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a b s t r a c t

This paper introduces a method for transferring colors between portrait images. Using a trained neural
network to extract facial mask, we vectorize each image with a set of sparse diffusion curves to encode
the low-frequency colors, and use the Laplacian of residual colors to represent the high-frequency
details. Then we apply optimal mass transport to transfer the boundary colors between the diffusion
curves of the source and reference images. Finally, the original or modified Laplacians of colors are
added to the transferred diffusion curve image. Unlike the existing methods that either require 3D
information or assume the source and reference images have similar poses and dense correspondence,
our method is computationally efficient and flexible, which can work for portrait images with large
pose and color differences.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In the digital age, portrait and self-portrait photographs are
extremely popular and have spread to every corner of the world.
Although these images are casual in nature, many users would
like to retouch them before sharing online. Since manual color
tuning is time consuming even for experienced users, color trans-
fer is a practical method to change the appearance of the source
image to the color pattern of a reference image.

In computer graphics and image processing fields, color trans-
fer has been studied for almost two decades since the seminal pa-
per by Reinhard et al. [1]. There are two classes of algorithms for
automatic color transfer: the traditional statistic-based methods
that match the color distributions of the source and references
images [2], and more recently the learning-based methods that
can establish semantically-meaningful correspondence between
visually different image pairs [3,4]. Although these methods work
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very well for landscape photos, directly applying them to por-
trait images often produce poor results, since people are more
sensitive to the artifacts of human faces than landscape photos.
To tackle the challenges, Shih et al. [5] decomposed portrait
images into multiple layers of varying scales, and transferred the
local statistics of each layer by computing a local energy map.
Matching the local statistics over multiple scales can effectively
transfer the skin textures, the local contrast and the overall light-
ing direction. However, due to the requirement of a dense corre-
spondence between the input and the reference, it works only for
the pair with similar poses and facial expressions. Recently, Shu
et al. [6] developed an algorithm for transferring the illumination
of one portrait to another. Fitting a 3D morphable face model
to the portrait, their method combines the color values with 3D
positions and normals, and transfers the color and illumination by
solving an optimal mass transport (OMT) problem. Although their
method is able to handle a variety of portraits and illumination
conditions, it is computationally expensive due to the formulation
in 8-dimensional space.

In this paper, we aim at developing a simple yet effective
method for transferring colors between portrait images. Using a
trained neural network to extract facial mask, we first vectorize
each image using a set of sparse diffusion curves to encode the
low-frequency colors, and use the Laplacian of residual colors to
represent high-frequency details. Then we apply optimal mass
transport to transfer the boundary colors between the diffusion
curves of the source and reference images. Finally, the original or
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Fig. 1. Examples of skin and hair color transfer with our method. The original images are shown in the first column and the reference images are shown in small
insets. Note that our method does not require a dense correspondence between the input and the reference, therefore it can handle portraits with different postures.

modified Laplacians of colors are added to the transferred diffu-
sion curve image. Using a local Poisson solver, the color changes
can be updated in a local manner. Unlike the existing methods
that either require 3D information or assume the source and
reference images have similar poses and dense correspondence,
our method is computationally efficient and flexible, which can
work for portrait images with large pose and color differences.
Since our method formulates OMT using sparse diffusion curves,
it is computationally efficient, and does not require a dense cor-
respondence between the input and the example. As a result, our
method is able to handle portraits of different postures (including
side views) and special facial textures (e.g., freckle, tattoo), and
work for both photographs and paintings. Our method also allows
the user to adjust PRs to produce interesting visual effects such as
watercolor or painting styles. Fig. 1 shows examples of skin and
hair color transfer using our method.

2. Related work

This section reviews the closely related work on color transfer,
vector graphics, and image vectorization.

