
Computer-Aided Design 114 (2019) 73–81

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

DE-Path: A Differential-Evolution-BasedMethod for Computing
Energy-Minimizing Paths on Surfaces✩,✩✩

Zipeng Ye a, Yong-Jin Liu a,∗, Jianmin Zheng b, Kai Hormann b,c, Ying He b,∗

a MOE-Key Laboratory of Pervasive Computing, Department of Computer Science and Technology, Tsinghua University, China
b School of Computer Science & Engineering, Nanyang Technological University, Singapore
c Faculty of Informatics, Università, della Svizzera italiana, Lugano, Switzerland

a r t i c l e i n f o

Article history:
Received 26 April 2019
Accepted 4 May 2019

Keywords:
Energy-minimizing paths
Differential evolution
Global solver

a b s t r a c t

Computing energy-minimizing paths that are general for different energy forms is a common task in
science and engineering. Conventional methods adopt numerical solvers, such as conjugate gradient
or quasi-Newton. While these are efficient, the results are highly sensitive with respect to the initial
paths. In this paper we develop a method based on differential evolution (DE) for computing optimal
solutions. We propose a simple strategy to encode paths and define path operations, such as addition
and scalar multiplication, so that the discrete paths can fit into the DE framework. We demonstrate the
effectiveness of our method on three applications: (1) computing discrete geodesic paths on surfaces
with non-uniform density function; (2) finding a smooth path that follows a given vector field as much
as possible; and (3) finding a curve on a terrain with (near-) constant slope.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Computing optimal paths is a common task in many fields of
science and engineering [1]. For example, in robotics one needs to
compute optimal trajectories [2], and in computational biophysics
and biochemistry one needs to find molecular transition paths [3].
A typical way for solving these problems is to formulate an energy
functional for the paths and then adopt numerical solvers, such
as conjugate gradient or quasi-Newton, to minimize it. By taking
advantage of the analytical gradients, these numerical solvers are
efficient and converge quickly. However, if the energy function is
not convex, the solution is only locally optimal and its quality is
highly sensitive to the initialization.

To overcome the limitations of existing methods, this paper
develops a new method for computing energy-minimizing paths
on surfaces that are general to work with different energy forms.
Our main idea is to adopt differential evolution (DE), a popular
evolutionary computation method that optimizes a problem by

✩ This paper has been recommended for acceptance by Pierre Alliez, Yong-Jin
Liu & Xin Li.
✩✩ No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict with
this work. For full disclosure statements refer to https://doi.org/10.1016/j.cad.
2019.05.025.
∗ Corresponding authors.

E-mail addresses: yezp17@mails.tsinghua.edu.cn (Z. Ye),
liuyongjin@tsinghua.edu.cn (Y.-J. Liu), asjmzheng@ntu.edu.sg (J. Zheng),
kai.hormann@usi.ch (K. Hormann), yhe@ntu.edu.sg (Y. He).

iteratively trying to improve a candidate solution [4,5]. To fit
into the DE framework, we propose a simple strategy to encode
paths by a density distribution and define path operations, such
as addition and scalar multiplication. Our method, called DE-Path,
maintains a population of agents from random samples of the
search space and creates new candidate solutions by combining
existing ones according to a simple DE formula. It then keeps the
candidate solution with the least energy.

Evaluation on a toy model confirms that with increasing res-
olution of the discretized domain, DE-path tends to find the
globally optimal solution. We demonstrate the effectiveness of
our method for three interesting applications: (1) computing
discrete geodesic paths on surfaces with non-uniform density
function; (2) finding a smooth path that follows a given vector
field as much as possible; and (3) finding a curve on a terrain with
(near-) constant slope. We also discuss the potential extension of
our method for 3D volumes.

1.1. Related work

In computer graphics, a well-known optimal path problem
is that of computing locally shortest paths. Computing these
geodesics on surfaces has been studied extensively in the last
three decades. Popular methods are the wavefront propagation
methods [6,7], the PDE method [8], and the graph-based method
[9]. Most of these methods focus on computing geodesic dis-
tances. To compute geodesic paths, one needs to back-trace
the gradient of the distance field. Liu et al. [10] formulated

https://doi.org/10.1016/j.cad.2019.05.025
0010-4485/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cad.2019.05.025
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2019.05.025&domain=pdf
https://doi.org/10.1016/j.cad.2019.05.025
https://doi.org/10.1016/j.cad.2019.05.025
mailto:yezp17@mails.tsinghua.edu.cn
mailto:liuyongjin@tsinghua.edu.cn
mailto:asjmzheng@ntu.edu.sg
mailto:kai.hormann@usi.ch
mailto:yhe@ntu.edu.sg
https://doi.org/10.1016/j.cad.2019.05.025

74 Z. Ye, Y.-J. Liu, J. Zheng et al. / Computer-Aided Design 114 (2019) 73–81

the geodesic path problem in an optimization framework that
supports arbitrary density function, anisotropic metric as well
as user-specified constraints. They adopted the quasi-Newton
method to solve the optimization problem. Due to the local
nature of the solver, their method computes only a locally optimal
solution.

