposed into multiple layers, as shown in Fig. 1,
serves as inspiration to extend the model proposed
in Section 3 to include layered detection. Secondly,
for the detection of each layer, it allows one to focus
on a specific part of the image, instead of working on
the entire image. For example in Fig. 1, the white
rectangle in the lower-right of the image is completely
inside the black disk: one can focus in the interior
of the disk where the only accessible primitive is the
rectangle.

However, training separate networks for different
levels of detection is a redundant and time-consuming
process, since intuitively, the parameters regressed
by these networks are likely to be related. Therefore,
we propose a layered detection model to perform this
regression task, thereby making the training process

both faster and cognizant of previous learning. We
perform region of interest (RoI) pooling [25] on the
intermediate output of our network. This enables
us to extract regions in the image to focus on, to
perform detection at the next level.

4.2 Architecture

After an image is forwarded through the backbone
network, simple post-processing steps including
thresholding and non-maximal suppression are
performed to obtain the final prediction results.
The backbone network is the previously discussed
YOLO network with modified loss; the difference
lies in that the backbone network is intended to
only predict primitives in the top layer, i.e., the
outermost primitives in the image. Following this,
the coordinates of the bounding boxes of detected
primitives are fed into an RoI pooling layer. The RoI
pooling layers consume the intermediate output of
the network and pool it into a uniform sized feature
map for detection following the layering. Figure 2
illustrates this model.

Specifically, the architecture of the backbone
network can be treated as multiple consecutive
modules, which contain several convolution layers
with ReLU activation; each module is combined with
pooling layers. We denote the modules by f1, · · · , fM

(from shallow layers to deep layers). The deepest layer
fM has output J1 that is processed by the detection
block d1. Subsequent detection blocks di process the
output of convolutional layer fM−i+1. We do not
use the whole feature map Ji as the input to di, but
instead, we crop the feature map using the prediction
results from di−1 and resize it to a uniform size. In

Fig. 2 The detection process in our layered model. Cuboids denote input images or feature maps. Dark blue arrows, dark green arrows, and
dark purple arrows represent conv layers, RoI pooling layers, and detection blocks, respectively; notation is consistent with that in the text.
The final output of our network is a layered primitive tree containing both shape information and layer information.



390 J. Huang, J. Gao, V. Ganapathi-Subramanian, et al.

this way, the layering is represented explicitly by
cropping within the interior of an image. This model
can be expressed as

B(1) = d1(J1) (3)
B(i) = di(R[Ji; B(i − 1)]), i � 2 (4)

where R[J ; B(i)] represents feature map J cropped
using bounding box information from B(i) which is
fed to an RoI pooling layer to obtain a uniform size
output for future processing.

Lower level feature maps are employed for deeper
layer detection since deeper layer primitives are
usually smaller in size and thus clearer feature maps
are required to perform accurate detection. For
consistency within different regions in image, we
perform training using local coordinates within the
parent bounding box as the ground truth for B(i).
For example, consider an image with a rectangle
inside a circle. Then, the ground truth coordinates
for the rectangle should lie within the local coordinate
system with respect to the circle. Therefore, predicted
coordinates are transformed before calculating the
loss functions. These local coordinates are used for
ground truth since RoI pooling is known to capture
partial information in the image, as testified by faster-
RCNN [8]. Meanwhile, since there are multiple
layers of convolutional operations, the feature map
can encode some information outside the bounding
box, thus providing the model with the capability to
correct mistakes made in outer layers, by considering
both local and global information while making
detections in inner layers.

It is worth noting that the information passed from
higher to lower layers is not simply restricted to the
explicit bounding box position. The feature map in
shallower convolutional layers is used to predict both
higher and lower level primitives (e.g., in Fig. 2, J2
affects both B(1) and B(2)). Although we only pass
the bounding box information explicitly, knowledge
from higher layers can be passed implicitly via these
related feature maps.

5 Implementation
In this section, we present our implementation details.

5.1 Primitive and parameter selection

Four types of primitives are used in our experiments:
rectangles, triangles, ellipses, and closed spline curves.

We observed that the predicted bounding box position
is usually more accurate than the regressed parameters.
Hence, a local parameter with respect to the bounding
box is defined for each primitive so as to be able to
perform better reconstruction. Readers are referred to
Section S1 in the ESM for detailed descriptions of the
parameters used.

5.2 Network architecture

Our code is adapted from an open source PyTorch
implementation � . The backbone network uses the
Darknet-19 architecture configured as in Redmon and
Farhadi [2]. We set the depth of our layered detection
model to 3, using three detection blocks. Detailed
configuration of detection block di (i = 1, 2, 3) is
provided in Section S2 of the ESM.

