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a b s t r a c t

Edit propagation on images/videos has become more and more popular in recent years due to simple

and intuitive interaction. It propagates sparse user edits to the whole data following the policy that

nearby regions with similar appearances receive similar edits. While it gives a friendly editing mode, it

often produces aliasing artifacts on edge pixels. In this paper, we present a simple algorithm to resolve

this artifact for edit propagation. The key in our method is a new representation called Antialias Map, in

which we represent each antialiased edge pixel by a linear interpolation of neighboring pixels around

the edge, and instead of considering the original edge pixels in solving edit propagation, we consider

those neighboring pixels. We demonstrate that our work is effective in preserving antialiased edges for

edit propagation and could be easily integrated with existing edit propagation methods such as [1,2].

Crown Copyright & 2012 Published by Elsevier Ltd. All rights reserved.
1. Introduction

With the development of digital image/video cameras and
online image/video sharing services (e.g. flickr, youtube), it is
much easier for people to access images/videos than before. The
desire to edit the appearance of image/video, such as color,
brightness, tonal values, arises. One way to edit the appearance
of images is to first select some regions of interest, and then apply
a desired edit operation to those regions. While this is a common
solution in commercial softwares such as Photoshop, selecting
those regions of interest, is still a time consuming task, especially
for images with complex textures. Another way is to use edit
propagation methods [1–3]. In these methods, users only need to
specify sparse strokes indicating specific edits (as shown in
Fig. 1(a)), and those edits would be automatically propagate to
the whole data following the policy that nearby regions with
similar colors receive similar edits.

While edit propagation methods provide a much simpler and
more convenient way for editing images/videos, it often suffers
from a visible aliasing artifact. As illustrated in Fig. 1, in this
example, users draw a white stroke on the sky and a black one on
the building, indicating an edit operation that changes color and
another edit operation that keeps original color, respectively.
Fig. 1(b) gives the result generated by a state-of-the-art edit
propagation work [1], while it achieves the goal in most parts of
the image, however, as shown in the enlarged image in (b), along
the boundary of the building, we see an undesired, clear edge.
012 Published by Elsevier Ltd. All
It is not surprising that edit propagation methods would
produce such aliasing artifacts. This is simply because edit
propagation is a per-pixel algorithm and would fail on antialiased
pixels. Take Fig. 1 as an example, in the original image (in Fig. 1
(a)), due to its antialiasing nature, the edge pixels exhibit neither
the color of sky nor the color of the building, but a kind of
blending between the colors of sky and the building. However,
under the policy of edit propagation, those antialiased edge pixels
are neither similar to the sky pixels nor to the building pixels due
to color differences, this makes appearance of those edge pixels
unchanged after edit propagation, leading to antialiased edges
damaged, as shown in Fig. 1(b). The existence of such artifacts,
has largely reduced the fidelity of results and practicability of edit
propagation.

To address this issue, in this paper we introduce a novel,
efficient framework to eliminate those aliasing artifacts in edit
propagation. Our work is inspired by a recent work on antialiasing
recovery [4], which aims at restoring antialiased edges for a range
of image filters. Similar to [4], we assume that for antialiased
edges in images, the value of each pixel could be seen as a linear
interpolation from some nearby pixels. Based on this assumption,
we introduce a novel representation, the Antialias Map, which
stores the blending weights and relative positions of nearby
interpolating pixels for each edge pixel. While previous works
[1–3] directly consider edge pixels in solving edit propagation, we
replace each edge pixel by its interpolating pixels and use those
interpolating pixels in edit propagation instead. In turn, the edits
of each edge pixel is obtained by an interpolation from those
interpolating pixels. As shown in Fig. 1(c), our method success-
fully preserves the smooth edge around the boundary of the
building after edit propagation. Furthermore, our method is
independent of a specific edit propagation algorithm and could
rights reserved.
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Fig. 1. An example of edit propagation. (a) shows the original image and user strokes. (b) and (c) show the propagation results using the method by [1] and our method,

respectively. Alias artifacts are visible in (b) along the boundary of the building. Our method successfully eliminate these artifacts, as shown in (c).
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be integrated into any existing edit propagation methods such as
[1–3]. The results demonstrate that our method effectively pre-
serves the antialiased smooth edges without incurring large
performance overhead.