Weighted shortest paths on polyhedral surfaces have also
been considered in computational geometry [11,12]. A weighted
shortest path is a path with a minimum cost among all possi-
ble paths on the polyhedral surface and the cost is defined to
be the sum of all line segments in the path multiplied by the
weights of corresponding faces. A state-of-the-art method [13]
can compute an ϵ-approximation of the weighted shortest path –
whose distance is not larger than the weighted shortest distance
multiplied by (1+ϵ) – from a fixed point to any other query point
in logarithmic time O(max(log2(1/ϵ)/ϵ, q)), where ϵ ∈ (0, 1) and
q are the user-specified approximation parameter and query time
parameter, respectively.

Another closely related work is energy-minimizing splines
[14], in which Hofer and Pottmann proposed an extrinsic defini-
tion of spline curves that uses the embedding space and confines
the curves to surfaces using nonlinear side condition. This method
works for a wide range of surface domains, including paramet-
ric surfaces, level sets, triangle meshes, and point samples of
surfaces. However, since it adopts a local method to solve the
variational problem, the results are often locally optimal.

2. Preliminaries

2.1. Differential evolution

Evolutionary computation is a family of metaheuristics for
global optimization inspired by biological evolution. A meta-
heuristic is a high-level heuristic designed to find, generate, or
select a heuristic that may provide a sufficiently good solution for
an optimization problem [15]. Popular metaheuristics are simu-
lated annealing [16], genetic programming [17] and differential
evolution [4]. All these methods are used for multidimensional
real-valued functions without the need of using the gradient of
the problem being optimized. Therefore they do not require the
optimization problem to be differentiable, unlike classic solvers
such as gradient descent and quasi-Newton methods.

Among popular metaheuristics, differential evolution (DE) has
advantages of simplicity, robustness, and better convergence rate
[18]. For a special class of energy functions (i.e., real-valued
second-order continuous functions), the probabilistic convergence
and global optimality of DE are proven [19]. For a wide range of
optimization problems which do not satisfy the above-mentioned
convergence condition, DE also performs highly effectively and
outperforms the other metaheuristics [4,5].

Let Ω be the solution space which is a subset of Euclidean
space Rd and f (X) : Ω → R be a loss function where X =
(x1, x2, . . . , xd). DE is a heuristic search algorithm to find a so-
lution with minimum loss. DE searches the solution space by
beginning with a randomly initialized population and updat-
ing the population iteratively. There are three operations in the
updating process, i.e., mutation operation, crossover operation
and selection operation. They are combinations of fundamen-
tal operations in vector space. The details will be explained in
Section 3.2.

Thanks to its simplicity and good performance, DE has been
widely used for optimization problems with continuous variables
defined in Euclidean spaces. Recent research efforts extended DE
to discrete problems. For example, Liu et al. [20] developed man-
ifold differential evolution (MDE) to compute centroidal Voronoi
tessellations (CVT) on curved surfaces. Due to the combinatorial

nature of the Voronoi diagram, the variables in the CVT energy
are orderless. To tackle this challenge, they assigned orders to the
CVT generators and proposed an agent matching operator to align
two agents. Recently, Yi et al. [21] applied DE to Delaunay mesh
simplification by using a 2D Cartesian grid model, in which each
grid point corresponds to triangle meshes with a certain number
of vertices and a simplification process is a monotonic path on the
grid. They developed a DE-based method to compute the optimal
path in the discrete solution space.

2.2. Fast marching method

The Fast Marching Method (FMM) [22] is a popular method
for computing geodesic distances. It is easy to implement and can
work on a wide range of domains, such as regular grids [22], trian-
gle meshes [8,23], implicit surfaces [24], parametric surfaces [25],
geometric images [26] and broken meshes [27]. FMM divides the
set of all vertices into a visited set and an unvisited set. Vertices
in the unvisited set have tentative distance values and vertices
in the visited set have determined distance values. FMM uses a
priority queue to sort the distances of vertices in the unvisited
set and propagates the vertex with minimal distance, which is a
Dijkstra-like algorithm. It visits all neighbor faces of the vertex
and moves the vertex from the unvisited to the visited set. It
propagates the distances from two vertices to another vertex
in the same simplex face using finite difference approximations
of the gradient. During the propagating process, the distance
is updated to the shorter distance. FMM terminates when the
unvisited set is empty. FMM runs in O(n log n) time on a triangle
mesh with n vertices.