5.3 Training

The entire hierarchical model can be trained fully end-
to-end. Additionally, we adopt a method similar to
scheduled sampling [26] to enhance training stability
and testing performance. The predicted information
B(i − 1) from level i − 1, which is fed into level i, is
substituted by the ground truth value for level i − 1
with probability p. The value of p is set to 0.9 in the
first 10 epochs and is subsequently decreased by 0.05
every 2 epochs.

An RNN decoder model is pre-trained separately
to regress a fixed length embedding for control point
positions. While training this RNN model, the grid
number S is set to 1 in the YOLOv2 detection
framework and the features of closed spline curve
images are extracted with our backbone Darknet-
19 network. The pre-trained RNN decoder learns
to decode the fixed length embedding and output
positions of control points sequentially. When the
layered model is being trained, the value of the
embedding is used as direct supervision. In the
first 5 epochs, the embedding is supervised and in
subsequent epochs, the network is trained with the
positions of control points instead. Note that the
RNNs share the same weights across different levels
of the hierarchy.

5.4 Data synthesis

Following previous works [10, 27], we use synthetic
datasets due to the lack of annotated datasets. The
hierarchical model was trained with 150,000 synthetic

� https://github.com/longcw/yolo2-pytorch
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pictures of size 416 × 416. When we generated the
training data, we kept the containment relationships
across layers; there may be multiple primitives in each
layer. The number of primitives in a single image
is restricted to 8, the maximum number of layers
to 3, and the number of control points of closed
spline curves varies from 5 to 7. In order to test the
robustness of our method, noise was added to the
shapes of the primitives, as well as hatching patterns
for primitives and some skewing of the image itself.
Selected dataset images are shown in Fig. 3.

6 Experiments and results
6.1 Ablation study for circular loss

During the pretraining process for the RNN decoder
to predict control point positions, we compare the
training and validation losses using two different loss
functions, i.e., the previously defined Lcirc and a
simple MSE loss. As shown in Table 1, training
with circular loss leads to better convergence loss
and thus better prediction results. Figure 4 shows
two examples comparing the prediction results given
the same curve image as input. We found that using
circular loss eliminates the ambiguity of starting point
and clock direction in the training data, and leads to
more accurate fitting results.

Table 1 Error and accuracy measures during training and testing
with two different loss functions. Loss denotes the MSE distance
between the ground truth and predicted positions of control points
(distances are normalized to lie in the unit interval). # Point Acc.
denotes the frequency of predicting the number of control points
correctly

Training Validation

Loss # Point Acc. Loss # Point Acc.
LMSE 0.12203 74.60 0.12210 74.93
Lcirc 0.04365 76.32 0.04369 75.83

6.2 Comparisons to other methods

Although our model detects primitives in a layered
manner, simple object detection measurements
including precision and recall rate (or mAP for
methods with confidence score output) can be applied
to test model accuracy. Meanwhile, we define our
reconstruction loss as the pixel-wise RMSE between
the input picture and the re-rendered picture using
the predicted results from the network. There are
multiple approaches to shape detection; we set up 5
independent baselines for comparison. The first two
baselines are traditional methods while the last three
are learning-based approaches:
• Contour method. In this method, edge detection

is first applied to the input image; each
independent contour is separated. A post-
processing approximation step is then employed to
replace almost collinear segments with a single line
segment with a parameter q controlling the strength
of approximation. The type of shape is determined
by counting the number of line segments (i.e., its
number of edges). This method is implemented
using findContours and approxPolyDP functions
of OpenCV [28].

• Hough transform [29]. This is widely used to find
imperfect shape instances in images by a voting
procedure in parameter space. For rectangles and
triangles, whose edges are straight line segments,
we first use Hough line transform to detect all
possible lines and then recover the parameters of
the primitives by solving a set of linear equations.
For ellipses, we use the method described in
Ref. [30].

• CSGNet [20]. In 2D, this takes a single image
as input and generates a program defining the
shapes presented. This model allows for more

Fig. 3 Examples drawn from our synthetic training dataset. For the Pure dataset, we synthesized simple binary images for training. The
Pure+Noise dataset modified the Pure dataset by adding noise and random affine transformations to each image. The Tex. (short for
“Textured”) dataset allows testing of the robustness of shape detection methods by adding hatching patterns to the shapes. The Textured+Noise
dataset imitates real world hand drawn shape pictures. The Natural dataset imitates colored versions of real world images.
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Fig. 4 Two closed spline curve fitting cases using circular loss and
MSE loss.

complex Boolean operations between shapes but
the sizes and positions of the primitives are highly
discretized. We use the post-processed (optimized)
top-1 prediction as the output of this algorithm.