The rest of the paper is organized as follows: we will first
review some important related works in edit propagation and
antialiasing recovery, respectively, in Section 2; the Antialias Map
will be introduced in Section 3; the framework and algorithm
details for edit propagation will be explained in Section 4; after
that, results and comparisons will be given in Section 5 and
conclusions will be made in Section 6.
2. Related works

In this section we will review some important prior works in
edit propagation and antialiasing recovery, respectively.
2.1. Image/video editing

Image/video editing is an increasingly hot topic in computer
graphics in recent years. It could be generally divided into two
groups: structural editing [5–10] and appearance editing. Appear-
ance editing includes tone editing [11–16], colorization [17–20],
dehazing [21–25], and edge-aware editing [26–31], etc. Recently,
edit propagation methods [1–3,32] allow a simpler interaction
mode for appearance editing. In these methods, users specify
edits in some sparse locations on images/videos, and those edits
are automatically propagated to the whole data satisfying the
policy that nearby pixels having similar appearances receive
similar edits. Usually, edit propagation methods define affinities
between pairs of pixels according to their appearance/position
distances, and different optimization schemes are utilized to
satisfy the policy. In particular, Pellacini et al. [32] approximate
pixel relations using a sparse graph and reduce edit propagation
problem to solving a sparse linear system. An and Pellacini [3]
introduced a more robust algorithm, which considers all-pairs
affinities between pixels, and approximates the huge affinity
matrix using a low rank approximation. To accelerate edit
propagation, Xu et al. [1] uses a k-d tree to organize pixels into
hierarchical clusters in a high dimensional space, instead of
propagating on individual pixels, they propagate on clusters
which largely reduced time and memory cost. Xiao et al. [33]
employs a similar hierarchical structure for acceleration. Li et al.
[2] further speeds up edit propagation by formulating it as a
function interpolationproblem. Bie et al. [34] accelerate edit
propagation using static clustering and efficient sampling scheme.
Besides images and videos, edit propagation could be also used to
edit spatially varying bidirectional reflectance distribution func-
tions obtained by [35–38] and bidirectional texture functions
[39,40]. Recently, Farbman et al. [41] propose to use diffusion
distance, instead of Euclidean distance, to define affinities
between pixels, which better account for the global distribution
of pixels.
2.2. Antialiasing recovery

In computer graphics, many techniques have been proposed to
render antialiased images [42,43], antialiased textures [44,45]
and antialiased shadows [46–48]. However, only a few works
focus on recovering smooth, antialiased edges from aliased 2D
images. Some exceptional works include principle component
analysis (PCA) [49,50] and morphological antialiasing [51]. In
particular, morphological antialiasing aims at reducing aliasing
artifacts for rendered images entirely using image based methods.
It looks for certain patterns of discontinue geometry and replace
them using smooth edges estimated by an antialiased edge
model. Image vectorization techniques [52–54] convert a bitmap
image to a vectorized image, which could also be used to antialias
certain types of images. Recently, Yang et al. [4] introduced a
method for recovering antialiased edges destroyed by a range of
non-linear image filters. In this work, an analytic edge model is
estimated using the original image, and is applied to the filtered
image to remove aliasing artifacts. It works well for many non-
linear image filters such as intensity thresholding, tone mapping,
color to gray and so on, however, since it requires perfect pixel
correspondence between the original and filtered images, it
cannot handle filters like Gaussian blurring. Besides, it is not
clear how to extend this method to edit propagation.

Compared to the conference paper [55], We have extended our
framework to handle interpolation based edit propagation. This is
a significant new contribution compared to [55], since we have
demonstrated the proposed Antialias Map is not limited to
optimization based edit propagation, however, it could also be
used for interpolation based edit propagation. This demonstrates
that the proposed Antialias Map is independent with specific edit
propagation methods and could be potentially combined with any
edit propagation methods.
3. Antialias Map

As mentioned before, since antialiased edges in images are
often smooth, we assume that the value of an edge pixel could be
approximated by a linear interpolation of some nearby pixels. We
present Antialias Map to store those edge pixels. Besides, in
Antialias Map, for each edge pixel, we also store the information
of its neighboring interpolating pixels, including both interpolat-
ing weights and relative positions. For videos, we store an
Antialias Map for every frame. Since our work is built upon the
antialiasing recovery work of [4], to make our paper self-con-
tained, before introducing the details of Antialias Map, we will
first explain some necessary backgrounds in [4] in Section 3.1.