The weighted shortest path from the source vertex to the
target vertex can be obtained when FMM terminates. We obtain
it by computing the gradients from the distances and following
the gradients from target vertex to source vertex.

3. DE-Path

Given a 2-manifold M and two points s and t on M , there exist
many paths between s and t on M . Denote by Ps,t the space of all
paths from s to t on M . Given an arbitrary energy function

ε: Ps,t → R

which measures a quantity of the paths, the problem is to find a
path with minimal energy, that is,

min
p∈Ps,t

ε(p) (1)

To numerically solve the problem, we represent the 2-manifold
as a mesh and the path as a polyline. The mesh is represented by
M = (V , E, F), where V , E, and F are the sets of vertices, edges,
and faces, respectively. The polyline is represented by p0p1 · · · pk,
where pi are vertices of the polyline with p0 = s and pk = t . We
assume that the polyline is a single line segment in a face of M . In
other words, each pi is located on an edge of M for i = 0, 1, . . . , k.

To find a stochastic global optimization solution to the prob-
lem defined in (1), we propose a differential evolution (DE) strat-
egy. Since traditional DE only optimizes real-valued functions, the
major challenge in our work is how to formulate the discrete-
path-based variables in the DE framework. In other words, DE
needs to define the operations of subtraction and scalar multipli-
cation of agents, and thus requires the search space to be linear.
In Section 3.1 we use the fast marching method to encode a path
as a density distribution such that the corresponding search space
is linear. In Section 3.2 we present the proposed DE algorithm.

Z. Ye, Y.-J. Liu, J. Zheng et al. / Computer-Aided Design 114 (2019) 73–81 75

Algorithm 1 DE-Path

Input: 2-manifold M , two points s and t on M , energy function
ε: Pst → R≥0, differential weight F and crossover probability
CR

Output: a path p ∈ Pst with the lowest energy
1: Initialize all agents G0 = {g0,1, g0,2, . . . , g0,N}
2: k← 0 // the kth population
3: while the termination criterion is not met do
4: for i = 0→ N − 1 do
5: // Mutation
6: Randomly select three agents gk,rand1 , gk,rand2 and

gk,rand3 from Gk
7: vk,i = gk,rand1 ⊕ F ⊗ (gk,rand2 ⊖ gk,rand3)
8: // Crossover
9: for xj ∈ V do

10: Rj ← a uniformly distributed random number
11: if Rj > CR then
12: hk,i(xj)← gk,i(xj)
13: else
14: hk,i(xj)← vk,i(xj)
15: end if
16: end for
17: // Selection
18: Compute the path for agent hk,i using FMM and

evaluate its energy ε(hk,i)
19: if ε(hk,i) < ε(gk,i) then
20: gk+1,i ← hk,i
21: else
22: gk+1,i ← gk,i
23: end if
24: end for
25: k← k+ 1 // next generation
26: end while
27: // find the best agent in Gk
28: gbest ← gk,0
29: for i = 0→ N − 1 do
30: if ε(gk,i) < ε(gbest) then
31: gbest ← gk,i
32: end if
33: end for
34: p← FMM(gbest)
35: (optional) optimize p using a local optimal algorithm
36: return p

3.1. Encoding paths as density distributions

The variables in the optimization problem defined in (1) are
paths on a 2-manifold mesh M . To apply a DE strategy, our
key idea is to encode any path by a density distribution on M
such that the variables are transformed to density distributions.
We further define these density distributions as scalars on mesh
vertices. Therefore, the necessary addition, subtraction, and scalar
multiplication required by DE can be defined on these scalars. The
details are as follows.

Recall that a density distribution on a smooth 2-manifold M̃ is
a real value function

ρ: M̃ → R.

On a 2-manifold mesh M = (V , E, F), a density distribution on M
can be defined as a real-value function on V , i.e.,

ρ: V → R.

Given any density distribution ρ, we apply the fast marching
method (FMM) – which is a numerical method for solving the

boundary value problem of the Eikonal equation – to find the
weighted shortest path between s and t on M ,{
|∇u(x)| = ρ(x),

u(s) = 0,
(2)

where s is the source point and u(x) is the minimum distance
from s to x in M under the density distribution ρ. Therefore,
FMM can be regarded as a function which maps any density
distribution ρ to a path p ∈ Ps,t ,

fFMM:DM → Ps,t ,

where DM is the space of all density distributions in M . Given that
DM is a linear space, the addition, subtraction, and scalar multi-
plication of real-valued functions can then be easily designed for
DM naturally.