• Flat model. This method uses a learning approach
trained using the YOLOv2 architecture. The
ground truth of the detector is directly set to
all primitives in the canvas, regardless of their
hierarchical information.

• Recursive model. We train only one detector to
detect the primitive in the first hierarchy (i.e., the
outermost primitive at the current level). Once the
detector successfully detects some primitives in the
current level, we crop the detected region, resize
the cropped region to the network input size, and
feed the image into the same network again.
Results from these different models are compared in

Table 2 (precision–recall–reconstruction comparison)
and Table 3 (primitive–reconstruction comparison).
Some of the prediction results from different methods
are shown in Fig. 5 using the same input in each case.

The contour method with small q value traces
the pixels on the contour precisely but ignores the
high-level shape information of the shape boundary,
leading to a high reconstruction performance but low
precision and recall accuracy in shape classification
tasks. Using a greater q value simply approximates
continuous curves with polygons, leading to poor
reconstruction performance. It is also observed that
the contour method cannot separate overlapping
primitives since it only attempts to detect boundaries
in images. The Hough transform-based method for
line segment detection and circle detection requires
a careful choice of parameters; it generally leads
to higher recall values than the contour method.
This method partially solves the overlap problem
by extending detected line segments and finding
intersections, but cannot effectively distinguish
extremely short line segments and segments of a
circle.

The above problems can be overcome by learning-
based models. Learning-based models generally have
better performance across all different datasets and
the gap in performance widens as we add more noise
to our dataset, which is partially due to the fact
that the learned features extracted from the image
using our data-driven method are more effective
and representative in comparison to hand-crafted
features of traditional methods. Despite the feature
improvement, the absence of effective shape and
relationship representations can be fatal to the final
detection results. Using CSGNet [20], the possible
locations and sizes of primitives are restricted due
to the size limitation of the action space. In order
to compose the target shape, redundant shapes and
expressions are generated.

Table 2 Precision, recall, and reconstruction loss measures using various methods as described in Fig. 3. Prec and Recall denote the precision
and recall values as percentages respectively while Recon measures the RMSE loss between the original picture and the reconstructed picture
using the layered prediction results

Method
Pure Pure+Noise Textured Textured+Noise Natural

Prec Recall Recon Prec Recall Prec Recall Prec Recall Prec Recall
Contour (q = 4 × 10−4) 78.8 42.9 1.44 10.1 37.7 10.8 54.6 10.0 47.5 5.9 62.2
Contour (q = 2 × 10−3) 94.0 72.8 1.70 32.5 60.1 16.8 88.0 15.6 73.2 6.4 70.3

Hough transform 32.6 78.6 1.61 5.1 73.7 — — — — — —
CSGNet (optimized) [20] 37.1 65.4 28.7 — — — — — — — —

Flat model 99.7 91.0 — 99.5 90.0 99.6 91.2 99.4 91.0 57.9 62.2
Recursive model 96.1 72.4 1.64 60.1 61.2 74.0 60.1 95.8 49.9 98.9 84.5

Our model 99.7 96.1 1.61 99.5 95.0 99.6 95.8 99.5 95.4 97.9 87.6
Our model (optimized∗) 99.7 96.1 1.39 99.6 95.0 — — — — — —

* It is impossible to measure reconstruction loss for images with texture or noise, making it unclear how to define the optimization target.
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Table 3 Average precision (AP) measures of learning-based shape
detection methods. Values are presented in percentage

Mean Parallelogram Triangle Oval Spline
Flat 87.2 87.2 86.3 84.4 90.9
Recursive 54.3 43.8 53.8 76.0 43.6
Ours 90.5 88.2 90.7 90.9 92.0

Fig. 5 Detection results examples. Shapes detected at different
levels are marked in different colors: level 1, pink; level 2, orange; level
3, blue. For the flat model, there is no predicted layer information, so
all shapes are marked in green.

Other learning-based baselines fix this with simple
containment representations but problems still occur
due to lack of layering or incorrect layering. The
flat model detects almost all primitives regardless of
their layer. However, in cases where two primitives
of the same kind (e.g., concentric circles forming
an annulus) overlap, the post-processing step (non-
maxima suppression) eliminates one of them and
predicts the median result, which is undesirable. It is
also difficult to reconstruct the original image using
the detected primitives due to the loss of layering
information. In the recursive model, the layering
information is preserved, but if the detection in
an outer layer is not accurate enough, the error
snowballs and the inner layer primitives cannot be

well-reconstructed. Unlike the baselines, our method
can extract high-level shape information as well as
containment relationships. Our model outperforms
the others both quantitatively and qualitatively,
except for the reconstruction loss. However, after
appending a simple local optimizer to our model,
denoted Our model (optimized) in Table 2, the
reconstruction loss is further decreased.