3.1. Antialiasing recovery

Images often have smooth, antialiased edges. However, these
desired properties will be destroyed by a range of non-linear
image filters, such as intensity thresholding, tone mapping, etc.
After applying those image filters, smooth boundaries become



Fig. 2. Antialias Map construction. (a) is the source image; (b), (c) and (d) give the

Antialias Map of a certain pixel after 0, 1, 2 iterations, respectively. Divisible pixels

are colored black, while indivisible pixels are colored red. (For interpretation of

the references to color in this figure caption, the reader is referred to the web

version of this article.)

L.-Q. Ma, K. Xu / Computers & Graphics 36 (2012) 1005–1012 1007
zigzag like. Yang et al. [4] proposed a technique to remove these
aliasing artifacts in filtered images. Their method proceeds in
several steps:

Edge model: For each pixel i in the original image, they choose
the two extremum colors cj and ck (j,k are corresponding pixels) in
the principle direction of color space from the neighboring 8 pixels
(in 3�3 size neighborhood). The principle direction is deter-
mined using an Expectation Maximization (EM) scheme. Using
extremum colors to reconstruct the color ci of pixel i, the
interpolation weights aij, aik could be determined by minimizing:

di ¼ JðaijcjþaikckÞ�ciJ ð1Þ

where it satisfies aijþaik ¼ 1.
Probability of lying on edges: After that, they estimate the

probability of each pixel that it lies on an edge. For each pixel i,
they define an edge strength ei, which is the product of the Sobel
edge detector at both the original image and the filtered image.
The probability value of a pixel lying on an edge is defined as

bi ¼ Gðdi,sdÞð1�Gðei,seÞÞ ð2Þ

where Gðd,sÞ is a 1D Gaussian defined as expð�d2=s2Þ, di is the
residual distance defined in Eq. (1), sd and se are two controllable
parameters. bi is set as zero if ei43se.

Recovery the filtered image: Denote fi is the color value of pixel i

on the filtered image. The recovered color value ri could be
obtained by solving the linear system below:

ri ¼ biðaijrjþaikrkÞþð1�biÞf i ð3Þ

This is a large sparse linear system and could be solved efficiently
by a few iterations using the Jacobi method.

3.2. Compute Antialias Map

As discussed in Section 3.1, in [4], the value of each antialiased
edge pixel is approximated by a blending of 2 nearby pixels in the
3�3 neighborhood. Results are progressively refined by itera-
tions of Eq. (3). Instead of using a 3�3 neighborhood, Antialias
Map approximates the value of each pixel by a blending of pixels
from a larger neighborhood:

ci �
X

j

wijcj ð4Þ

where j is the interpolating pixel in the neighborhood of i, and wij is
the interpolating weight from pixel i to j, and satisfies

P
jwij ¼ 1.

Note that wij does not necessarily equal to wji. Also note that Eq.
(4) is not an optimization target, and the interpolating weights
are not solved from Eq. (4). Instead, the interpolating weights are
computed through an interactive approach, which will be
explained in detail below.

Antialias Map has two advantages over the edge model
proposed in [4]. First, since it uses a larger neighborhood to
approximate an antialiased pixel, it leads to a more accurate
approximation; secondly, the Antialias Map only depends on the
structure of original image itself, it could be computed and stored
before edit propagation, so it avoids the cost of iterations at run-
time edit propagation stage. Antialias Map stores all interpolating
weights wij, and it is sparse since it only considers those edge
pixels (e.g. whose edge strength bi is non-zero) and it only stores
non-zero weights. Specifically, we store a set of triples
ðDxij,Dyij,wijÞ for each edge pixel i. Here j is its interpolating pixel,
Dxij, Dyij and wij are the x, y position offset and interpolating
weight from i to j, respectively. In the following parts, we will
explain how to compute the Antialias Map in detail.