2.1. Vector graphics

Vector graphics provides several practical benefits over tradi-
tional raster graphics, including sparse representation, compact
storage, geometric editability, and resolution-independence. Early
vector graphics supports only linear or radial color gradients,
diminishing their applications for photo-realistic images. Orzan
et al. [7] proposed diffusion curve images (DCI) that consist of
sparse curves with user-specified colors on both sides. By solving
a Laplace equation, the colors are smoothly diffused from the
curves across the image domain. Bezerra et al. [8] proposed
diffusion barriers, diffusion anisotropy, and spatially varying color
intensity to control the diffusion process. Their method can dif-
fuse both colors and normal maps to produce non-realistic effects.
Finch et al. [9] extended diffusion curves to provide smooth in-
terpolation through color constraints by using thin-plate splines,
which allows direct control of color gradient. Lieng et al. [10]
developed shading curves that associate shading profiles to each
side of the curve. These shading profiles, which can be man-
ually manipulated, represent the color gradient out from their
associated curves. Recently, Hou et al. [11] presented Poisson
vector graphics (PVG) which extends DCI with non-zero Lapla-
cians. Together with two new types of vector primitives, called
Poisson regions and Poisson curves, they demonstrated that PVG
can effectively produce photo-realistic images.

2.2. Image vectorization

There are mainly two kinds of vector image formulations,
region based and curve based vector graphics. In terms of region
based vector formulation, Sun et al. [12] introduced an automatic
vectorization algorithm of gradient mesh using Ferguson patches.
Later, Lai et al. [13] generalized the method for constructing high-
quality gradient meshes for multiply-connected domains using
slit map [14]. In terms of curve based formulation, Xie et al. [15]
proposed hierarchical diffusion curve to vectorize natural images.
Zhao et al. [16] proposed to use shape optimization to generate
more compact vector representation of images. With the devel-
opment of deep learning, Song et al. [17] proposed a texture
compression algorithm that represented the image by a deep
neural network.

2.3. Color/style transfer

Reinhard et al. [1] discussed that RGB channels are not in-
dependent of each other but LAB channels are, so they used
LAB three channels to color transfer for natural images based
on a linear equation for mean and standard deviation. Pitie [2]
presented N-dimensional probability density function for color
transfer. Hwang et al. [18] applied moving least squares to color
transfer and image denoising in a same scene because of camera
setting or time reason. Lee et al. [19] provided an example-
based color transfer by using regularized color and tone mapping
functions and an illuminance correction step to reduce artifacts.
Shih et al. [5] proposed a color transfer for headshots that can
match skin texture, local contrast and overall lighting direction
by matching multiple-dimensional local statistics, but required
a dense correspondence and similar beard, hairstyle, and age of
the input and reference. Shu et al. [6] applied massing transport
approach over 8D data of facial regions including RGB color,
position, and normal to achieve a good relighting and color trans-
fer result. There are several other methods based on object-to-
object color transfer with semantically correspondences between
source and reference images. Wu et al. [20] proposed a content-
based method for separately transferring the color patterns be-
tween the corresponding semantic regions which extracted by a
composition-based detection method or a face detection method
for portraits. Yang et al. [21] presented a semantic color trans-
fer especially for portraits, that they first manually extracted
semantic facial parts and then perform color transfer algorithm
proposed by [1] between corresponding parts with the same
semantic information. He et al. [22] used neural representations
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Fig. 2. Our algorithmic pipeline. Vectorizing the input and reference images, we obtain a set of sparse diffusion curves, which encode the smooth, low-frequency
signals (e.g., the skin color), and pixel-level Poisson regions, which encode the high-frequency details. Using a trained convolution neural network, we segment
the facial features and label the DCs into three categories: skin (red), hair (blue) and background (green). Then we formulate the color transfer problem as an
optimal mass transport between the labeled DCs. After solving Poisson’s equation using an efficient random-access solver, we obtain the retouched portrait . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

for matching semantically-meaningful dense correspondence be-
tween images to obtain a more accurate object-to-object color
transfer. Neural network style transfer methods [3,4] could be
used as color transfer successfully. However, they were easy to
cause distortion that made the results look like paintings that
was not good for real photos’ color transfer, and Luan et al. [23]
improved the effect of photo style transfer by using energy
function to constrain local affine transfer.

3. Overview

Our method consists of four steps. First, we vectorize the input
and reference pair with diffusion curves and Poisson regions. Dif-
fusion curves are sparse curves representing the salient features
and each curve is two sided and assigned boundary colors on
each side. Intuitively speaking, vectorization is to ‘‘push’’ the low-
frequency colors of the non-feature regions into the boundary
colors of the extracted diffusion curves. Poisson regions are the
Laplacian of color residual, which encode the high-frequency
details. Second, we apply a convolution neural network to label
the diffusion curves, such as skin, hair and background. Third,
we formulate the color transfer problem as an optimal transport
between the diffusion curves.