The trained model was applied directly to Google
Material icons [31] (lines 1–4 of Fig. 6, using Pure
model) and a small real world dataset containing
150 images selected from the PASCAL VOC2012
dataset [32] and the Internet (lines 5–8 of Fig. 6,
using Natural model). To the best of our knowledge,
no public dataset exists that provides ground truth
annotations at geometric primitive level. So we have
manually annotated the 150 images from this small
real world dataset. Testing using our trained model
reached an mAP (the metric used in all experiments)
of 54.5%. Readers are referred to Sections S3 and S4
in the ESM for further results.

While DeepPrimitive manages to decompose the
real world images into relevant primitives, it is to be
remembered that this is not the primary focus of our

Fig. 6 Selected test results for our layered detection model. In each
pair of columns, the left picture shows the original input image as
well as the detection result while the right picture reconstructs the
input image using the detection result (different instances of primitives
within the same hierarchy vary slightly in color for clarity). More test
results are available in Sections S3 and S4 in the ESM.
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work. Our current model is trained only on synthetic
images, but adapting synthetic images to real images
with domain adaptation techniques is one trend in the
vision community. A few recent vision papers have
been trained and tested on purely synthetic datasets
(e.g., Ref. [27]).

7 Applications
Once an image has been decomposed into several
layers and high-level parameters defining the
primitives in the image acquired, one can utilize this
information for a variety of applications. In this
paper, we demonstrate the use of these parameters
in two example applications.

The first application we present is image editing.
It is usually very difficult for an artist to modify
the shapes in a rasterized image directly. With a
low reconstruction loss, our model can decompose
an image into several manipulable components with
high fidelity and flexibility. For example, in Fig. 7, it
is easy for an icon designer to modify parameters of
the shapes, changing the angle between the hands of
the clock, or tweaking the shape of the paint brush
head. For real world images in Fig. 8, we can directly
manage the position of the parts in an image using
high-level editing tools (e.g., as in Ref. [33]).

Fig. 7 Image editing on a rasterized image at a primitive level.
Primitive detection is performed on the image, followed by editing of
the primitives.

Another potential application is recognition-by-
components [5]. Usually, state-of-the-art classifiers
based on deep networks need very much data for
training, and its lack hampers accuracy. Once
primitives in an image have been recognized, one
can easily define classification rules using the layered
information obtained. Additional training data is not
needed and only a single shape detection model has
to be trained. The idea is illustrated in Fig. 9. Given
an image, pre-processing steps such as denoising and
thresholding are performed to extract the borders
of shapes. The proposed model is then applied to
detect the primitives and generate a shape parsing
tree (in XML format in the figure for demonstration
purposes), with which a handcrafted classifier could
easily predict the class of an object in the image by
top–down traversal of the tree.

8 Limitations
As an explorative study aiming to understand and
reconstruct images as primitives composed layer-wise,
there are several limitations left to be resolved in
future work. For images with highly-overlapping
primitives within the same layer, our model cannot
distinguish between them: the output will either be
a single primitive or misclassified primitives. Our
model discovers only containment relationships: if
one higher-level primitive intersects multiple lower-
level primitives, duplicate detections of the higher-
level primitive are possible. The last two images of
line 4 in Fig. 6 demonstrate such failures. These
limitations restrict the layer decomposability of our
model. Meanwhile, only synthetic images are used
for training. Annotated real world data would make
the model more generalizable.

Fig. 8 High-level image editing of real world images based on detected primitives. The first two columns of each group show the original
image and its layered decomposition while the last two columns of each group show manipulated results.
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Fig. 9 Recognition-by-components demonstration using our proposed
hierarchical primitive detection model.

9 Conclusions
This paper demonstrates a data-driven approach
to layered detection of primitives in images, and
subsequent 2D reconstruction. As noted, abstraction
of objects into primitives is a very natural way
for humans to understand objects. As artificial
intelligence moves towards performing tasks in
human-like fashion, there is value in trying to perform
these tasks in the way a human would.

Such tasks often also fall in the intersection of
robotics and computer vision, e.g., in the cases of
autonomous driving and robotics. In such tasks,
building in environment-awareness into cars or robots
based on their field of vision is key, and primitive-
level reconstruction would be useful. Primitive-
level understanding would also help in understanding
physical interactions with objects in manipulation
tasks. While there are many such avenues where
this understanding could be applied, there is a lack
of open datasets for training on real world data. A
good direction for future study would involve learning
tasks of an unsupervised or self-supervised kind.
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