FMM requires the density distribution to be non-negative
everywhere, but the difference of two density distributions could
be negative. To solve this conflict, one way is to trivially set
all negative values to zero. In our algorithm we use the follow-
ing definitions of addition, subtraction, and scalar multiplication,
which enlarges the search space more than the trivial clipping
scheme,⎧⎪⎨⎪⎩

a⊕ b = ab,
a⊖ b = a/b,

k⊗ a = ak.

The multiplication, division, and exponential operation de-
fined in (3.1) can be regarded as addition, subtraction, and scalar
multiplication in an exponential domain. Note that positive real
numbers are closed under these operations. At the implementa-
tion level, positive real numbers could be too large or too close
to zero, which is out of the range of precision. Let DBLMAX and
DBLMIN be the maximum and minimum positive numbers that
can be represented. We set a real number to DBLMAX if it exceeds
DBLMAX and to DBLMIN if it is less than DBLMIN , which is called
the maximum principle. It can make the difference of two big (or
small) numbers disappear. We use a trick to keep the differences
by storing its exponential domain log(x). We apply no maximum
principle to it in the DE part. As Eq. (2) needs the density, we
apply the maximum principle to it only in the fast marching part.

The density with new operations is the same as the traditional
density in FMM. Different operations lead to different search
behaviors, which only make DE different. The new operations
avoid negative numbers and keep the difference so it can make
DE more effective.

By transforming each density distribution ρ ∈ DM to a path in
p ∈ Ps,t using fFMM, we can represent the energy function ε(p) as
ε(fFMM(ρ)), denoted by ε(ρ) for short. Hereafter, we will focus on
DM with the energy defined on density distributions.

3.2. Algorithmic details

The pipeline of our algorithm follows the traditional differen-
tial evolution algorithm, as shown in Fig. 1. First, we generate
a set of density distributions in V randomly as initial agents.
We iteratively update the agents until the termination condition
is met. We call the agents after the kth iteration as the kth
population. Denote by Gk = {gk,i}Ni=1 the kth population, where
N is the size of populations. The scale of populations is the same
in different iterations, which is a parameter in the differential
evolution algorithm. There are three operations in an iteration
for each agent, which are mutation, crossover, and selection. The
pseudo-code of our algorithm is shown in Algorithm 1.

The initial agents, which are a set of density distributions
in V , are generated randomly. The path will not change if the

76 Z. Ye, Y.-J. Liu, J. Zheng et al. / Computer-Aided Design 114 (2019) 73–81

Fig. 1. Illustration of one iteration in differential evolution. The agents are a set of density distributions in V and the fast marching method maps a density distribution
to a path from s to t . The kth is Gk = {gk,i}Ni=1 . For each agent gk,i in Gk , mutation, crossover, and selection are applied. We select three agents from Gk randomly
and add the scaled difference of #rand2 and #rand3 to #rand1 during the mutation operation. After crossover and selection, we update gk,i to gk+1,i .

densities in all vertices are multiplied by some number together.
For any c > 0, uniform samples in (0, c] are the same as in (0, 1].
Therefore, we take a uniform sample in (0, 1]. Uniform sampling
in the density domain leads to non-uniform sampling in the path
domain. The probability of a path being the minimizing path is
non-uniform in the path domain and to take a uniform sampling
in the path domain is not easy, so we take a uniform sampling in
the density domain.

During the mutation operation, we select three agents, de-
noted by gk,rand1 , gk,rand2 and gk,rand3 , from Gk randomly. Let

D = gk,rand2 ⊖ gk,rand3

and

vk,i = gk,rand1 ⊕ F ⊗ D,

where F is the differential weight parameter.
In the crossover operation, we generate a new density distri-

bution hk,i whose value is either gk,i or vk,i. For each vertex xj in
V , we pick a uniformly distributed random number Rj. We have

hk,i(xj) =
{
gk,i(xj), if Rj > CR
vk,i(xj), otherwise,

where CR is the crossover probability parameter.
The selection operation computes the energy function values

of hk,i and gk,i using FMM to decode a density distribution to a
path. We select the better one and discard the other, that is,

gk+1,i =
{
gk,i, if ε(gk,i) < ε(hk,i),
hk,i, otherwise,

where ε:DM → R as mentioned before.
Applying the three operations to each agent, we update the

population to the next population. The loop terminates if the
iteration number exceeds the maximal iteration specified by the
user or if the energy function does not change in nc consecutive
iterations, where nc is a number specified by the user. Finally, we
find the best agent in the final population and compute a path
from s to t using FMM. Optionally, a local optimal algorithm could
be applied. The path is the result of our method.