So the vector images are separated into two levels — the low-
frequency signals such as the main color and the high-frequency
details. The vectorization provides both the target of color trans-
fer and more degree of control like adjusting global contrast
by decreasing or increasing Laplacian values. Second, by using
a trained convolution neural network, we segment the facial
features and label the DCs into three categories: skin, hair and
background. Then, we formulate the color transfer problem as an
optimal mass transport between the labeled DCs, and implement
it by the sliced Wasserstein distance algorithm. Finally, we apply
the local Poisson solver rendering the regions of interested to
obtain the output image.

Fig. 2 illustrates the pipeline of our color transfer method and
the corresponding pseudo-code is given in Algorithm 1.

Algorithm 1 Vectorization based color transfer on portrait images
Require: The input image I , the reference image R
Ensure: The output image O
1: Vectorize I and R using diffusion curves DC and Poisson

regions PR (Section 4)
2: Label the diffusion curves as skin, hair, and background

(Section 5)
3: Use optimal mass transport to transfer the boundary colors of

DCR to DCI (Section 6)
4: Apply a local Poisson solver to render the diffusion curves

with new boundary colors DC ′

I and the original or modified
Poisson regions PRI (Section 7)

4. Vectorization

To achieve a vector image that can change color conveniently
and resume the original image, we combine diffusion curve and
Poisson image. If only use diffusion curves, there need very dense
curves to basically resume the effect of the original image, but too
many curves hinder the editing and color change. To decrease the
number of curves and get complete image details, we use edge
detection method to obtain enough DCs and calculate its Poisson
region to maintain details. And we apply a local Poisson solver to
update the color of vector image locally.

For a proper vectorization based Poisson’s equation, its bound-
ary condition given by DCs is extracted automatically. To
conveniently edit DCs, we should control the number of DCs
as less as possible. But to effectively color transfer, DCs need
to include enough low-frequency information of the main color,
and can render a result as true as original image with adding
high-frequency details from Poisson region.

First, we calculate Poisson regions of the whole image as
Laplacian values. In the discrete case, it is easy to obtain Laplacian
value of each pixel pi through the RGB color of its neighborhood.
Let pj be the left, right, top, and bottom position of pi, the 3D
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Fig. 3. Vectorization. (a) The original image. (b) Extracted diffusion curves with
boundary colors. (c) The diffusion curves encode only the low-frequency colors.
(d) The Poisson regions are the pixel-level regions that encode high-frequency
details. (e) Combining both diffusion curves and Poisson regions, we obtain a
highly accurate vector representation. (f) Label the diffusion curves into three
categories: skin (red), hair (blue) and background (green) . (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. We segment the portrait image into three parts: background, skin, and
hair.

Laplacian value of pi can be calculated as

Lap(pi) =

4∑
j=1

(
RGB(pj) − RGB(pi)

)
. (1)

Fig. 3 shows an example of vectorizing portrait image.
Then, we extract DCs as boundary condition through the edge

detection method [24]. All the edges with non-zero probabilities
are deemed as DC candidates and we reserve the edges, whose
sum of Laplacians around the edges above a given threshold, as
DCs. Because large gradient means leap and comparative colors
representing the main color around at the greatest extent. Only
the edges with sharp color variations are necessary for our color
transfer algorithm, so our DC extraction method is robust for the
application.

Finally, associating with Laplacian values f and boundary
condition g , we solve Poisson’s equation (5) by using our local
Poisson solver (see Section 7) and render the vector image.

5. Labeling Facial Features

To automatically label portraits with appropriate facial parts,
we adopt the deep learning based method proposed in [25],
which is one of the state-of-the-art face parsing methods.

The network structure is the FCN-8s [26] which is commonly
used for semantic image segmentation. Here we train the labeling
CNN model on HELEN dataset [27], which contains 2330 facial
images of arbitrary size, and each pixel of its image is labeled
as 11 classes (background, hair, facial skin, left eyebrow, right
eyebrow, left eye, right eye, nose, inner mouth, upper lip, and
lower lip). Fig. 4 shows three main labels of the above portrait
in Fig. 3.