Initialization: In this step, we first use [4] to obtain the two
extremum neighbors j, k, the blending factors aij, aik and the edge
probability bi for each pixel i. We have already explained how to
compute those values in Section 3.1. Care must be taken when
computing the edge probability bi. In [4], it defines edge strength
of each pixel as the product of Sobel edge detector on both
original and filtered images, which means it requires to obtain the
aliased filtered image before antialiasing recovery. We observe
that in edit propagation, the appearances are changed smoothly,
so that the propagated result images have roughly the same
structure as the original images. To avoid the cost to generate an
aliased edit propagation result, we make a modification, instead,
we define the edge strength as the Sobel edge detector only on
the original image. Once the edge strength is computed, we use
Eq. (2) to compute edge probability bi. Note that only the pixels
with non-zero bi are considered as antialiased edge pixels and
stored in Antialias Map. The pixels with zero value of bi are
considered as non-edge pixels.

Constructions: Similar to [4], we construct Antialias Map by a
few iterations. However, they obtain the final antialiased results
through iterations, but we obtain Antialias Map through itera-
tions, which could be precomputed and stored before edit
propagation. For each antialiased edge pixel i, the Antialias Map
starts with a set containing only one triple:

Si ¼ ff0,0,1gg ð5Þ

This means that the value of the pixel i could be seen as the value
of itself multiplied by weight 1.0, which is definitely true. We also
illustrate this iteration process in Fig. 2. As shown in Fig. 2(b),
now the Antialias Map only contains itself with weight 1.0. And
this pixel is marked as divisible, which is painted using black
color in Fig. 2.

At each iteration, we expand each divisible pixel (e.g. j) into
three pixels. These three pixels are the two neighboring extre-
mum pixels (e.g. k1 and k2) and itself (e.g. j), whose corresponding
weights are defined in Eq. (3). Specially, the weight of j is replaced
by ð1�bjÞwij and j is marked as indivisible; the two newly added
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Fig. 3. The size of Antialias Map to the size of image as a function of threshold sa .

This curve is generated from a 240K photographed image (the image in Fig. 1) and

using maximum iteration number N¼4.
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extremum pixels are marked as divisible, and their weights are
set as wik1

¼ ajk1
bjwij and wik2

¼ ajk2
bjwij, respectively. At the next

iterations, we recursively find the divisible pixels and expand
them to new pixels.

Let us also take Fig. 2 as an example and explain this process in
detail. For simplicity, we assume that for all the pixels, the edge
probability b is 0.8 and the blending factor a is 0.5. After the first
iteration, the center pixel is expanded to three pixels, so that the
Antialias Map grows to contain three triples (as shown in
Fig. 2(c)):

Si ¼ ff0,0,0:2g,f0,�1,0:4g,f1,1,0:4gg ð6Þ

After the second iterations, similarly, the newly added two
pixels in first iteration are both expanded to three pixels, so that
the Antialias Map grows to contain seven triples (as shown in
Fig. 2(d)):

Si ¼ ff0,0,0:2g,f0,�1,0:08g,f1,1,0:08g,
f�1,0,0:16g,f1,�2,0:16g,f0,1,0:16g,f2,0,0:16gg ð7Þ

Notice that at all iterations, the sum of weights equals to one.
From an algebraic aspect, Antialias Map could also be treated as
expanding Eq. (3) to multiple variables. The triples in Antialias
Map will extend to ð2Nþ1Þ � ð2Nþ1Þ neighborhood after n

iterations.
Stop criterion: The size of the Antialias Map grows as we

iterate. We define two criterions to stop the recursive iteration:
�

Tab
Pse

In
F

C

E

C
S

S

fo

i

e

e

if

e

e

When iteration number reaches a predefined number N.

�
 When the result product (product of the interpolation weight

of a divisible pixel wij and its edge probability bj) is smaller
than a predefined threshold sa.

The pseudocode of Antialias Map construction is given in Table 1.
We have also tested how two parameters influence the perfor-
mance of our algorithm. Fig. 3 illustrates the size of Antialias Map
to the size of image as a function of weight threshold sa. Setting
sa ¼ 0 means the iteration stops only when it reaches the largest
iteration number N, while setting sa ¼ 1 means no iteration. As
shown in Fig. 3, when increasing sa from 0 to 1, the size of
Antialias Map decreases rapidly.
le 1
udocode for Antialias Map construction.

itialization
or all pixels i

ompute the blending factors aij , aik ,

and the edge probability bi .