Table 1
Computation times of our method.
Application Category Vertices Agents Iterations Time (s)

Vector field Simple converge 1681 1000 300 354.2
Vector field Simple converge 6561 1000 50 480.1
Vector field Simple converge 14641 2000 400 9526.6
Vector field Simple Rotation 6561 1000 300 2468.8
Vector field Complex 1 6561 1000 300 1493.3
Vector field Complex 2 6561 1000 300 1582.5
CSC (k = 0.2) Cone 1681 1000 200 542.6
CSC (k = 0.2) Peaks 6561 1000 300 2520.3
Uniform geodesic Kitten 1370 500 300 438.5
Uniform geodesic Dragon 5098 1000 200 1680.9
Non-uniform geodesic Beethoven 10406 1000 200 3080.8
Non-uniform geodesic Bima 15653 500 300 3469.5

3.3. Time complexity

DE-Path is a heuristic search algorithm, hence the computation
time is highly related to the specific application and the manifold.
It is hard to provide a supremum of the time complexity. We
provide an upper bound of the time complexity and show the
computation time for our experiments in Table 1.

The computation time depends on the mesh complexity, the
population size, and the number of iterations. Given a triangle
mesh with n vertices, FMM runs in O(n log n) time. The DE-Path
runs in O(ImaxNn log n) time, where N is the population size and
Imax is the maximal number of iterations, which are both specified
by the user.

4. Applications

This section demonstrates DE-Path on three applications: com-
puting geodesic paths on triangle meshes with non-uniform den-
sity function, finding a smooth path that follows a given vector
field as much as possible, and computing a curve on a terrain with
constant slope.

4.1. Application 1: Geodesics

Given a manifold M and a density function ρ:M → R, a
geodesic is a path with weighted shortest length, which is also

Z. Ye, Y.-J. Liu, J. Zheng et al. / Computer-Aided Design 114 (2019) 73–81 77

Fig. 2. Constant-slope curve. Given a terrain model and a desired slope k, we first compute the gradient of the terrain model and then rotate the vector field by θ

clockwise and counterclockwise to obtain a 2-vector field. A constant slope curve follows one of the two vectors at each point.

the minimum of the energy function

εG(p) =
∫
x∈p

ρ(x) dx.

It is called a uniform geodesic if function ρ(x) is constant, and a
non-uniform geodesic otherwise.

Uniform geodesics are a well-studied application in computa-
tional geometry and there exist many methods to compute them.
The Mitchell–Mount–Papadimitriou (MMP) algorithm [6] is a fast
method to compute exact geodesics, so its result can be regarded
as the ground truth. In our method, FMM can find an approximate
geodesic and the DE framework can improve the quality of the
geodesic. We compare the results of our method, FMM, and the
MMP algorithm to validate our method in Section 5.

The classic window propagation methods, such as the MMP [6]
and CH algorithms [7], do not work for triangle meshes with
non-uniform density function. FMM can be extended for handling
non-uniform density. However, the path computed by FMM is
different from the exact solution because of the back-tracing
process. In this paper, we adopt FMM in our DE framework to
compute geodesic paths with non-uniform density.

4.2. Application 2: Vector fields

A vector field X on a manifold M is an assignment of a tangent
vector to each point in M [28]. It can be considered as a map

X:M → TM, (3)

such that proj ◦ X is the identity mapping, where TM is the
tangent bundle of M and proj denotes the projection from TM
to M . In the discrete case of a 2-manifold embedded in R3, the
manifold is represented by a mesh M = (V , E, F) and the vector
field X is defined on M .

The simplest vector field is the gradient field which is the
gradient direction field of a real value function defined on M . In
the gradient field, curl is zero, but convergence and divergence
are usually not zero. We can rotate the gradient field and obtain
a non-zero-curl vector field. Using this way, we can obtain a com-
plex vector field with non-zero curl, convergence and divergence
from a real value function.

Given two points s and t on M , the problem is to find a
path along the vector field from s to t , where the vector field
is bidirectional. In most cases, no path can exactly follow the
vector field. This is because given a starting point t , following the
vector field X will lead to a path, on which usually t may not be.

Fig. 3. Results of DE-Path on two complex vector fields with curls. We pick two
pairs of endpoints on each vector field and set the smoothness factor 0.1. The
endpoints s2 and t2 are on the same integral curve so that the optimal path
has a zero energy. Our computed paths (s2, t2) for both vector fields have low
normalized energies, meaning that they are close to the ground truth.

An energy function for measuring how well a path p follows the
vector field X is defined as

ε1(p) =
∫
x∈p

∡⟨ṗ(x), X(x)⟩ dx,

which is, the integral of the acute angle between the lines of ṗ
and X at each point. Here notation ∡⟨a, b⟩ represents the acute
angle between the lines of a and b. The path along the vector
field has the lowest energy. Therefore, we can solve the problem
by minimizing the energy using our proposed DE solution.