As above, after vectorization, DCs represent the main color of
the original image, and the target of color transfer becomes these
sparse curves. Generally, not all of DCs belong to the interest class
like skin or hair, so we use the segmentation results to label DCs
automatically. Specifically, we use these segmentation masks of
background, hair, and skin (combining with facial skin, brows,
eyes, nose, and mouths) to label each control point of DC. Because
some DCs are very long, they are not always belonging to a single
class. And we can see that DCs are sparsely distributed and its
number is not much, that makes the labeling result is relatively
good even if its segmentation is not that accurate.

However, this labeling result is not satisfied enough, especially
for skin color transfer like neck labeled as background instead of
skin. Because the facial skin area of segmentation is only covering
facial skin and it cannot separate face and background perfectly.
But the facial skin label still provides the basic information of skin
color, and it helps to improve recognizing other DCs that actually
belong to the skin like neck and hands.

Take skin labeling for example. At first, sort the color of DCs
labeled as facial skin, and break off both ends to remove the
superfluous parts brought by inaccurate facial skin mask. Then
we have a range of skin color to measure other DCs whether
they belong to skin or not. Actually, this method can apply to
the situation that skin color has a big difference comparing to
hair and background. When their color is similar, this method
cannot help labeling automatically, so our system allows the user
to assign and change labels where necessary. In the process, we
do not need perfect labels, especially for references.

6. Color transfer with optimal mass transport

Optimal mass transportation is a useful method for color
transfer by operating the color histograms of the input and
output. In simple terms, it solves the problem that transports the
color histogram of input to references by using minimum cost.

Specifically, let I =
{
ci

⏐⏐ci ∈ Rm×3
}m
i=1, R =

{
cj

⏐⏐cj ∈ Rn×3
}n
j=1

be the RGB color of the input and reference images, and HI and
HR be their normalized color histograms. A transportation plan is
σ : {ci} → {cj}, σ = {σij}, σij means how many pixels of color ci
changed to color cj. And the optimal mass transportation plan is
defined as

argmin
σ

∑
i

∑
j

σij
ci − cj

2 (2)

with constraints:

σij ≥ 0,
n∑

j=1

σij = Hci ,

m∑
i=1

σij = Hcj .
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Fig. 5. Color transfer for skin and hair with different iterations N . The first column shows the input images and the last column is the references. The middle
columns (from left to right) are the results with N = 1, 5, 10, 20, 30, 50, respectively.

This problem is known as Kantorovich’s formulation [28], and
it can be solved by linear programming method. However, its
solution may cause some pixels of the same color transported to
different colors that is not a good feature for the application of
color transfer.

Monge’s formulation [29] is to find a transport map T : {ci} →

{cj} that realizes

argmin
T

m∑
i=1

Hci∥ci − T (ci)∥2 (3)

with constraints:

HT (I) = HR.

It can provide a result that all pixels of each color transferred to a
single color. But Monge’s formulation may be no solution, because
sometimes there is no T satisfying HT (I) = HR, for example, where
the number of color I is not equal to color R.

Here we apply the sliced Wasserstein distance algorithm [30]
to solve this problem. This algorithm uses an iteration method to
give an approximate solution such that HT (I) ≈ HR:

T k+1(I) = (1 − α)T k(I) + αT (T k(I)), k = 1, 2, . . . ,N. (4)

with initial condition:

T 1(I) = I

where N is the number of iterations, and α is the linear param-
eter. By using this algorithm, we can always obtain a solution.
Meanwhile, its solution makes sure to transport all pixels of a
same color into a single color. For one-dimensional data, we can
obtain results easily by sorting and interpolating values. But for
multi-dimensional data such as 3D data in RGB color transfer, the
slicedWasserstein distance algorithm applies its one-dimensional
algorithm to each projection of multi-dimensional data with a
random basis and then iterates to obtain a final approximate
result. Comparing with directly multi-dimensional transporta-
tion, the sliced algorithm is more efficient and consume less time.
In our experiment, we set α = 0.2 as in [31] and N = 30 whose
result is good enough on labeled diffusion curves. Fig. 5 shows
that the transfer results with different iterations.

To reduce color leap in skin color transfer in practice, we add
Gaussian noises as in [6] to their colors to make that a color can be
transferred to a relatively similar color. It increases the data like
five times in my experiment, though it has less effect on running
time because the data is only some sparse curves and it brings
more smooth and natural results. However, it is not necessary for

hair color transfer, because hair is supposed to be more closed to
the effect of reference with direct transfer.