nd For

omputation
tep 1: Antialias Map Si ¼ ff0,0,1gg

tep 2:

r each triple fDxij , Dyij , wijg in Si

f the pixel j is divisible and bjwij 4sa

fetch blending factors ajk1
, ajk2

and edge probability bj;

update the weight of pixel j to ð1�bjÞwij;

mark pixel j as indivisible;

add pixel k1 and k2 to Antialias Map Si, with weights

wik1
¼ ajk1

bjwij , wik2
¼ ajk2

bjwij ,

mark these two pixels as divisible.

nd if

nd for

iteration number reaches N

End.

lse

go back to Step 2.

nd if
4. Improved framework of edit propagation

In this section we will discuss how to use Antialias Map in the
pipeline of edit propagation to remove the aliasing artifacts. In
edit propagation, users specify edits in some sparse locations on
images/videos, and those edits are automatically propagated to
the whole data satisfying the policy that nearby pixels having
similar appearances receive similar edits. Usually, they define a
feature vector for each pixel, usually a 5D vector, which combines
color (e.g. 3D), pixel position (e.g. 2D). For videos, another
dimensional is added to account for time. The affinity between
every two pixels are defined by the Euclidean distance between
their feature vectors, which is then used to guide the propagation.
Commonly, edit propagation methods could be divided into two
groups, depending on which scheme is used to formulate the
problem: optimization based [1,3] and interpolation based [2].
We show that Antialias Map could be used in both groups for
antialias recovery.

4.1. Optimization based edit propagation

Backgrounds: As mentioned above, the affinity value between
two pixels i, j is usually defined as

zij ¼ expð�ðfi�f jÞ
2
Þ ð8Þ

where f i is the feature vector of pixel i, which is defined as a 5D
vector for images:

fi ¼ ðci=sc ,pi=spÞ ð9Þ

where ci,pi is the color in LAB color space and the pixel position of
pixel i, respectively. sc and sp are two parameters to control the
relative propagating distance.

In [3], edit propagation is formulated as an optimization
problem. Solving propagated edits e is deduced to minimize the
energy function below:X

i,j

bjzijðei�gjÞ
2
þl
X

i,j

zijðei�ejÞ
2

ð10Þ

where i,j enumerates all pixels; bj is 1 when pixel j is covered by
stroke and is 0 elsewhere; gj is the user specified edit at pixel j; ei
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is the propagated edit at pixel i that we want to solve. The first
term accounts for how it satisfies user input while the second
term accounts for the edit propagation policy that similar pixels
receive similar edits. l is used to control the relative weight
between the two terms and is usually set to

P
jbj=

P
j1 to make

the two terms have roughly the same contributions.
Since the energy function in Eq. (10) is quadratic, minimizing it

is equivalent to solving a linear system defined by a large affinity
matrix. Therefore, they used low rank column sampling to
approximate the affinity matrix and further proposed an approxi-
mated algorithm to fast find a solution. To accelerate edit
propagation and extend it to videos, Xu et al. [1] proposed to
use k-d tree to organize pixels into hierarchical clusters. Instead
of propagating on pixels, they propagate on clusters, whose
number is much smaller than the number of pixels, thus accel-
eration is achieved. Finally, edits of individual pixels are obtained
by multi-linear interpolation from clusters. They also adopted an
optimization based method to solve for edit propagation.

Modified formulation: As illustrated in the teaser image, tradi-
tional edit propagation produces artifacts on object boundaries.
This artifact could be easily explained. Assume a very simple
image composed of two regions, one red region and another blue
region. The edge pixels along the boundary of the two regions
would appear yellow due to antialiasing. Suppose user specifies
some edits on the red region, it is also desired to propagate the
edits to the edge pixels with some weight according to antialias-
ing opacity. However, since the edge pixels appearance yellow, it
exhibits a large difference to pixels in the red region, hence would
not receive any propagated edits.

To address this issue, we use Antialias Map, in which, the
yellow edge pixels would be represented by a linear blending of
some red and blue neighboring pixels. Instead of propagating to
the edge pixels, we propagate to the neighboring interpolating
pixels, and obtain the edit of edge pixel by blending the edits from
the interpolating pixels. Mathematically, we modify the formula-
tion in Eq. (10) toX

i,j

bjgigjzijðe
0
i�g0jÞ

2
þl
X

i,j

gigjzijðe
0
i�e0jÞ

2
ð11Þ

where i,j enumerates all interpolating pixels; gi considers the
multiplicity of pixel i serving as interpolating pixels, which is
defined as gi ¼

P
kwki; g0j is defined as g0j ¼

P
kwkjgj=

P
kwkj.