4.3. Application 3: Constant-slope curves

Given a 2-manifold S(x, y) = (x, y, z(x, y)), a constant-slope
curve (CSC) is a curve c(t) = (x(t), y(t), z(x(t), y(t))) satisfying
dz
dt

/
dl
dt
= k

78 Z. Ye, Y.-J. Liu, J. Zheng et al. / Computer-Aided Design 114 (2019) 73–81

Fig. 4. Constant slope curves on a cone with (a) k = 0.2 and (b) k = 0.1. We show the results without (left) and with (middle and right) the smoothness term.

Fig. 5. Two constant slope curves with k = 0.1. (a) The mean errors of the green and the blue curves are 0.157 and 0.227, respectively. (b) To visually check the
quality, we embed the projected curve in the corresponding 2-vector field. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

everywhere, where l is length of the curve and k is a given
constant. Rewriting the equation, we have

dz
ds
= k,

where s is the arc-length parameter. Using the chain rule, we have

∂z
∂x

∂x
∂s
+

∂z
∂y

∂y
∂s
= k.

The left hand side can be regarded as the inner product of two
vectors, so that⟨(

∂z
∂x

,
∂z
∂y

)
,

(
∂x
∂s

,
∂y
∂s

)⟩
= k

and further

⟨∇z(x, y), ṗ(s)⟩ = k, (4)

where ∇z(x, y) is the gradient of z(x, y) and ṗ(s) is the derivative
of p(s). We first compute the gradient field GF (S) of S(x, y) and
note that there are at most two directions satisfying the condition
at each point. By rotating GF (S) at each point by θ clockwise and
counterclockwise we obtain two vector fields, VF l and VF r , where
θ is the angle satisfying Eq. (4) and

θ = arccos
(

k
|∇z(x, y)| |ṗ(s)|

)
.

The constant-slope curve is then along either VF l or VF r . The
problem can be solved using a 2-vector field model, as shown in

Z. Ye, Y.-J. Liu, J. Zheng et al. / Computer-Aided Design 114 (2019) 73–81 79

Fig. 6. Computing geodesic paths. (a) The models have uniform density. The green path is the ground truth computed by the MMP algorithm. The red is our result
without local refinement, and the blue is the result of FMM. The lengths of the geodesic paths are: Dragon: 70.46 (MMP), 71.68 (ours) and 81.44 (FMM); Kitten:
49.52 (MMP), 50.11 (ours), and 57.38 (FMM). (b) The models have non-uniform densities and the MMP algorithm does not work. The energies are: Beethoven 20.47
(ours) and 22.48 (FMM); Bimba: 22.41 (ours) and 25.32 (FMM). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 7. Validation on a toy model. We show results of our method (without penalty term) after 300 iterations (bottom) and the gradient descent method after 20
000 iterations (top). The energy of our method is lower than that of the gradient descent method.

80 Z. Ye, Y.-J. Liu, J. Zheng et al. / Computer-Aided Design 114 (2019) 73–81

Fig. 8. Validation on a toy model. With increasing resolution of the discretized domain, DE-Path is able to find the solution with higher quality and shows the
positive trend of finding the global optimal. In contrast, the classic gradient descent solver gets stuck in a local optimum.

Fig. 2. In the case k = 0, the problem reduces into a vector field
problem, as discussed in Section 4.2.

To measure how well a path p keeps a constant slope, we
define the energy function

ε2(p) =
∫
x∈p

min
(
⟨ṗ(x), VF l(x)⟩, ⟨ṗ(x), VF r (x)⟩

)
dx.

4.4. Penalty term in applications 2 and 3

In some applications, we hope to find a path satisfying a
certain property. A straightforward way is to add a penalty term
into the energy function. With this penalty term, the energy
function no longer has nice properties and some methods fail, but
ours still work.

A penalty term for smoothness in the discrete case is defined
as

εs(p) =
k−2∑
i=0

⟨pipi+1, pi+1pi+2⟩,

where p = p0p1 . . . pk. Two possible directions at each point make
a constant slope curve to bend everywhere. The penalty term
can alleviate it. A comparison of a constant slope curve with and
without the penalty term for smoothness is shown in Section 5.

5. Results & discussions

We implemented our method in C++ and tested it on a PC
with an Intel Xeon E5-2620 CPU (2.00 GHz) and 32 GB RAM.
By adopting a DE framework, our method can effectively jump
out local minimums and achieve a stochastic global solution. To
demonstrate this nice property, we compare our method with a
local optimization method, i.e., a gradient descent method, in the
same environment. The running time for all results of our method

is listed in Table 1, which also reports the number of vertices, the
scale of agents and the number of iterations.