After clarifying DCs as skin, hair, and background, the target
of color transfer becomes labeled DCs from one classification, e.g.
skin. So the objectives of optimal mass transportation are some
sparse curves. Apply the Sliced Wasserstein Distance algorithm
on these labeled DCs of input and change their colors referring
to DCs with the same label. Then locally render of the region of
interest to obtain the final result of the color transfer. In actual,
the process is changing the boundary condition and with the
same Poisson region. Therefore, the details of the input remain
unchanged that keep the original texture and meanwhile change
color.

7. Rendering

To render and update the vector graphics, we solve Poisson’s
equation

∆u(x) = f , u(x)|x∈∂Ω= g, (5)

where f is the Laplacian constraints, and g is the Dirichlet bound-
ary condition of colors. We develop a harmonic B-spline [32]
based local solver for (5).

Let Ω ⊂ R2 be a 2D compact domain and T = {ti|ti ∈ Ω}
n
i=1 a

set of knots. Taking {ti} as the generators, we construct a Voronoi
diagram Ω =

⋃n
i=1 Vi, where Vi is the Voronoi cell of knot ti. For

arbitrary points x, y ∈ Ω , Green’s function of the Laplace operator
∆ satisfies

∆φy(x) = δy(x), (6)

where δy(x) is the Dirac delta function centered at y. In 2D space,
we can give its analytic solution

φy(x) =
1
2π

log(∥x − y∥).

For a Voronoi cell Vj, applying Green’s theorem to Eq. (6) yields∫
Vj

∆φy(x) dσ =

∫
∂Vj

∂∆φy(x)
∂n

ds, (7)

where n is the outward unit normal to the boundary ∂Vj, dσ and
ds are the area and line integral elements, respectively.

We define a basis function ψj for each Voronoi cell Vj as

ψj(x) =

∑
i

wijφti (x), (8)
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Fig. 6. Skin color transfer results. The original images are in red frames, and the rest are the transferred results.
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Fig. 7. Skin color transfer between oil/watercolor paintings and real portraits. Row 1 is the recoloring results of watercolor painting according to the real faces (the
first and these mini images are original), the middle row is the recoloring results of according to the same reference as above row (the first image is original), and
the skin transfer results of these two paintings are shown at the left lower column. The third row shows the transfer results from watercolor painting (the first
three) and oil painting (the last three). Then by decreasing or increasing their Poisson region, we can obtain the results like watercolor or oil-painting style (the last
row).

where wij is the discrete Laplacian weight and
∑

iwijφti (x) is a
boundary sum that approximates the line integral on the right
hand side of Eq. (7). Feng and Warren [32] showed that the
functions ψj are approximately local, nonnegative, and satisfying
partition of unity.

Green’s third identity provides an analytical solution for Pois-
son’s equations in the form of integral

u(x) =

∫∫
Ω

φy(x)∆u(y)dσy

+

∮
∂Ω

(
u(y)

∂φy(x)
∂n

− φy(x)
∂u(y)
∂n

)
dly, (9)

where dσ and dl are the surface and line elements, n is the
outward pointing unit normal of dl.

Using harmonic B-splines [33], we compute the approximate
solution by

u(x) =

∑
λjψj(x)

where if λj is a boundary, use the Dirichlet boundary condition
g to assign it; and if not, calculate it by solving a sparse linear
system.

By using this Poisson solver on vector images, we can render
and update them in a local manner.

8. Results

By using our method, we can obtain natural results of skin
color transfer with the remaining other regions unchanged ex-
cept for interested regions. Fig. 6 shows the skin color transfer
between six real persons of different skin color from white to
black.

Rather than human photos, our method can be applied to
skin color transfer between painting-to-painting and paining-to-
photo. In Fig. 7, the first two rows are the skin color transfer
results of watercolor and oil paintings referring to real portraits,
the rest two of the first column are between these two paintings,
and the last six of the third row is the results of photos referring
to watercolor painting (the first three) and oil painting (the last
three). To create the effect like the style of watercolor or oil
painting, we half and double their Poisson region based on the
color transfer results of the above row.