The modified energy function has the same form as the
original energy function in Eq. (10), so that it could be solved in
the same way using either low rank column sampling [3] or k-d
tree clustering [1].

Interpolation: After solving for the edits e0 on the interpolating
pixels in Eq. (11), it is easy to obtain the edits on the edge pixels
through interpolation:

ei ¼
X

j

wije
0
j ð12Þ
Fig. 4. Comparison of edit propagation results generated by Xu et al. [1] and by our m

propagation result of [1], artifacts can be found along the boundaries. (c)–(f) are results

to color in this figure caption, the reader is referred to the web version of this article.)
4.2. Interpolation based edit propagation

Backgrounds: While most works adopt an optimization based
method to solve edit propagation, Li et al. [2] proposed a different
approach. They observe that the edits span in the high dimen-
sional feature space form a smooth function, which could be
approximated well by function interpolations. Therefore, they use
sum of RBFs (radial basis functions) to approximate edits:

ei �
X

m

amGðJf i�fmJÞ ð13Þ

where m iterates over all RBFs; G is the RBF Gaussian function; am,
fm are the m-th RBF coefficient and center, respectively. The
centers of RBFs are randomly selected from the pixels covered by
user stroke. The coefficients of RBFs are solved by minimizing the
sum of differences on user specified edits:

X
j

gj�
X

m

amGðJf j�fmJÞ

 !2

ð14Þ

where j iterates over all pixels covered by user strokes. To restrict
the coefficients to be non-negative, they use a non-negative least
square solver.

Modified formulation: The above formulation would also pro-
duce aliasing artifacts on object boundaries. To remove the
artifacts using Antialias Map, similarly, we build the smooth
function over the interpolating pixels, instead of the original
pixels. Eq. (14) is modified to

X
j

gj g0j�
X

m

amGðJf j�fmJÞ

 !2

ð15Þ

where j iterates over all interpolating pixels that have contribu-
tions to user stroke pixels; gj considers the multiplicity of pixel j

serving as interpolating pixels, which is defined as gj ¼
P

kwkj; g0j
is defined as g0j ¼

P
kwkjgj=

P
kwkj, where k is iterating over user

stroke pixels.
After solving for the RBF coefficients, we use Eq. (13) to obtain

the edits on interpolating pixels. Lastly, we use Eq. (12) to obtain
the edits on the edge pixels.
5. Comparisons and results

5.1. Comparisons

Comparison of weight threshold sa: In Fig. 4, we have compared
edit propagation results generated by Xu et al. [1] and by our
method with different weight threshold sa. From the results, we
can see artifacts using the method by Xu et al., where the pixels
along the boundary of the toy undesirably appear green. Using a
large value of sa (e.g. sa ¼ 0:8,0:4) still produce these artifacts.
ethod with different weight threshold sa . (a) is the source image O. (b) is the edit

using our algorithm with sa ¼ 0:8, 0.4, 0.1, 0.0. (For interpretation of the references
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But using a relatively small value of sa (e.g. sa ¼ 0:1,0:0) fully
removes the artifacts.

Comparison of maximum iteration number N: In Fig. 5, we have
compared edit propagation results generated by Xu et al. [1] and
by our method with different maximum iteration number N. From
the results, we can see that using a relatively large value of N (e.g.
N¼ 4,8) could produce smooth transitions along boundaries.
Fig. 5. Comparison of edit propagation results generated by Xu et al. [1] and by our met

edit propagation result generated by Xu et al. Notice that artifacts can be found alon

respectively.

result of Xuetal.original image

Fig. 6. Results generated by Xu et al. [1] and by our method. The first column give the o

fourth and fifth columns are results generated by our method.

result of Li et al.original image

Fig. 7. Results generated by Li et al. [2] and by our method. The first column give the o

fourth and fifth columns are results generated by our method.
5.2. Results

All these results and performance are obtained using a con-
sumer level PC with a 3.0 GHz Intel Core2Duo CPU and 4 GB RAM.
As demonstrated in the comparisons, setting sa ¼ 0:1 and N¼4
already leads to very good results. So in our implementation, we
fix sa ¼ 0:1 and N¼4. These two parameters could still be
hod with different maximum iteration number N. (a) is the source image. (b) is the

g the boundaries. (c), (d), (e), (f) are results using our method with N¼1, 2, 4, 8,

our result

riginal images; the second and third columns are results generated by Xu et al.; the

our result

riginal images; the second and third columns are results generated by Li et al.; the
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adjusted for better performance or accuracy. In our experiment,
for a single image, the total size of Antialias Map (e.g. the total
number of triples) is usually about 1.5–2.0 times of the image
resolution. So that it only needs small extra space to store the
Antialias Map.