To illustrate the two applications presented in Section 4, some
results are shown in Figs. 3–5. Two paths following two complex
vector fields are shown in Fig. 3(a) and (b). We obtain the two
complex rotation vector fields by rotating two gradient vector
fields of two terrains by 90 degrees. In many practical scenarios,
adding a penalty term to the energy function can make the energy
function quite different. To demonstrate that our method can fit
diverse energy functions, four constant slope curves (k = 0.2
and k = 0.1) with and without a smoothness penalty term on
a cone are shown in Fig. 4. Front view and side view are both
shown because the constant slope curves could round to off side
of the cone. Two constant slope curves in a complex terrain are
shown in Fig. 5. We also put them in the corresponding 2-vector
field mentioned in Section 4.3, where we can check whether they
satisfy Eq. (4).

We validate our method on two toy models (Figs. 7 and 8),
and compare with a gradient decent method. A simple rotation
vector field with the ground truth and two results of our method
after 300 iterations and a gradient decent method after 20 000
iterations are shown in Fig. 7. We apply a local refinement to
our result after 300 iterations. The result of our method, which
has lower energy, is similar to the ground truth. The gradient
decent method falls into a local optimum and its result has
overlaps. A simple converge vector field with the ground truth
and six results in different resolutions are shown in Fig. 8. With
increasing resolution of the discretized domain, DE-Path is able to
find the solution with higher quality and shows the positive trend
of finding the global optimal. In contrast, the classic gradient
descent solver gets stuck in a local optimum.

To validate our method, we compare our method and FMM
for computing geodesics with uniform and non-uniform densities
(see Fig. 6). To make the comparison fair, we run our method
without local refinement. The result of our method has lower

Z. Ye, Y.-J. Liu, J. Zheng et al. / Computer-Aided Design 114 (2019) 73–81 81

energy than that of FMM, which verifies that the DE framework
finds a better density than the original density.

6. Conclusion & future work

We presented a simple yet effective method to solve a general
minimal-energy-path problem on 2-manifold meshesM , in which
the energy can be in any user-specific form. By proposing a novel
mapping from discrete paths to density distributions on M , we
successfully introduce the powerful differential evolution strat-
egy into our solution, which can effectively jump out the local
minimums and achieve a good result. Experimental results and
two novel applications demonstrate the merits of the proposed
DE-path solution.

Since the fast marching method can be used in 3D volumes, it
is possible to extend DE-path to 3D volumes as well. A possible
way is to define a density distribution on vertices of 3D volumes
and use FMM to obtain a path from s to t . We will study the
implementation details of this extension in future work.

Acknowledgments

This work is supported by the National Science Foundation
of China (61725204, U1736220), the Royal Society-Newton Ad-
vanced Fellowship, China (NA150431) and Singapore Ministry of
Education Grant (MoE 2017-T2-1-076 & RG26/17).

References

[1] Souissi O, Benatitallah R, Duvivier D, Artiba A, Belanger N, Feyzeau P. Path
planning: A 2013 survey. In: Proceedings of the 2013 IEEE international
conference on industrial engineering and systems management, Rabat;
2013, p. 849–56.

[2] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots.
Int J Robot Res 1986;5(1):90–8.

[3] Chen C, Xiao Y. Accurate free energy calculation along optimized paths. J
Comput Chem 2010;31(7):1368–75.

[4] Das S, Suganthan PN. Differential evolution: A survey of the state-of-the-
art. IEEE Trans Evol Comput 2011;15(1):4–31.

[5] Das S, Mullick SS, Suganthan PN. Recent advances in differential evolution
— An updated survey. Swarm Evol Comput 2016;27:1–30.

[6] Mitchell JSB, Mount DM, Papadimitriou CH. The discrete geodesic problem.
SIAM J Comput 1987;16(4):647–68.

[7] Chen J, Han Y. Shortest paths on a polyhedron. In: Proceedings of the
sixth annual symposium on computational geometry, Berkley, CA; 1990,
p. 360–9.

[8] Kimmel R, Sethian JA. Computing geodesic paths on manifolds. Proc Natl
Acad Sci USA 1998;95(15):8431–5.

[9] Ying X, Wang X, He Y. Saddle vertex graph (SVG): A novel solution to the
discrete geodesic problem. ACM Trans Graph 2013;32(6):12, Article 170.

[10] Liu B, Chen S, Xin S-Q, He Y, Liu Z, Zhao J. An optimization-driven approach
for computing geodesic paths on triangle meshes. Comput Aided Des
2017;90:105–12.

[11] Lanthier M, Maheshwari A, Sack J-R. Approximating weighted shortest
paths on polyhedral surfaces. In: Proceedings of the thirteenth annual
symposium on computational geometry, Nice; 1997, p. 485–6.