Moreover, the portrait lighting method proposed in [6] can
also be used in skin color transfer. To transfer portrait lighting
and colors, they apply a mass transport method on 8D data of
facial areas including RGB colors, 2D coordinates, and 3D normals.
So their interested regions are the whole facial areas, whose data
mount is much more than sparse curves as ours. Due to the high
dimension problem they solved, their method is computationally
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Fig. 8. Color transfer among portraits with different head positions. The images
in red frames are the original images.

expensive. It took roughly 3 min to process a portrait image of
size 500 × 600. In our method, vectorization is the bottleneck,
which takes 30–60 s. After that, labeling the diffusion curves and
transfer colors are highly efficient, taking only a few seconds.
Rendering the diffusion curves and Poisson regions using our
random-access solver also takes a few seconds. Therefore, our

Fig. 9. Our method can preserve features such as glasses, freckles, and tattoos.

method is more efficient than Shu et al.’s approach [6]. Further-
more, since our results are vector primitives, it is relatively easy
for downstream applications, such as editing the geometry of
facial features, and cloning.

Our method can produce good visual effects on not only front
faces but also other postures including side faces dropped heads,
and raised heads as shown in Fig. 8. Vectorization decomposes
the image into two levels where the color change is in the low-
frequency information, so our method is able to maintain the
texture and high-frequency details of the original images. As
shown in Fig. 9, whether freckles or tattoos on faces or cov-
ered by something like sunglasses, we can obtain a good result
maintaining original details.

Note that Shih et al.’s method [5] assumes a dense correspon-
dence between the input-reference pair, therefore, it works only
for portrait photos with similar postures and facial features. In

Fig. 10. Comparison with the state-of-the-art methods [6] and [5]. The three methods have slightly different objectives: our method focuses on skin and hair colors,
Shu et al.’s method [6] deals with lighting transfer and Shih et al.’s method [5] targets skin colors and textures. Our method is more computationally efficient than
the other approaches and it does not require dense correspondence between the input and the reference images.
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Fig. 11. Hair color transfer for photos and paintings. The input images are in the first column and the reference images are in the second and fourth rows.

Fig. 12. By labeling the diffusion curves of eyes and mouths, our method can also transfer their colors. Left: the original image; middle and right: the transferred
results.

contrast, our method does not require such a correspondence,
hereby is flexible and can handle portraits with different head
positions and facial features (see Fig. 8). Moreover, our method
also works for non-photorealistic images, such as cartoon and
paintings.

In addition, we compare our method with [6] and [5]. As
shown in Fig. 10, our method can achieve comparable results
by keeping skin textures and highlights. Besides skin color, our
method can be used on hair color transfer too. Fig. 11 shows two
girls’ hair color (the first column) changed referring to different
hair colors whether their hair colors are similar or not. And we

can generate good results not only on whose hair color has only
one color but also multiple colors. And rather than real persons,
the reference can be painting too (the last column). Our current
method labels the regions in three main categories — skin, hair,
and background. By labeling eyes and mouth, our method can also
transfer their colors (see Fig. 12).

9. Conclusions

This paper presents a simple yet effective method for trans-
ferring skin and hair color between portrait images. First, we
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Fig. 13. Our method fails on portraits with significantly different color distribu-
tions. Note that the input image has a very low contrast, whereas the reference
image has a high contrast. Tuning the PRs can reduce the artifacts.

apply vectorization to split original images into low and high
frequencies, where low frequency given by sparse DCs including
main color information as the target of color transfer, and high
frequency provided by Poisson region including other details.
Next, we use a segmentation algorithm to label DCs to obtain
the specific target of optimal mass transportation to change their
color. Finally, locally render the output with our Poisson local
solver. The experimental results provide some color transfer re-
sults of portraits skin and hair, but actually, color transfer of
smaller regions like mouth or eyes can be transferred in a similar
way. Furthermore, our method can be applied to other objects or
sceneries too.

However, the presented method has limitations. When the
colors of the interested regions of the input and reference have
a massive difference, the color transfer results may be artificial,
even if adjusting their Poisson region can make moves to improve
their effects as shown in Fig. 13. The segmentation results are
not accurate, and we can completely avoid labeling by the user
if we have accurate segmentation masks in the future. Moreover,
there is not a numerical or quantitative evaluation to qualify the
results besides the visualization images provided in this paper.
We plan to propose a numerical evaluation of the color transfer
results that can also be used to find the best matching reference
images automatically.
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