In Fig. 6, we give two image results generated by the k-d tree
approach [1] and by our method. In Fig. 7, we give two image
results generated by the RBF interpolation approach [2] and by
our method. In Fig. 8, we give one image result generated by
AppProp [3] and by our method. In Fig. 9, we compare a video
result of An et al.original image

Fig. 8. Results generated by An et al. [3] and by our method. The first column give the o

fourth and fifth columns are results generated by our method.
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Fig. 9. Video results generated by Li et al. and our method. We have shown two fra

Table 2
Performance comparison between the k-d tree method [1], our method combined wit

method. Both running time and memory cost are reported.

Data Toy Flower Cake

(Fig. 4) (Fig. 5) (Fig. 7)

Type Image Image Image

Resolution 120K 120K 120K

Frame num. – – –

k-d tree

Time 22 ms 23 ms 17 ms

Memory 8MB 8MB 8MB

Improved k-d tree

Time 40 ms 42 ms 32 ms

Memory 9 MB 9 MB 9 MB

RBF

Time 16 ms 17 ms 13 ms

Memory 1 MB 1 MB 1 MB

Improved RBF

Time 32 ms 30 ms 25 ms

Memory 1 MB 1 MB 1 MB
example using the k-d tree approach [2] and using our method,
respectively. In all these examples, after applying our methods,
the aliasing artifacts along the object boundaries are success-
fully removed. The performance value is reported in Table 2.
Note that the time cost reported for the video example in
Table 2 is the time for processing the whole video (all the
frames). It could be substantially accelerated for fast previewing
purposes, when users desire to see a single (or a few) frames of
the video, and only the pixels on the previewing frames need to
be propagated.
our result

riginal images; the second and third columns are results generated by An et al.; the

frame 259

mes of the video and clearly our method improves a lot along the boundaries.

h the k-d tree approach, RBF method [2] and our method combined with the RBF

Dog Branch Parrot Sky Bird

(Fig. 7) (Fig. 6) (Fig. 6) (Fig. 1) (Fig. 8)

Image Image Image Image Video

120K 150K 150K 240K 30M

– – – – 400

25 ms 28 ms 24 ms 41 ms 8 s

8MB 8MB 8MB 8MB 22MB

45 ms 45 ms 47 ms 79 ms 13 s

9 MB 9 MB 9 MB 9 MB 24 MB

20 ms 21 ms 19 ms 26 ms 4 s

1 MB 1 MB 1 MB 1 MB 1 MB

38 ms 32 ms 36 ms 51 ms 8 s

1 MB 1 MB 1 MB 1 MB 1 MB
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6. Conclusion

In this paper we have presented a novel, efficient approach to
remove aliasing artifacts in edit propagation. we introduced a
novel representation, the Antialias Map, to store the blending
weights and relative positions of nearby interpolating pixels for
each edge pixel. While previous works [1–3] directly consider
edge pixels in edit propagation process, instead, we replace each
edge pixel by its interpolating pixels and consider those inter-
polating pixels in edit propagation process. Our method is
independent of a specific edit propagation algorithm and could
be integrated into any existing edit propagation methods such as
[1–3]. The results demonstrate that our method effectively and
efficiently restores the antialiased smooth edges.

There are some works that we would like to address in the
future. First, we currently deal with videos frame by frame, and
for each frame we use a 2D Antialias Map. We would like to
explore methods to extend Antialias Map to a 3D representation
so that it could also handle motion blurs in the temporal
dimension; secondly, we would like to investigate how Antialias
Map could be used for other image related applications, such as
image compositing [56–59] and non-photorealistic rendering
[60], since it is also desired to preserve antialiased edges when
compositing new images.
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