[12] Aleksandrov L, Maheshwari A, Sack J-R. Determining approximate shortest
paths on weighted polyhedral surfaces. J ACM 2005;52(1):25–53.

[13] Aleksandrov L, Djidjev H, Guo H, Maheshwari A, Nussbaum D, Sack J.
Algorithms for approximate shortest path queries on weighted polyhedral
surfaces. Discrete Comput Geom 2010;44(4):762–801.

[14] Hofer M, Pottmann H. Energy-minimizing splines in manifolds. ACM Trans
Graph 2004;23(3):284–93.

[15] Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ. A survey on
metaheuristics for stochastic combinatorial optimization. Nat Comput
2009;8(2):239–87.

[16] Kirkpatrick S, Gelatt Jr CD, Vecchi MP. Optimization by simulated
annealing. Science 1983;220(4598):671–80.

[17] Smith SF. A learning system based on genetic adaptive algorithms [Ph.D.
thesis], Computer Science Department, University of Pittsburgh; 1980.

[18] Vesterstrøm J, Thomsen R. A comparative study of differential evolution,
particle swarm optimization, and evolutionary algorithms on numerical
benchmark problems. In: Proceedings of the 2004 congress on evolutionary
computation, Portland, OR; 2004, p. 1980–7.

[19] Ghosh S, Das S, Vasilakos AV, Suresh K. On convergence of differential
evolution over a class of continuous functions with unique global optimum.
IEEE Trans Syst Man Cybern B 2012;42(1):107–24.

[20] Liu Y-J, Xu C-X, Yi R, Fan D, He Y. Manifold differential evolution (MDE):
a global optimization method for geodesic centroidal Voronoi tessellations
on meshes. ACM Trans Graph 2016;35(6):10, Article 243.

[21] Yi R, Liu Y-J, He Y. Delaunay mesh simplification with differential
evolution. ACM Trans Graph 2018;37(6):12, Article 263.

[22] Sethian JA. A fast marching level set method for monotonically advancing
fronts. Proc Natl Acad Sci USA 1996;93(4):1591–5.

[23] Sethian JA, Vladimirsky A. Fast methods for the Eikonal and related
Hamilton–Jacobi equations on unstructured meshes. Proc Natl Acad Sci
USA 2000;97(11):5699–703.

[24] Mémoli F, Sapiro G. Fast computation of weighted distance functions and
geodesics on implicit hyper-surfaces. J Comput Phys 2001;173(2):730–64.

[25] Spira A, Kimmel R. An efficient solution to the eikonal equation on
parametric manifolds. Interfaces Free Bound 2004;6(3):315–27.

[26] Weber O, Devir YS, Bronstein AM, Bronstein MM, Kimmel R. Parallel
algorithms for approximation of distance maps on parametric surfaces.
ACM Trans Graph 2008;27(4):16, Article 104.

[27] Campen M, Kobbelt L. Walking on broken mesh: Defect-tolerant geodesic
distances and parameterizations. Comput Graph Forum 2011;30(2):
623–32.

[28] Tu LW. An introduction to manifolds. 2nd ed. New York: Springer; 2011.

http://refhub.elsevier.com/S0010-4485(19)30201-5/sb2
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb2
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb2
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb3
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb3
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb3
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb4
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb4
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb4
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb5
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb5
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb5
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb6
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb6
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb6
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb8
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb8
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb8
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb9
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb9
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb9
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb10
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb10
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb10
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb10
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb10
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb12
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb12
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb12
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb13
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb13
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb13
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb13
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb13
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb14
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb14
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb14
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb15
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb15
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb15
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb15
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb15
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb16
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb16
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb16
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb17
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb17
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb17
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb19
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb19
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb19
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb19
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb19
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb20
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb20
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb20
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb20
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb20
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb21
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb21
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb21
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb22
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb22
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb22
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb23
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb23
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb23
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb23
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb23
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb24
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb24
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb24
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb25
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb25
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb25
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb26
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb26
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb26
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb26
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb26
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb27
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb27
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb27
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb27
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb27
http://refhub.elsevier.com/S0010-4485(19)30201-5/sb28

	DE-Path: A Differential-Evolution-Based Method for Computing Energy-Minimizing Paths on Surfaces
	Introduction
	Related work

	Preliminaries
	Differential evolution
	Fast marching method

	DE-Path
	Encoding paths as density distributions
	Algorithmic details
	Time complexity

	Applications
	Application 1: Geodesics
	Application 2: Vector fields
	Application 3: Constant-slope curves
	Penalty term in applications 2 and 3

	Results & discussions
	Conclusion & future work
	Acknowledgments
	References

